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Abstract
The paper presents a design, accurate multiphysics modeling and analysis of active porous-composite sound
absorbers. Such absorbers are made up of a layer of poroelastic material (a porous foam) with embedded
elastic implants having active (piezoelectric) elements. The purpose of such active composite material is to
significantly absorb the energy of acoustic waves in a wide frequency range, particularly, in low frequencies.
At the same time the total thickness of composites should be very moderate. The active parts of composites
are used to adapt the absorbing properties of porous layers to different noise conditions by affecting the
so-called solid-borne wave (originating mainly from the vibrations of elastic skeleton of porous medium) to
counteract the fluid-borne wave (resulting mainly from the vibrations of air in the pores); the both waves
are strongly coupled, especially, in lower frequencies. Passive and active performance of the absorbers is
analysed to test the feasibility of this approach.

1 Introduction

There are apparent reasons for an advanced modeling of porous media with distributed masses and solid
implants which should be at the same time sufficiently accurate and efficient to allow a reliable optimization
of such poroelastic composites. Recent experimental investigations report a significant improvement of the
insertion loss of standard acoustic blankets at lower frequencies by the addition of randomly placed masses to
the poroelastic layers [1]. They show that the improvement by distributed masses (implants) tend to be greater
than the one due to the mass effect alone. The acoustic absorption of multi-layer absorbers with different
inner structures has also become a subject of research [2]. The proposed modeling was accurate with respect
to the geometry (thanks to the finite element approach), however, the porous medium was modeled by using
the so-called fluid-equivalent approach which generally assumes that the frame (solid skeleton) of a porous
medium is rigid. For many porous materials such approach gives good predictions in higher frequencies and
for certain configurations.

In the present paper the acoustic absorption of porous composites with active implants is examined. The
absorption should be actively improved by affecting the vibrations of the elastic skeleton of porous layers.
Thus, it is apparent that the rigid-frame approach cannot be used here. Instead, the advanced biphasic theory
of poroelasticity is used to model porous material of the active absorbers.

First sections of this paper provide theoretical considerations and background concerning an accurate mul-
tiphysics modeling of the considered problem. Then, a few designs of porous composites are presented and
results of the analyses of passive and active performance of these absorbers are discussed.
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2 Multiphysics character of modeling

The examined application of active porous composites links several mathematical models of single- and
multiphysics, namely:

• the Biot’s theory poroelasticity – to model the material of porous layer (with the air-filled pores),

• the linear elasticity – to model elastic implants,

• the piezoelectricity – to model the active parts (piezo-actuators) of implants which affect the lower
frequency vibrations of the elastic skeleton of a porous medium.

All these problems are strongly coupled and the consideration of this mutual interaction of different media is
very important. Thus, a coupled multiphysics model of a system made up of poroelastic, elastic, and piezo-
electric media (see Figure 1) was constructed using the Galerkin finite element method and the following
weak integral:

WFp + CIp-e +WF e +WFpz = 0 , (1)

whereWFp,WF e,WFpz are the weak forms of poroelasticity, elasticity, and piezoelectricity, respectively,
whereas CIp-e is the coupling integral on the interface Γp-e between the poroelastic and elastic subdomains.
The weak forms will be presented in the followings sections of this paper where it will be also shown that
the coupling of the poroelastic and elastic media is naturally handled, i.e. CIp-e = 0. Relevant boundary
conditions will be discussed as well. The weak form of piezoelectricity WFpz can be substituted with the
weak form of elasticityWF e by using a simplified approach based on some analogy with the thermoelasticity
or, in other words, by introducing certain equivalent initial strains. As a matter of fact, this very approach can
be used for the analyses presented in this paper. This approximation is justified here since the piezo-implants
affect the vibrations of the less stiff skeleton of porous medium subjected to an acoustic wave excitation.

The considered vibroacoustic application allows for using linear theories, so the superposition principle holds
and may be effectively used. Consequently, the frequency analysis may be used as an efficient tool for design
and testing of the proposed active porous composites. Thus, all considered problems are time-harmonic with
the frequency f and the angular frequency ω = 2πf .

The equations of poroelasticity presented below assume no body forces acting on the poroelastic material.
Consequently, the problems of elasticity and piezoelectricity are considered with zero body forces. Moreover,
in the piezoelectricity problem there is no body electric charge applied. These assumptions comply with the
modeling requirements of the active porous composite noise absorbers.

For the sake of brevity, symbols dΩ and dΓ are skipped in all the integrals presented below since it is
obvious whether an integration is on the specified domain or boundary. The summation convention is used
(for dummy indices i, j, k, l) and the (invariant) differentiation symbol which, in the Cartesian coordinate
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Figure 1: Multiphysics system made up of poroelastic, elastic, and piezoelectric media
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system, simply reads: (.)|i = ∂(.)
∂xi

. The following notation rule applies for the symbol of variation (or test
function): δ(v w) = v δw + w δv, where v and w are two dependent variables (fields) and δv and δw their
admissible variations.

3 Biot’s theory of poroelasticity

3.1 The classical displacement formulation

The Biot’s theory of poroelasticity [3, 4] provides a biphasic model of porous media: the so-called solid
phase is used to describe the behavior of (‘smeared’) elastic skeleton whereas the fluid phase pertains to
the fluid in the pores. The both phases are two coupled homogeneous continua. The most frequently used
version of poroelasticity assumes besides that the both phases are isotropic. Moreover, the fluid is modelled
as inviscid, though viscous forces, are taken into account but only when modeling interaction between the
fluid and the solid frame.

In the classical formulation [3, 4] a state of poroelastic medium is described by the displacements of solid,
u = {ui}, and fluid phase, U = {Ui}. The Biot’s equations for a local dynamic equilibrium of poroelas-
tic material link partial stress tensors associated with the skeleton particle (σs

ij) and the macroscopic fluid
particle (σf

ij) with the solid and fluid macroscopic displacements. In the case of harmonic oscillations (with
angular frequency ω) these equations read

σs
ij|j + ω2%̃ss ui + ω2%̃sf Ui = 0 , σf

ij|j + ω2%̃ff Ui + ω2%̃sf ui = 0 , (2)

where the frequency-dependent effective densities, %̃ss, %̃sf, and %̃ff, are introduced. These densities are
responsible not only for the inertia of solid or fluid phase particles but also for the combined inertial and
viscous coupling (interaction) of both phases. They depend on the viscous drag coefficient, b̃, and the normal
effective densities, %ss, %ff, %sf. The latter quantities in turn depend on the porosity, φ, the tortuosity of
pores, α∞, the density of the material of skeleton, %s, and the density of saturating fluid, %f. The adequate
formulas may be found in [4].

The partial solid and fluid stress tensors are linearly related to the partial strain tensors prevailing in the
skeleton and the interstitial fluid. This is given by the following linear and isotropic constitutive equations of
the Biot’s theory of poroelasticity:

σs
ij = µs (ui|j + uj|i) +

(
λ̃s uk|k + λ̃sf Uk|k

)
δij , σf

ij =
(
λ̃f Uk|k + λ̃sf uk|k

)
δij . (3)

Four material constants are involved here, namely µs, λ̃s, λ̃f, and λ̃sf. The first two of them resemble the two
Lamé coefficients of isotropic elasticity. Moreover, µs is the shear modulus of the poroelastic material and
consequently the shear modulus of the frame since the fluid does not contribute to the shear restoring force.
The three dilatational constants, λ̃s, λ̃f and λ̃sf are frequency-dependent and are functions of Kb, Ks, and K̃f
(λ̃s depends also on µs), where: Kb is the bulk modulus of the frame at constant pressure in the fluid, Ks
is the bulk modulus of the elastic solid from which the frame is made, and K̃f is the bulk modulus of the
fluid. The adequate formulas to compute the poroelastic material constants can be found in [4]. Finally, the
total stress tensor of poroelastic medium is defined as a simple sum of the partial, i.e. phasic, stress tensors,
whereas the total displacement vector sums up porosity-dependent contributions of the displacements of both
phases:

σt
ij = σs

ij + σf
ij , ut

i = (1− φ)ui + φUi . (4)

The equations of equilibrium (2) together with the constitutive relations (3) form the displacement formula-
tion of linear, isotropic poroelasticity for harmonic oscillations. Notice that the first equations from the both
pairs refer to the solid phase whereas the second ones to the fluid phase. Nevertheless, the both phases are
strongly coupled by the viscous-inertial coupling coefficient, %̃sf, and the constitutive coupling constant, λ̃sf.
In this classical formulation the unknown fields are the solid and fluid phase displacements, which means 6
degrees of freedom in every node of a three-dimensional model.
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3.2 The mixed displacement–pressure formulation

The fluid phase stress tensor can be expressed as

σf
ij = −φ p δij , (5)

where p is the pressure of fluid in the pores (it should not be mistaken for the pressure of fluid phase which
equals φp). By using this relation for the time-harmonic veriosn of the Biot’s poroelasticity, the fluid phase
displacements can be expressed as functions of the pressure in the pores, and thus eliminated from the
equations (replaced by p). This results in the mixed displacement–pressure formulation [5, 6] where the
dependent variables are the three solid phase displacements and the pore-fluid pressure. Therefore, three-
dimensional models have now only 4 degrees of freedom in a node.

3.3 Weak integral form of the mixed formulation of poroelasticity

Let Ωp be a domain of poroelastic material and Γp its boundary with ni being the components of the unit
vector normal to the boundary and pointing outside the domain. The harmonic poroelasticity problem can
be described in this domain by the mixed formulation which uses as dependent variables the solid phase
displacements, ui, and pore-fluid pressure, p. The corresponding weak form [7] reads as follows (for every
admissible δui and δp)

WFp = −
∫
Ωp

σss
ij δui|j +

∫
Ωp

ω2%̃ ui δui −
∫
Ωp

φ2

ω2%̃ff
p|i δp|i +

∫
Ωp

φ2

λ̃f
p δp

+
∫
Ωp

φ

(
1 +

%̃sf

%̃ff

)
δ(p|i ui) +

∫
Ωp

φ

(
1 +

λ̃sf

λ̃f

)
δ(p ui|i) + BIp = 0 ,

(6)

where

σss
ij = µs (ui|j + uj|i) +

(
λ̃s − λ̃2

sf

λ̃f

)
uk|k δij and %̃ = %̃ss − %̃2

sf
%̃ff

, (7)

BIp is the boundary integral

BIp =
∫
Γp

σt
ij nj δui +

∫
Γp

φ (Ui − ui)ni δp , (8)

whereas δui and δp are test (or weighting) functions, that is, arbitrary yet admissible virtual displacements
and pressure. Below, the two most relevant boundary conditions of poroelastic medium are discussed [6, 7].

3.4 Relevant boundary conditions for poroelastic medium

3.4.1 Imposed displacement field

A displacement field, ûi, applied on a boundary of a poroelastic medium describes, for example, a case of a
piston in motion acting on the surface of the medium. Here, it is assumed that the solid skeleton is fixed to
the surface of piston while the fluid obviously cannot penetrate into the piston. Therefore, on Γu

p :

ui = ûi , (Ui − ui)ni = 0 . (9)

The first condition expresses the continuity between the imposed displacement vector and the solid phase
displacement vector. The second equation expresses the continuity of the normal displacements between the
solid phase and the fluid phase. Using these conditions and the fact that the variations of the known solid
displacements are zero (δui = 0) the boundary integral reduces to zero (on the relevant part of the boundary):

BIp = 0 on Γu
p . (10)
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3.4.2 Imposed pressure field

A harmonic pressure field of amplitude p̂ is imposed on the boundary of a poroelastic domain which means
that it affects at the same time the fluid in the pores and the solid skeleton. Therefore, the following boundary
conditions must be met on Γp

p :
p = p̂ , σt

ij nj = −p̂ ni . (11)

The first condition is of Dirichlet type and must be applied explicitly. It describes the continuity of pressure
in the fluid. It means also that the pressure variation is zero (δp = 0) at the boundary. The second condition
expresses the continuity of the total normal stress. All this, when used for Equation (8), leads to the following
boundary integral

BIp =
∫
Γp

σt
ij nj δui = −

∫
Γp

p

p̂ ni δui . (12)

4 Weak form of elasticity, an approximation of piezoelectricity, and
coupling to poroelastic media

4.1 Weak form for an elastic solid

Let Ωe be an elastic solid domain with mass density %e and boundary Γe, and ne
i the components of unit

vector normal to the boundary and pointing outside the domain. Assuming zero body forces and the case
of harmonic oscillations the weak variational form of the problem of elasticity expressing the principle of
virtual work reads (for every admissible δue

i )

WF e = −
∫
Ωe

σe
ij δu

e
i|j +

∫
Ωe

ω2%e u
e
i δu

e
i +

∫
Γe

σe
ij n

e
j δu

e
i = 0 , (13)

where δue
i is the arbitral yet admissible variation of displacements; the elastic stress tensor σe

ij = σe
ij(u

e)
substitutes here a linear function of elastic displacements ue = {ue

i}. In the case of the linear isotropic
elasticity it can be expressed as follows

σe
ij = µe (ue

i|j + ue
j|i) + λe u

e
k|k δij , (14)

where the well-known Lamé coefficients, the shear modulus µe and the dilatational constant λe, appear. Be-
fore discussing the corresponding boundary conditions for an elastic solid, a thermoelastic analogy approach
to the approximation of piezoelectricity will be presented.

4.2 Approximation of piezoelectricity by initial strains

As mentioned above, a piezoelectric domain can be often modeled as an elastic medium with some initial
strain or, equivalently, subject to a specific thermal load. This approximation is based on the resemblance
between the thermoelastic and converse-piezoelectric constitutive equations: the stress vs. strain and voltage
equation of piezoelectricity resembles the Hooke’s law with initial strains (induced, for example, by a tem-
perature field). The initial strain simulates the piezoelectric effect. Thus, in this approach the weak form of
elasticity (13) is used for a piezoelectric domain Ωpz with

σe
ij = C

pz
ijkl

(
εe
kl − ε0

kl

)
, (15)

where εe
kl =

ue
k|l+ue

k|l
2 are simple elastic strains, and

ε0
kl = d

pz
iklE

pz
i = −dpz

ikl V
pz
|i (16)
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are the initial elastic strains approximating the piezoelectric effect. Furthermore, Cpz
ijkl and dpz

ikl denote the
components of the fourth-order (orthotropic or transversally isotropic) tensor of elastic material constants
and the third-order tensor of piezoelectric material constants, respectively, whereas Epz

i and V pz are the
electric field and electric potential; they are related by the Maxwell’s law for electricity:

E
pz
i = −V pz

|i . (17)

In this approximation the electric problem is uncoupled from its mechanical counterpart and can be solved
independently. Thus, the electric potential V pz is found by solving the following equation of electricity
(presented here with no body electric charge) in the piezoelectric domain Ωpz:

ε
pz
ji V

pz
|ij = 0 , (18)

where εpz
ji denote the tensor of dielectric material constants, with the following electrical boundary conditions

(of the Neumann and Dirichlet kind, respectively):

ε
pz
ji V

pz
|i n

pz
j = Q̂pz on ΓQ

pz , V pz = V̂ pz on ΓV
pz . (19)

The Neumann condition serves for a surface electric charge Q̂pz applied on a boundary, whereas the Dirichlet
condition allows to prescribe the electric potential V̂ pz on a boundary. Now, the electric vector field can be
computed from the Maxwell’s law (17), and the ‘piezo-equivalent’ initial strain can be found from Equa-
tion (16). In practice, for thin piezoelectric patches with electrodes on the opposite sides so that the electric
voltage ∆V̂ pz is applied across the x3-direction the electric potential field can be determined as follows:
E

pz
3 = ∆V̂ pz

thickness and Epz
1 = E

pz
2 = 0.

4.3 Elastic solid boundary conditions

For the sake of brevity, only von Neumann and Dirichlet boundary conditions for an elastic solid will be
discussed here (the Robin type involves the technique of Lagrange multipliers and will be skipped). The
Neumann (or natural) boundary conditions describe the case when forces t̂ei are applied on a boundary,
that is

σe
ij n

e
j = t̂ei on Γt

e , (20)

whereas the displacements, ûe
i , are prescribed by the Dirichlet (or essential) boundary conditions

ue
i = ûe

i on Γu
e . (21)

According to these conditions the boundary is divided into two (directionally disjoint) parts, i.e. Γe = Γt
e∪Γu

e .
There is an essential difference between the two kinds of conditions. The displacement constraints form the
kinematic requirements for the trial functions, ue

i , while the imposed forces appear in the weak form; thus,
the boundary integral, that is the last of the integrals of Equation (13), equals

BIe =
∫
Γe

σe
ij n

e
j δu

e
i =

∫
Γt

e

t̂ei δu
e
i . (22)

Here, the property δue
i = 0 on Γu

e has been used.

4.4 Poroelastic–elastic coupling

Let Γp-e be the interface between poroelastic and elastic media. Let ni be the components of the unit vector
normal to the interface and pointing outside the poroelastic domain into the elastic one. The coupling integral
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combines boundary integral terms resulting from both, poroelastic and elastic, weak forms (Equations (6)-(8)
and (13)-(14) or (15), respectively):

CIp-e =
∫

Γp-e

σt
ij nj δui +

∫
Γp-e

φ (Ui − ui)ni δp+
∫

Γp-e

σe
ij n

e
j δu

e
i (23)

where ne
i = −ni are the components of the unit normal vector pointing outside the elastic domain (and into

the poroelastic medium). Now, the following coupling conditions must be met at the interface Γp-e:

σt
ij nj = σe

ij nj , (Ui − ui)ni = 0 , ui = ue
i , (24)

The first condition states the continuity of total stress tensor, the second expresses that there is no mass
flux across the interface, and the last one assumes the continuity of the solid displacements [7]. This last
condition means also the equality of the variations of displacements, δui = δue

i . Now, applying the coupling
conditions for the coupling integral (23) results in

CIp-e = 0 . (25)

5 Acoustic absorption of a poroelastic layer

The main purpose of the present analysis of poroelastic layers with solid implants is to asses how the passive
and active implants can influence the acoustic absorption of layers. The acoustic absorption of a poroelastic
layer fixed to a rigid wall and subject to a plane acoustic wave propagating in the air onto the layer surface
at normal incidence will be computed as follows [4]. First, the acoustic impedance at normal incidence is
determined at the interface between the poroelastic layer and the air:

Z =
p0

v
, where v = jω ut

1 = jω
[
(1− φ)u1 + φU1

]
. (26)

Here, v is the velocity of propagating wave at the layer–air interface (continuous across this boundary)
whereas p0 is the wave pressure. As a matter of fact the (complex) amplitudes are used here. Now, the
reflection coefficient in this point is computed:

R =
Z − Z0

Z + Z0
, (27)

where Z0 = %0 c0 is the characteristic impedance of the air (%0 is the air density and c0 the speed of sound).
Finally, knowing the reflection coefficient, the acoustic absorption coefficient can be determined:

A = 1− |R|2 . (28)

This final property is real-valued (unlike the reflection coefficient R, and the impedance Z, which are com-
plex).

6 Results and discussion of finite-element analyses

6.1 Analyzed configurations

Several finite element analyses of poroelastic layers with (or without) solid implants were carried out for
configurations presented in Figure 2. The configurations are two-dimensional (in the x1x2-plane) so the ade-
quate extrusion in the x3-direction is assumed. Nevertheless, this approach should also give good predictions
for similar three-dimensional configurations of sufficient regularity.
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Figure 2: Analyzed configurations of porous composites and the corresponding finite-element meshes of
the representative subdomain. The total thickness of each composite is 16 mm (see also Figure 3 for other
dimensions). The configurations are layers of poroelastic foam and differ only by the embedded implants, as
follows: NoIm – no implants, Al-S – a septum of aluminium foil, Al-9 – 9 mm-wide stripes of aluminium
foil, Al-4 – 4 mm-wide stripes of aluminium foil, PZT – fixed PZT-implants, T-sh – active T-shaped implants.

Foam A Foam B
porosity φ 0.97 0.99
tortuosity α∞ 2.52 1.98
flow resistivity σ 87 kN s/m4 65 kN s/m4

characteristic dimension of pores:
– for viscous forces Λ 37 · 10−6m 37 · 10−6m
– for thermal forces Λ′ 119 · 10−6m 121 · 10−6m
solid-phase mass density %sph 31 kg/m3 16 kg/m3

shear modulus µs 55(1+ϑj) kPa 18(1+ϑj) kPa
loss factor ϑ 0.055 0.1
bulk Poisson’s ratio νb 0.3 0.3

Table 1: Poroelastic properties of two polyurethane foams

Poroelastic material data for two different high-porosity polyurethane foams (termed A and B) was used for
the configurations. This data is given in Table 1 and for the Biot’s model of poroelastic medium it should be
supplemented with the density, bulk modulus, viscosity, ratio of specific heats, ambient mean pressure, and
the Prandtl number for the air.

The total thickness of layer in each configuration is always 16 mm. At x1 = 0 mm the layer is fixed to a rigid
wall whereas at x1 = 16 mm the plane harmonic acoustic wave propagates onto the interface between the
poroelastic layer and the air. The following six configurations were analyzed (see Figure 2):

NoIm – a simple “homogeneous” layer of porous foam with no implants;

Al-S – two layers of porous foam linked by a septum of 0.3 mm-thick aluminium foil;

Al-9 – a layer of porous foam with densely-set 9 mm-wide stripes of 0.3 mm-thick aluminium foil;
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Figure 3: Active composite configuration and the finite-element mesh of the modeled representative subdo-
main

Al-4 – a layer of porous foam with loosely-set 4 mm-wide stripes of 0.3 mm-thick aluminium foil;

PZT – a layer of porous foam with parallel PZT-implants fixed to a rigid wall;

T-sh – a layer of porous foam with T-shaped implants made up of stripes of 0.3 mm-thick aluminium foil
fixed to the the active PZT-elements.

The first four configurations are passive, while the configurations PZT and T-sh have active elements. The
results of the acoustic absorption in passive and active states will be presented for the last configuration with
T-shaped implants (see Figure 3). Notice that this configuration is, in fact, a combination of the configura-
tions Al-4 and PZT.

As mentioned above, the problem is modelled as two-dimensional, in the x1x2-plane. Moreover, the symme-
try (regularity along the x2-axis) makes it possible to model only a rectangular slice (of width ∆x2 = 5 mm)
of the layer comprising only a half of one implant (see Figures 2 and 3) by applying proper boundary con-
ditions. For some configurations the corresponding finite-element meshes are given. Such meshes are not
presented for the configurations NoIm and Al-S since for such regular (multi)layered media planar analytical
solutions can be used (in fact, the finite-element analyses were also performed for these two cases and gave
the identical results with the corresponding 1-dimensional analytical solutions). All necessary dimensions for
the active composite T-sh are given in Figure 3, where the finite-element mesh of the representative modeled
subdomain is also shown. Relevant dimensions from this figure are also valid for other configurations.

The analysis consisted in determining the acoustic absorption of the poroelastic composites. To this end, the
results of finite-element analysis (especially, ut

1 at the layer’s surface) were used by the analytical formulas
for the impedance, the reflection and absorption coefficients (see Section 5). These formulas result from a
one-dimensional analysis of the plane wave propagation which is slightly violated if the solid implants are
present (notice, however, that the implants are set approximately 7 mm form the surface of the free-interface).
Therefore, the absorption coefficient was computed in two points of the layer surface: at x2 = 0 mm and
x2 = 5 mm (see Figure 3), providing two limit-values. It was checked that in the considered frequency range
the two values are almost always very similar and thus, for the sake of clearness, only the average curve is
plotted in the graphs presented below.

6.2 Acoustic absorption of the passive poroelastic composites

Figure 4 presents the acoustic absorption of passive poroelastic composites compared to the absorption of
the porous layer without implants; the porous material was foam A with properties presented in Table 1. The
upper graph shows the absorption curves for the layer with a continuous septum made up of 0.2 mm-thick
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Figure 4: Passive absorption curves for the porous composite/layer made of the foam A

aluminium foil, and for the layers with aluminium stripes (9 mm or 4 mm wide) made up of the same foil.
The composite with the continuous septum deteriorates generally the acoustic absorption although it exhibits
a great performance around a particular single frequency (i.e. 1000 Hz). The composites with the aluminium
stripes improve the absorption in some frequency range but deteriorate it in another. The lower graph of
Figure 4 shows the acoustic absorption of the layer with no implants compared with the absorption curves of
three composites: with 4 mm-wide aluminium stripes,with fixed (passive) PZT implants, and with complete
(passive) T-shaped implants. For the lowest frequencies (up to 600 Hz) there is no difference between the
curves: the absorption is poor since nothing can be done with layers only 16 mm thick. Between 600 to
3000 Hz the absorption of composites with implants is better in some range of frequencies and worse in
another range. Above 2100 Hz (for PZT), 2500 Hz (for T-sh), or 3000 Hz (for Al-4) the absorption curves of
composites are similar to the absorption curve of “homogeneous” layer.

Similar analysis was performed for the layer and composites made up of foam B (see Table 1 for its poroe-
lastic properties). The results of the acoustic absorption are presented in Figure 5 and since the thickness of
layers, inner geometry and material of implants are the same as for the composites made up of the foam A,
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Figure 5: Passive absorption curves for the porous composite/layer made of the foam B

the conclusions are also similar. The composite Al-S (with the continuous aluminium septum) has the worst
absorption with the exception of a narrow range around 800 Hz where locally the absorption approaches 1.
The composite Al-9 has the best absorption between 700 and 1800 Hz but worse for other frequencies. There
is no significant difference in the absorption curves of “homogeneous” layer and the porous composites Al-4,
PZT, and T-sh for frequencies lower than 500 Hz or higher than 2700 Hz. In between, the composites have
better performance in some range of frequencies and worse in another range.

The general conclusion is that the T-shaped implants change the absorption in a range of medium frequencies:
they improve it for the lower-frequency part of this range (where the absorption is weak) and deteriorate it at
higher frequencies (where the absorption is better altogether). Still, an active approach should be tried to get
the best performance in the widest frequency range.
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6.3 Active improvement of the acoustic absorption of poroelastic composites

The general idea of active improvement of the acoustic absorption of poroelastic composites can be explained
as follows:

• A harmonic acoustic wave propagates in the air onto the interface between the air and a poroelastic
layer (or composite). Higher frequency waves can be well absorbed by the layer but at lower frequen-
cies the acoustic absorption of thin layers is very poor.

• Now, the acoustic wave continues to propagate in the porous medium and is reflected by the rigid
wall. In fact, there are three waves: a slow longitudinal wave in the fluid phase (the so-called fluid-
borne wave in the ‘smeared’ air of the pores), a fast longitudinal wave in the solid phase (the so-called
solid-borne wave in the ‘smeared’ elastic skeleton) and a shear wave in the solid phase. At lower
frequencies all these waves are strongly coupled so that the vibrations of elastic skeleton are coupled
with the vibrations of the air in the pores.

• Because of this coupling the acoustic absorption may be actively modified by affecting the vibrations of
the elastic skeleton. To this end, active implants are embedded into the porous layer and an appropriate
harmonic excitation signal is applied onto the electrodes of the piezoelectric parts of the implants.

The results presented in this section show the feasibility of this approach.

Figure 6 shows the amplitudes of vibrations of the solid phase of porous foams with no implants. They
are calculated for the 16 mm-thick layers of the foams subject to the harmonic excitation by the acoustic
pressure of amplitude p0 = 2

√
2 Pa, which means that the root-mean-square pressure equals prms = 2 Pa

and that gives the sound pressure level of 100 dB (with the reference pressure pref = 2 × 10−5 Pa). These
amplitudes indicate the order of maximal displacements of the elastic skeleton. Two curves are plotted for
each foam:

• the amplitude of vibrations at the free interface (between the layer and the air), that is at x1 = 16 mm,

• the maximal amplitude for x1 ∈ [0 mm, 16 mm], that is for the whole domain of the layer.

It can be noticed that for lower frequencies, respectively under 3100 Hz (foam A) or 2300 Hz (foam B),
the both curves are the same since the maximal amplitudes of layer vibrations are at the free interface. An
important observation is that for the pressure level of 100 dB the maximal amplitudes of vibrations of the
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Figure 6: The amplitudes of vibrations of the solid phase (elastic skeleton) of the 16 mm-thick porous layers
subject to the harmonic pressure excitation with the amplitude p0 = 2
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Figure 7: Active and passive absorption curves for the porous composite/layer made of the foam A

elastic skeletons of both porous layers slightly exceed 3×10−7 m. The order of magnitude of the amplitudes
of vibrations of the fluid phase is bigger. One should be reminded, however, that the vibrations of elastic
skeleton are strongly coupled (at lower frequencies) with the vibrations of the air in the pores. To investigate
the potential of this interaction is an important purpose of this paper.

As explained previously the fixed parts of the T-shaped implants can be active – they are thin patches of
piezoelectric ceramic PZT4, through-thickness polarized, 9 mm long and 0.34 mm thick (see Figure 3). It was
checked that by applying a voltage onto their electrodes these piezo-patches would stretch almost 10−8 m/V,
which means that, for example, a signal with the amplitude of 20 V would extend the active implant for
nearly 2×10−7 m. Notice that this amplitude is of the same order of magnitude as the maximal amplitude of
vibrations of the elastic skeleton of the considered porous layer subject to a harmonic noise of 100 dB. Thus,
the active implants may affect the vibrations of elastic skeleton in order to improve the acoustic absorption
of the active poroelastic composite. The results presented below prove the feasibility of this assumption.

Figure 7 shows passive and active absorption curves of the porous layer/composite made of the foam A in the
frequency range from 100 to 2000 Hz. As mentioned above, for the active absorption a harmonic excitation
signal is applied onto the electrodes of the piezoelectric parts of the T-shaped implants. The frequency of the
signal equals to the frequency of the acoustic wave, and for the considered range the same constant voltage
amplitude ∆V̂ pz is assumed. Three cases are presented which differ by the value of the amplitude and phase
of signals (the phase angle of 0◦ means the maximal extension of the implant):

• ∆V̂ pz = 9 V, no phase shift,

• ∆V̂ pz = 18 V, no phase shift,

• ∆V̂ pz = 18 V with the phase of 40◦.

In general, in the considered range under 2100 Hz all signals improve the acoustic absorption of the compos-
ite, however, only the one with the phase shift gives always better absorption than the layer without implants.
Moreover, this phase shift must be changed in the range of 2100-2500 Hz to maintain this effect (above
2500 Hz no active approach is necessary). Notice that the absorption is significantly improved especially
between 700 and 1500 Hz. For example, for the frequency 1200 Hz the acoustic absorption of the porous
composite in the active state is 0.77 which is 28% better than the absorption 0.60 of this composite in the
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Figure 8: Active and passive absorption curves for the porous composite/layer made of the foam B

passive state and 185% better than the absorption 0.27 of the simple porous layer; the improvement between
the porous layer and the passive composite is 122%. For lower frequencies the improvement is very weak,
and for very low frequencies the absorption is very poor which is obvious when one remembers that the
porous layer has only 16 mm. Another interesting observation is that the phase shift effect tends to be visible
only when the frequency increases.

Figure 8 presents passive and active absorption curves for the composite made of the foam B. The frequency
range reaches 2600 Hz – above this frequency the passive absorption of the layer with implants is very good
(from 0.8 to 1.0) and it is almost identical with the absorption of the “homogeneous” layer (see the lower
graph in Figure 5). Here, the results of active approach are presented for:

• ∆V̂ pz = 12 V, no phase shift,

• ∆V̂ pz = 24 V, no phase shift,

• ∆V̂ pz = 24 V with the phase of 50◦,

where ∆V̂ pz is the voltage amplitude of the signal; it is assumed constant in the considered frequency
range, and the phase angle of 0◦ means the maximal extension of the implant. As it can be seen from
Figure 8 the last signal gives the best performance of the acoustic absorption in the whole range from 100
to 2600 Hz. Confirmed is the observation that the phase shift (of 50◦) has almost no effect below some
frequency (1200 Hz in this case); however, it plays an important role above this frequency.

7 Conclusions

Thin layers of porous foams with active and passive implants were modeled and analyzed in order to asses
their acoustic absorption. The porous foams were modeled using the advanced biphasic Biot’s theory of
poroelasticity because the elastic vibrations of the skeleton of the foams cannot be neglected and actually
play an important role in the problem. The obtained results allow to draw the following general conclusions:

• The proposed T-shaped implants (in the passive state) improve the acoustic absorption of a thin porous
layer in some range of lower frequencies (where the absorption is poor), but can decrease it in another
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range of higher frequencies (where altogether, the absorption is better). Similar statement is also valid
for stripes of aluminium foil embedded inside the porous layer. For the lowest frequencies and above
some high frequency there is no difference in the absorption curves of the porous layer with or without
implants.

• The actuators in the form of thin patches of PZT ceramic are able to extend enough to affect the
vibrations of the elastic skeleton of polyurethane foams induced by acoustic waves. This influence is
better for the proposed T-shaped implants.

• At lower frequencies the coupling between the solid-borne waves (of the elastic skeleton) and the fluid-
borne wave (of the air in the pores) is strong enough to allow the exploitation for the improvement of
acoustic absorption by the proposed active approach.

• Electric signals with the amplitudes of the order of magnitude of 10 or 20 V, applied to the active
piezoelectric parts of the implants, give significant improvement of the acoustic absorption of porus
composites subject to the acoustic pressure excitation of 100 dB. A phase shift in the signal is necessary
to achieve this improvement in the whole frequency range of interest, although it is important only
above some frequency (below its effect is insignificant).
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