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Abstract 
The main idea of energy-based hypothesis of material effort proposed by Burzyński is briefly presented and the 

resulting failure criteria are discussed. Some examples, based on the own studies, which depict applications of 

these criteria are discussed and visualizations of limit surfaces in the space of principal stresses are presented.  

 

1. INTRODUCTION 

The aim of the paper is to present an energy-based approach to failure criteria for 

materials, which reveal asymmetry in failure characteristics. It means that in the results of 

tension and compression tests there is observed a difference in the values of elastic, yield or 

strength limits. The energy-based hypothesis of material effort proposed originally by W. 

Burzyński is presented (BURZYŃSKI [1928], [1929a], [1929b]) and the resulting failure 

criteria phrased for stress tensor components in an arbitrary Cartesian coordinate system or, in 

particular, with the use of principal stresses are discussed. As for new results own applications 

of Burzyński‟s failure criteria for traditional and new materials are presented.  

2. FAILURE CRITERIA BASED ON BURZYŃSKI HYPOTHESIS OF MATERIAL 

EFFORT FOR ISOTROPIC SOLIDS 

WŁODZIMIERZ BURZYŃSKI [1928] not only summarized the contemporary 

knowledge about yield criteria but also presented a new idea how to determine the measure of 

material effort for materials which reveal difference in the failure strength (in particular: the 

elastic limit) for tension and compression. According to the original Burzyński‟s hypothesis, 

the measure of material effort defining the limit of elastic range is a sum of the density of 

elastic energy of distortion and a part of density of elastic energy of volume change being a 

function of the state of stress and particular material properties. The mathematical formula 

corresponding to this statement reads:  
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is the density of elastic energy of volume change. The constant K  corresponds to the value of 

the density of elastic energy in a limit state, while ,   are material parameters dependent on 

the contribution of the density of elastic energy of volume change influenced by the mean 

stress p. By the symbols 1 2 3, ,    are meant principal stresses and by: , ,x y z    - normal 

stresses in an arbitrary Cartesian coordinate system. By introducing the function   Burzyński 

took into account the experimentally based observation that the increase of the mean stress p 

results in the diminishing contribution of the elastic energy density of volume change v  in 

the measure of material effort. The above formulation of the measure of material effort is 

precise for the limit states of linear elasticity, typical for brittle behaviour of materials. When 

the limit state is related with the lost of material strength preceded by certain plastic strain, 

then the measure of material effort (1) loses its foundations of linear elasticity, because in this 

case inelastic states of material may occur. This is the reason why W. Burzyński suggested to 

treat functions f  i v
 
in equation (1) as general strain functions and he emphasized this 

fact by the word “quasi-energies” of strain.  

In the discussed measure of material effort (1) there are introduced three material 

parameters: , , K   . The final form of failure hypothesis (2.1) reads (BURZYŃSKI [1928], 

[1929a]):  
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where 2 12f fG   . The idea of Burzyński‟s derivation lies in a particular conversion of 

variables. The triplet  , , K   is substituted by another one, which results from commonly 

performed strength tests: elastic (plastic) limit in uniaxial tension - tk , uniaxial compression - 

ck , and torsion - sk :    , , , ,t c sK k k k    (cf. BURZYŃSKI [1928], p. 112). 
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Due to the mentioned above substitution, (2.2) transforms into the form discussed also in 

(ŻYCZKOWSKI [1999]): 
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where 2 21

2
e f   is an equivalent stress used in the theory of plasticity. According to the 

discussion conducted in (BURZYŃSKI [1928]) and (ŻYCZKOWSKI [1999]) the equation 

(3.3) in the space of principal stresses, depending on the relations among material constants 

 , ,t c sk k k , describes the surfaces: an ellipsoid for 
23 s t ck k k  or a hyperboloid for 

23 s t ck k k , 

which, however, does not have any practical application. W. Burzyński also noticed that there 

occur interesting cases if these three material constants are particularly connected, for 

example if they are bound together as the geometrical average: 3 s t ck k k , then (3) takes 

the form (BURZYŃSKI [1928]):  

 

(2.4)                                              2 3 0e c t c tk k p k k    
.    

The above equation presents the formula of a paraboloid of revolution in the space of 

principal stresses. The original hypothesis of W. Burzyński (BURZYŃSKI [1928]) and his 

comprehensive phenomenological theory of material effort was forgotten and repeatedly 

„rediscovered‟ later by several authors, often in parts and without the clarity of the in depth 

analysis and physical foundations of Burzyński‟s work. Discussion of other works containing 

the latter equation is presented in (ŻYCZKOWSKI [1981], [1999]). It is worthwhile 

mentioning that the discussed above paraboloid yield condition finds recently applications 

also in viscoplastic modeling for metal matrix composites, (ZHANG et al. [2008]). The latter 

authors, as well as many others, related this condition with the names of R. von Mises and F. 

Schleicher, although none of these researchers derived the relation (2.4) (cf. PĘCHERSKI 

[2008] for the discussion of a historical background of the studied paraboloid criterion).  

3. RECENT APPLICATIONS OF THE BURZYŃSKI FAILURE CRITERIA 

Defining the strength differential factor c

t

k

k
   allows to determine particular cases of 

the criterion, for example: for 1   there is c tk k k   and then 
3

s

k
k  , which suits the 

condition assumed in the Huber-Mises-Hencky criterion. After suitable transformation (2.3) 

takes the form expressed by stress tensor components in the system of principal axes:  
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If 
2 0  , there is obtained a plane state of stress, for which:  
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In the space of principal stresses for 3 s t ck k k  the graphical representation of the 

criterion (2.3) is a paraboloid of revolution with the axis of symmetry given by the axis of 

hydrostatic compression: 
1 2 3    . In the plane state of stress for 

2 0   the graphical 

representation of the Burzyński hypothesis is an ellipse. The centre of symmetry of such an 

ellipse is defined by 
2 2
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c tk k  then the centre of the ellipse is given by the 

beginning of the coordinate system and the Burzyński hypothesis is equal to the Huber 

hypothesis; in this case the graphical representation of the yield surface is a cylinder of 

revolution with the axis of symmetry: 
1 2 3    . 

 In (FRĄŚ, PĘCHERSKI [2010]) the Burzyński material effort hypothesis was 

specified for some classical experimental data discussed by THEOCARIS, [1995] and 

published in historical papers of LODE [1925] as well as by TAYLOR and QUINNEY 

[1931]. This paper is devoted for the applications of the Burzyński failure criteria for own 

experimental data obtained in the recent experimental investigations of mechanical properties 

of polycarbonate and the results related with the current studies of metal-ceramic composites 

[4], [5], [7]. 

The polycarbonate samples were investigated for tension, compression and shear 

performed with use of a double shear specimen. The pictures of the sample before and after  

the shear test are shown in Fig. 1. 

 

Fig.1. The sample 12x12x40 [mm] with the shearing zone 6x6x2 [mm] prepared for a 

double shear test before and after deformation. 
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The numerical analysis of the shear process led to the correction accounting for the geometry 

of the double shear specimen. As a result, the following data were obtained: 

70 , 64 , 39,6c t sk MPa k MPa k MPa   . Application of the formula (3.2) shows that the 

Burzyński yield criterion fits very well with the experimental data for the investigated 

polycarbonate. It is depicted in Fig.2. and Fig. 3., where the graphical representations of 

Burzyński yield criterion are shown. 

 

The ellipse of the plane state of stress.             

The experimental data for yield strength in 

tension, compression and shear. 

 

Fig. 2. Graphical representation of Burzyński yield criterion for the polycarbonate according 

to the own experimental investigations. 

 

Fig. 3. The arm of the paraboloid being the representation of the Burzyński yield criterion for 

the polycarbonate in the surface ( , )e p . 
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Graphical representation of the limit function presented in the report (Frąś T., 

Pęcherski R.B. [2009]) for the metal matrix composites (MMC), in particular alumina alloy 

6061 reinforced by zircon and corundum particles: 6061+2Zr+20Al2O3 (DUTKIEWICZ J., 

[2009]) is presented below, Fig. 4. and Fig. 5. 

 
The ellipse of the plane state of stress. The 

experimental data are marked with solid points 

720.5 , 655c tk MPa k MPa  and the foreseen 

from the criterion limit shear strength 

39,6sk MPa  is marked with an open circle. 

 

Fig. 4. Graphical representation of the Burzyński yield criterion for the MMC composite 

6061+2Zr+20Al2O3. 

 

Fig. 5. A half parabola being the representation of the Burzyński failure criterion for the 

MMC composite 6061+2Zr+20Al2O3 in the coordinates ( , )e p . 

Further experimental tests are necessary to verify the presented above paraboloid failure 

criterion. At least an independent test delivering information about the strength in shear sk
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could be helpful by that. The specified formula for paraboloid failure surface can be applied 

as plastic potential in calculations of plastic deformation of metallic solids, which reveal the 

stress differential effect, cf. e.g. [14] or [15]. In such a case, the information how the ratio 

c

t

k

k
   changes in strain is necessary. In the numerical simulations of some examples of 

plastic deformation processes presented in [15] a constant value of   was assumed. However, 

the analysis of experimental data of the particle-reinforced metal matrix composite (PRMMC) 

- Al-47Al2O3 in [14] shows that the ratio c

t

k

k
 

 

increases in strain. 

 Another particle-reinforced metal matrix composite 75%Cr - 25% Al2O3 (M) was 

investigated experimentally (Z. KOWALEWSKI, [2009]). The tests of compression and 

tension were perfomed. The cylindrical specimens of the diameter 12 mm and the height of 10 

mm, Fig. 6., were subjected to the compression tests with use of the strength machine 

MTS810 of the loading range reaching 250 kN. The corresponding characteristics are given in 

the Table 1. 

 

 

Fig. 6. Picture of the deformed cylindrical specimen. 

 

 Type of the composite R0.2 

[MPa] 

Rm 

[MPa] 

1. 75%Cr-25% Al2O3(M) 700 920 

 

Table 1. Material chatacteristics obtained in the compression test. 

During the compression of the cylindrical specimen the local failure appeared. The magnified 

picture (x500) of the surface with the failure sites with use scanning microscopy is shown in 

Fig. 7. The tensile test was performed with use of the specimens shown in Fig. 8. The plane 
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tensile specimens were cut out from the roller of the diameter 80mm and the thickness of 5 

mm. In the Table 2. the measured material parameters are given. 

 

Fig. 7. The picture of the surface of the specimen revealing the sites of failure. 

 

Fig. 8. The shape and dimensions of the ten sile specimen. 

Lp. Typ kompozytu R0.2 

[MPa] 

Rm 

[MPa] 

1. 75%Cr-25% Al2O3(M) 23 24 

 

Table.1. Material chatacteristics obtained in the tensile test. 

Graphical representation of the limit function for the particle-reinforced metal matrix 

composite 75%Cr - 25% Al2O3 (M) is presented below, Fig. 4.and Fig. 5. 
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Fig. 9. Graphical representation of the Burzyński yield criterion for the MMC composite 

75%Cr - 25% Al2O3 (M). 

 

Fig.10. A half parabola being the representation of the Burzyński failure criterion for the 

MMC composite 75%Cr - 25% Al2O3 (M).in the coordinates ( , )e p . 

4. CONCLUSIONS 

It is worthy of emphasizing that W. Burzyński proposed the hypothesis which was 

universal in the sense of energy. Therefore, it can be applied not only to isotropic materials. It 

is also applicable to different kinds of anisotropic solids revealing, in particular, characteristic 

asymmetry of elastic range. W. Burzyński presented also for the first time the energetic 

approach to determine the failure criteria for a certain class of orthotropic materials 

(BURZYŃSKI [1928]). The issue of yielding condition of orthotropic materials raised by 

Burzyński is worth further studies because of its promising possibilities of application for 

modern materials.  
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