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Abstract. This work is focused on experimental verification of existing techniques for locali-
zation of a loosened bolted connection. To this end, a laboratory-scale 2-meter-long steel 
frame is used. The structure consists of 11 steel beams forming a four-bay frame, which is 
subjected to impact loads using a modal hammer. The accelerations are measured at 20 dif-
ferent locations on the frame, including joints and beam elements. Two states of the structure 
are considered: a healthy and a damaged one. The damage is introduced by means of loosen-
ing two out of three bolts at one of the frame connections. Experimental modal analysis re-
veals that the loosened bolts in the connection cause a shift only in some of the frame’s 
natural frequencies, while the others remain insensitive to the damage. 
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1 INTRODUCTION 
Many papers devoted to damage localization methods deal with damage scenarios in the 

form of reduced beam cross sections [1,2], cracks [3,4], reduced plate thickness or plate 
cracks [5,6]. In reality, however, many structural failures start from damages which occur at 
connections. One of examples is the loosening of one or more bolts in bolted lap joints. The 
work on damage identification of bolted connections in a steel frame by Yang et al. [7] is a 
representative study. The method of artificial neural networks was adopted for damage detec-
tion in truss bridge joints, Mehrjoo et al. [8]. The influence of joint stiffness on global modes 
of structures was presented in the work of Blachowski and Gutkowski [9]. A damage detec-
tion approach to bolted flange joints in pipelines was presented by Razi et al. [10].  

Another tool for damage detection is the wavelet-based method, as shown in the works of 
Staszewski, [11] and Newland, [12]. An exemplary application of the wavelet transform in to 
damage detection in a steel frame with plastic hinges has been presented by Pnevmatikos [13]. 

This work is focused on experimental verification of existing techniques for localization of 
a loosened bolted connection. To this end, a laboratory-scale steel frame is used. The work is 
divided into two parts: the first one is related to the performed experimental study and the 
second one to the computational techniques for damage localization.  The computational 
techniques includes: modal assurance criterion, frequency response function (FRF), and 
wavelets transformation. In order to localize a damaged bolted connection a new measure is 
introduced called Damage Connection Index. This is essentially the sum of absolute values of 
the difference in angles of rotation at the given bolted connection.  

 
 

2 TESTED STRUCTURE 

2.1 Overview of the experimental stand 
For the purpose of experimental verification of damage locating methods, a simple frame 

structure shown in Figure 1(a) is used. The structure is modular and consists of four square 
bays, each 0.51m high and wide. Each bay is composed of steel elements of equal length with 
a rectangular cross-section of 8 by 80 mm. The total number of elements is 11 and the total 
length of the structure is 2.04 m. The structure is supported at the outermost nodes, preventing 
both translational and rotational displacements. The connections between elements are real-
ized by means of rigid connector elements (nodes) and allen bolts (6mm diameter), which are 
shown in Figure 1(c) and 1(b), respectively. Each such connection is designed to use 3 bolts 
screwed into threaded holes in the elements. The original structure (without modification) is 
referred here as the reference structure and the responses (accelerations) collected in the test I 
are called the reference responses.  
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Figure 1: (a) The examined frame structure, (b) an allen bolt used for the element-node connections, 
(c) a connector element (node). 

 
A modification is introduced to node 5 and element 10 (see Figure 2). The modification of 

the connection consists in removing 2 bolts (bottom and upper), leaving the middle one. In 
contrast to the reference structure and the reference responses, we will use here the notions of 
modified structure and modified responses, respectively. The modified responses gathered 
during the measurement session are denoted as test II. 

 
 

 

 
 

Figure 2: Scheme of the tested frame structure. Notation: s1-s4 fixed nodal points, 1-20 (in circles) nodal points, 
1-11 (in boxes) element numbers, a1-a20 measured accelerations at nodal points. The location of the loosened 

bolted connection in shown in red. 
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2.2 Instrumentation & measurement procedure 
Vibrations of the reference and modified structures were measured using 20 single axis ac-

celerometers arranged as presented in Figure 2. All transducers were located in the mid-plane 
of the structure: at the centers of elements (the main axis parallel to the X-axis), one-third and 
two-thirds of the elements’ lengths (the main axis parallel to the Y-axis). The structural vibra-
tions were induced using a modal hammer with an embedded force sensor. The applied plastic 
tip allowed for covering the excitation frequency range of up to 1 kHz. The measurements 
were divided into two scenarios: for test I (for the reference structure) and test II (for the mod-
ified structure). For each scenario, two trial series were performed. The single trial serie con-
sisted of tests with the impact loading applied at the selected set of nodes: 2, 5, 8, 10, 11, 13, 
16, 17, 19 (cf. Figure 2). For every single test, 20 acceleration responses and one impulse 
force from the modal hammer were collected. 

In all, 21 signals in the time domain (recording time 40 s) with a sampling rate of 32 kHz 
were collected during the single trial serie. For the collected signals, the Frequency Response 
Functions (FRF’s) were computed. Finally, based on FRF’s, a classical modal analysis was 
conducted leading to the estimation of modal parameters for the reference and modified struc-
tures. The measurement data were collected using the PULSE system (Bruel&Kjaer) and the 
modal analysis was performed utilizing the PolyMAX method implemented in the commer-
cial software LMS Test.Lab (Siemens PLM Software). 

 
 

3 ANALYSIS OF MODE SHAPES AND FREQUENCIES 
 
For the collected data, the classical modal analysis was performed aimed at determination 

of modal parameters of the above-mentioned two states (reference and modified) of the struc-
ture. Further considerations are focused on resonant frequencies and modal shapes, since 
damping ratios are generally very low (do not exceed 0.3%) with very little variations.  

The identified frequencies for the reference and modified structures are presented in Ta-
ble 1. Moreover, Table 1 contains absolute and relative frequency differences and modal as-
surance criterion (MAC) values computed for each corresponding pair of frequencies. At first 
glance, the corresponding resonant frequencies are close to each other; however, modes 11 
and 12 vary from Test I to Test II (cf. Figure 3). This presents the sensitivity of the modal fre-
quencies to the introduced nodal modification. As presented in Figure 3, the absolute differ-
ence for the 13th modal frequency is very low, but the corresponding MAC value presented in 
Table 1 is also relatively low. This means, that the 13th modal shape is sensitive to the struc-
tural modification, while the corresponding modal frequencies obtained for the reference and 
modified structures are similar. Only the 12th mode is sensitive with respect to both the modal 
shape and the modal frequency.  
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Mode 
no. 

Test I 
(intact structure) 
frequency [Hz] 

Test II 
(modified structure) 

frequency [Hz] 

Absolute 
 difference 

[Hz] 

Relative  
difference 

[100%] 

MAC 
value 

[100%] 

𝑓𝑖𝐼
 𝑓𝑖𝐼𝐼 𝑓𝑖𝐼−𝑓𝑖𝐼𝐼 

𝑓𝑖𝐼−𝑓𝑖𝐼𝐼

𝑓𝑖𝐼
 

((𝛷𝑖𝐼)𝑇𝛷𝑖𝐼𝐼)2

�𝛷𝑖𝐼�
2�𝛷𝑖𝐼𝐼�

2  

1 12.33 12.29 0.04 0.34 77.6 
2 26.65 26.58 0.07 0.27 98.8 
3 40.53 40.35 0.18 0.45 98.8 
4 78.38 78.23 0.15 0.19 100.0 
5 97.14 97.06 0.09 0.09 100.0 
6 109.50 109.44 0.06 0.05 100.0 
7 115.14 115.13 0.01 0.01 100.0 
8 138.32 138.20 0.12 0.09 100.0 
9 161.37 161.37 −0.01 −0.00 97.8 
10 162.30 162.30 0.00 0.00 98.6 
11 169.00 166.44 2.57 1.52 98.1 
12 173.24 170.23 3.01 1.74 89.1 
13 173.81 173.68 0.13 0.08 76.6 
14 207.08 206.25 0.83 0.40 99.8 
15 305.37 304.80 0.56 0.19 99.9 
16 346.09 345.59 0.50 0.15 99.9 
17 373.81 373.65 0.16 0.04 100.0 

Table 1: Resonant frequencies, their differences and MAC values  of the (reference and modified) structure ob-
tained from experimental tests. 

 

 
Figure 3: Absolute differences between the modal frequencies of the reference and modified structure. 

 
In Figures 4 and 5 are shown the frequency response functions (FRFs) for the frequency 

band 100-200 Hz obtained for two states of the structure. In the first case, the collected re-
sponse (output) at node 8 is referred to the excitation force applied at the same nodal point (cf. 
Figure 2). For tests I and II, two trials were executed revealing frequency shifting. A similar 
effect was observed for the 13th nodal point, presented in Figure 5. 
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Figure 4: Comparison of frequency response functions (FRFs) of the reference (test I) and modified (test II) 

structures obtained for the excitation at nodal point no. 8. 

 
 

 
 

Figure 5: Comparison of frequency response functions (FRFs) of the reference (test I) and modified (test II) 
structures obtained for the excitation at nodal point no. 13. 

 
A comparison of selected modal shapes of the two states of the structure is presented in 

Figure 6. Figure 6(a) shows using the example of the 8th mode that most identified modal 
shapes do not exhibit any substantial changes. Only for three modes, 11th, 12th and 13th the 
differences are significant (cf. Figures 6(b), 6(c), 6(d)). 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
Figure 6: Comparison of modal shapes obtained for the reference (red lines) and modified (blue lines) structures: 

(a) mode shape no. 8, (b) mode shape no. 11, (c) mode shape no. 12, (d) mode shape no. 13. 
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The loosened bolted connection causes changes to the i-th modal vector of the frame. Let 
us define the difference in the angles of rotation  ∆𝛼𝑗

(𝑖) for i-th modal shape and  j-th connec-
tion: 

 
∆𝛼𝑗

(𝑖) = ∑ �𝑇𝑗,𝑘(𝛷𝑖,𝑘 − 𝛷�𝑖,𝑘)�𝑚
𝑘=1      (1a) 

or in matrix notation 
∆𝜶(𝑖) = 𝑻 �𝜱𝑖 − 𝜱� 𝑖�     (1b) 

 
where m is the number of measured DOFs, 𝜱𝑖  and 𝜱�𝑖  are the i-th modal vectors of the 
healthy and damaged structures, 𝑻 is a matrix transforming modal displacements into angles 
of rotation. For each mode shape, the dimension of the vector ∆𝜶(𝑖) is equal to 18, since we 
consider 18 connections located as shown in Figure 7. For example, the computation of the 
angle of rotation ∆𝛼2

(𝑖) (for connection no. 2) is performed based on the first and ninth (cf. 
Figure 2) components of modal vectors  𝜱𝑖 and  𝜱�𝑖 as follows: 
 

∆𝛼2
(𝑖) = 2

𝐿4
�𝛷𝑖,9 − 𝛷𝑖,1� −

2
𝐿4
�𝛷�𝑖,9 − 𝛷�𝑖,1�   (2) 

 
    In the above equation, 𝐿4 denotes the length of the element no. 4, and 𝛷𝑖,1 , 𝛷𝑖,9 and 𝛷�𝑖,1 , 
𝛷�𝑖,9 are the first and ninth components of the i-th modal vectors 𝜱𝑖 ,𝜱�𝑖, respectively. 
Thus, in the second row of the transformation matrix 𝑻 only two components are non-zero, i.e. 

𝑇2,1 = − 2
𝐿4

 , 𝑇2,9 = 2
𝐿4

 
 
 

 
Figure 7: Localization of the considered nodal connections. 

 
Carrying out calculations for all identified modal vectors we get the rectangular-shaped ma-
trix ∆𝜶 with the dimensions 18x17. For the assessment of the severity of damage in an indi-
vidual connection, the Damage Connection Index (DCI) is proposed: 
 

𝑎𝑗 = ∑ |∆𝜶(𝑖)|𝑛𝑖       (2) 
 
where 𝑎𝑗 is the sum of the differences in angles of rotation over all identified modes, and n is 
a parameter. Figure 8 presents the 𝑎𝑗 values for each bolted connection as marked in Figure 7.  
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Figure 8: Values of the DCI for different values of the exponent n. 

 
Depending on the assumed parameter n, the values of the DCI differ significantly. For n=1 
the DCI values are comparable; however, an extreme value is obtained for the connection 
no.14. When increasing the parameter n, the observed differences between the DCI values 
became more substantial. For n=2 and n=4, the highest value of the vector 𝒂 is reached for 
j=14 and this clearly indicates the localization of the introduced modification.  
 
 

4 WAVELET TRANSFOM ANALYSIS  
 
Wavelet analysis provides a powerful tool to characterize local features of a signal. Unlike 

the Fourier transform, where the function used as the basis of decomposition is always a si-
nusoidal wave, other basis functions can be selected for the wavelet shape according to the 
features of the signal. The basis function in wavelet analysis is defined by two parameters: 
scale and translation. These properties lead to a multi-resolution representation for non-
stationary signals. 

The continuous wavelet transform of a signal f(t) is defined as: 

( ) ( )1, t bf a b f t dt
aa

∞

−∞

− = Ψ 
 ∫     (3) 

where a, b are the scale and translation parameters respectively and Ψ  denotes the complex 
conjugate of Ψ. The functions Ψ(t,a,b) are called wavelets. They are dilated and translated 
versions of the mother wavelet Ψ(t). There are a lot of types of wavelet functions Ψ(t); Figure 
9 shows the Haar wavelet function which was used in the analysis in this paper. The Haar 
wavelet's mother wavelet function Ψ(t) can be described as: 

 

Ψ(𝑡) = �
   1               0 ≤ 𝑡 < 1

2

−1              1
2
≤ 𝑡 < 1

    0              otherwise

     (4) 
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Figure 9: Continuous wavelet Haar function Ψ(t). 

 
An application of continuous wavelet analysis to damage detection in a frame structure 

subjected to impact loading was also performed. Wavelet analysis was made of the obtained 
response acceleration data collected in the test I, corresponding to the reference structure, and 
those collected in the test II, corresponding to the modified structure. The Haar wavelet func-
tion was used in the analysis of the output signals. The results of the wavelet analysis of the 
reference and modified structures are shown in Figure 10. In this figure, the magnitude versus 
scale (frequency) and time is presented for the reference, Figure 10 (a), and the modified 
structure Figure 10 (b).  

 
(a) 

 

 
(b) 

Figure 10: Continuous wavelet analysis results of (a) the reference and (b) the modified structure. (Remark: time 
labels do not represent physical unit, but the number of samples) 
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It should be noted that there is a difference in the magnitude of scales for the reference and 
the modified structure. In the modified structure, the frequencies are more clearly separated 
from each other. Another observation is that the magnitude of the frequencies is higher for the 
modified structure than for the reference one.  
 
 

5 CONCLUSIONS 
 
This work presents an experimental case study of a frame structure, aimed at diagnosis of 

the state of its bolted connection. To this end, classical experimental modal analyses were per-
formed for the reference (Test I) and modified (Test II) structures. All bolted connections of 
the reference structure are rigid, whereas in the modified structure two of two bolts from a 
selected connection are removed. Modal parameters were determined using 20 uniformly dis-
tributed accelerometers collecting signals induced by a modal hammer. 

The localization of the damaged bolted connection is performed using perturbation of the 
modal shapes, obtained experimentally for the reference and modified structure. The proce-
dure is based on the Damage Connection Index, which utilizes the differences in rotation an-
gles calculated at the bolted connections for an individual mode shape. 

Generally, one can conclude that the FRFs determined for the reference and modified 
structures overlap in the frequency range from 0 to 400 Hz. The introduced structural modifi-
cation produces some perturbations in the narrow band of the frequency. The final observa-
tion is that only 3 out of 17 mode shapes and corresponding frequencies reveal measurable 
differences. 

A wavelet analysis of the output signal of both structures shows that there is some differ-
ence between those two signals. The wavelet representation gives a qualitative index which 
helps to conclude the damage. As a next step, a procedure for quantifying the damage should 
be developed.  
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