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ABSTRACT

The paper presents the modelling and frequency analysis of poroelastic layers with heavy solid
implants where an improvement of acoustic absorption at lower frequencies is observed. To model
the porous material the Biot’s theory of poroelasticity is used while the solid implants are mod-
elled in two ways: first, as small subdomains of elastic material (steel) situated inside the porous
layer, and for the second time, in a more virtual manner (mathematically equivalent to the pres-
ence of masses in the given points), as some adequate inertial terms added directly to the weak
(variational) formulation of the problem. Since the solid implants are very small the both ways
give similar results. Obviously, the second approach is much more efficient to carry out numerical
tests where the influence of the distribution of masses for the acoustic absorption of layers can be
analysed. It seems that the improvement by distributed masses (implants) may be greater than
the one due to the mass effect alone.

1 INTRODUCTION

Recent experimental investigations report a significant improvement of the insertion loss of stan-
dard acoustic blankets at lower frequencies by the addition of randomly placed masses to the
poroelastic layers [1]. They show that the improvement by distributed masses (implants) tend to
be greater than the one due to the mass effect alone. Therefore, there is a growing demand for an
advanced modelling of porous media with distributed masses which should be at the same time
sufficiently accurate and efficient to allow a reliable optimization of such poroelastic composites.
Moreover, such modelling would be a first step for design of a new active composite where the vi-
brations of elastic porous skeleton with distributed masses are controlled by active implants to get
a good acoustic performance at low frequencies. This paper presents the finite element modelling
and frequency analysis of poroelastic layers with heavy solid implants where an improvement of
acoustical absorption is observed. The Biot’s theory of poroelasticity is used to model porous
material and two techniques for considering mass implants are proposed and compared.

Remarks on notation. For the sake of brevity, symbols dΩ and dΓ are skipped in all the integrals
presented below since it is obvious that we integrate on the specified domain or boundary. The
summation rule is used (for dummy indices i, j, k), and the (invariant) differentiation symbol which
in the Cartesian coordinate system, simply reads: (.)|i = ∂(.)

∂xi
. The following notation rule applies

for the symbol of variation (or test function): δ(v w) = v δw+w δv, where v andw are two dependent
variables (fields) and δv and δw their admissible variations. All problems considered in this paper
are for the case of harmonic oscillations with the frequency f and the angular frequency ω = 2πf .

2 BIOT’S THEORY OF POROELASTICITY

2.1 Classical and mixed formulations of harmonic isotropic poroelasticity

The Biot’s theory of poroelasticity [2, 3] provides a biphasic model of porous media: the so-called
solid phase is used to describe the behavior of (“smeared”) elastic skeleton whereas the fluid
phase pertains to the fluid in the pores. The both phases are coupled homogeneous continua.
The most frequently used version of poroelasticity assumes besides that the both phases are



isotropic. Moreover, the fluid is modelled as perfect (i.e., inviscid), though viscous forces, are
taken into account but only when modeling interaction between the fluid and the solid frame.

The classical displacement formulation. In the classical formulation [2, 3] a state of poroelas-
tic medium is described by the displacements of solid, u = {ui}, and fluid phase, U = {Ui}. The
Biot’s equations for a local dynamic equilibrium of poroelastic material link partial stress tensors
associated with the skeleton particle (σs

ij) and the macroscopic fluid particle (σf
ij) with the solid and

fluid macroscopic displacements. In the case of harmonic oscillations (with angular frequency ω)
these equations read

σs
ij|j + ω2%̃ss ui + ω2%̃sf Ui = 0 , σf

ij|j + ω2%̃ff Ui + ω2%̃sf ui = 0 , (1)

where the frequency-dependent effective densities, %̃ss, %̃sf, and %̃ff, are introduced. These densi-
ties are responsible not only for the inertia of solid or fluid phase particles but also for the combined
inertial and viscous coupling (interaction) of both phases. They depend on the viscous drag coef-
ficient, b̃, and the normal effective densities, %ss, %ff, %sf. The latter quantities in turn depend on the
porosity, φ, the tortuosity of pores, α∞, the density of the material of skeleton, %s, and the density
of saturating fluid, %f. The adequate formulas may be found in [3].

The partial solid and fluid stress tensors are linearly related to the partial strain tensors prevailing in
the skeleton and the interstitial fluid. This is given by the following linear and isotropic constitutive
equations of the Biot’s theory of poroelasticity:

σs
ij = µs (ui|j + uj|i) +

(
λ̃s uk|k + λ̃sf Uk|k

)
δij , σf

ij =
(
λ̃f Uk|k + λ̃sf uk|k

)
δij . (2)

Four material constants are involved here, namely µs, λ̃s, λ̃f, and λ̃sf. The first two of them re-
semble the two Lamé coefficients of isotropic elasticity. Moreover, µs is the shear modulus of
the poroelastic material and consequently the shear modulus of the frame since the fluid does
not contribute to the shear restoring force. The three dilatational constants, λ̃s, λ̃f and λ̃sf are
frequency-dependent and are functions of Kb, Ks, and K̃f (λ̃s depends also on µs), where: Kb

is the bulk modulus of the frame at constant pressure in the fluid, Ks is the bulk modulus of the
elastic solid from which the frame is made, and K̃f is the bulk modulus of the fluid. The ade-
quate formulas to compute the poroelastic material constants can be found in [3]. Finally, the total
stress tensor of poroelastic medium is defined as a simple sum of the partial, i.e. phasic, stress
tensors, whereas the total displacement vector sums up porosity-dependent contributions of the
displacements of both phases:

σt
ij = σs

ij + σf
ij , ut

i = (1− φ)ui + φUi . (3)

The equations of equilibrium (1) together with the constitutive relations (2) form the displace-
ment formulation of linear, isotropic poroelasticity for harmonic oscillations. Notice that the first
equations from the both pairs refer to the solid phase whereas the second ones to the fluid phase.
Nevertheless, the both phases are strongly coupled by the viscous-inertial coupling coefficient, %̃sf,
and the constitutive coupling constant, λ̃sf. In this classical formulation the unknown fields are the
solid and fluid phase displacements, that is, 6 degrees of freedom in a node of 3-dimensional
model.

The mixed displacement–pressure formulation. The fluid phase stress tensor can be ex-
pressed as

σf
ij = −φ p δij (4)

where p is the pressure of fluid in the pores (it should not be mistaken for the pressure of fluid
phase which equals φp). Using this relation for the harmonic Biot’s poroelasticity the fluid phase
displacements can be expressed as functions of the pressure in the pores, and so eliminated from
the equations (replaced by p). This results in the mixed displacement–pressure formulation [4,
5] where the dependent variables are the three solid phase displacements and the pore-fluid
pressure. Therefore, 3-dimensional models have now only 4 degrees of freedom in a node.

2.2 Weak integral form of the mixed formulation of poroelasticity

Let Ωp be a domain of poroelastic material and Γp its boundary with ni being the components of the
unit vector normal to the boundary and pointing outside the domain. The harmonic poroelasticity
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problem can be described in this domain by the mixed formulation which uses as dependent
variables the solid phase displacements, ui, and pore-fluid pressure, p. The corresponding weak
form [6] reads (for every admissible δui and δp)

WIp = −
∫
Ωp

σss
ij δui|j +

∫
Ωp

ω2%̃ ui δui −
∫
Ωp

φ2

ω2%̃ff
p|i δp|i +

∫
Ωp

φ2

λ̃f
p δp

+
∫
Ωp

φ

(
1 +

%̃sf

%̃ff

)
δ(p|i ui) +

∫
Ωp

φ

(
1 +

λ̃sf

λ̃f

)
δ(p ui|i) + BIp = 0 ,

(5)

where

σss
ij = µs (ui|j + uj|i) +

(
λ̃s −

λ̃2
sf

λ̃f

)
uk|k δij and %̃ = %̃ss −

%̃2
sf

%̃ff
, (6)

BIp is the boundary integral

BIp =
∫
Γp

σt
ij nj δui +

∫
Γp

φ (Ui − ui)ni δp , (7)

whereas δui and δp are test (or weighting) functions, that is, arbitrary yet admissible virtual
displacements and pressure. Below, the two most relevant boundary conditions of poroelastic
medium are discussed [5, 6].

2.3 Relevant boundary conditions for poroelastic medium

Imposed displacement field. A displacement field, ûi, applied on a boundary of poroelastic
medium describes, for example, a case of a piston in motion acting on the surface of the medium.
Here, we assume that the solid skeleton is fixed to the surface of piston while the fluid obviously
cannot penetrate into the piston. Therefore, on Γu

p :

ui = ûi , (Ui − ui)ni = 0 . (8)

The first condition expresses the continuity between the imposed displacement vector and the
solid phase displacement vector. The second equation expresses the continuity of the normal
displacements between the solid phase and the fluid phase. Using these conditions and the fact
that the variations of the known solid displacements are zero (δui = 0) the boundary integral
reduces to zero (on the relevant part of the boundary, Γu

p ):

BIp = 0. (9)

Imposed pressure field. A harmonic pressure field of amplitude p̂ is imposed on the boundary
of poroelastic domain which means that it affects at the same time the fluid in the pores and the
solid skeleton. Therefore, the following boundary conditions must be met on Γp

p :

p = p̂ , σt
ij nj = −p̂ ni . (10)

The first condition is of Dirichlet type and must be applied explicitly. It describes the continuity of
pressure in the fluid. It means also that the pressure variation is zero (δp = 0) at the boundary.
The second condition expresses the continuity of the total normal stress. All this, when used for
Equation (7), leads to the following boundary integral

BIp =
∫
Γp

σt
ij nj δui = −

∫
Γp

p

p̂ ni δui . (11)

3 WEAK FORM OF ELASTICITY AND COUPLING TO POROELASTIC MEDIA

3.1 Weak form for an elastic solid

Let Ωe be an elastic solid domain with mass density %e and boundary Γe, and ne
i the compo-

nents of unit vector normal to the boundary and pointing outside the domain. Assuming zero body
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forces and the case of harmonic oscillations the weak variational form of the problem of elasticity
expressing the principle of virtual work reads (for every admissible δue

i )

WIe = −
∫
Ωe

σe
ij δu

e
i|j +

∫
Ωe

ω2%e u
e
i δu

e
i +

∫
Γe

σe
ij n

e
j δu

e
i = 0 (12)

where δue
i is the arbitral yet admissible variation of displacements; the elastic stress tensor σe

ij =
σe

ij(ue) substitutes here a linear function of elastic displacements ue = {ue
i }. In the case of the

linear isotropic elasticity it can be expressed as follows

σe
ij = µe (ue

i|j + ue
j|i) + λe u

e
k|k δij (13)

where the well-known Lamé coefficients: the shear modulus, µe, and the dilatational constant, λe,
appear.

3.2 Elastic solid boundary conditions

For the sake of brevity, only von Neumann and Dirichlet boundary conditions will be discussed
here (the Robin type involves the technique of Lagrange multipliers and will be skipped). The
Neumann (or natural) boundary conditions describe the case when forces t̂ei are applied on a
boundary, that is,

σe
ij n

e
j = t̂ei on Γt

e , (14)

whereas the displacements, ûe
i , are prescribed by the Dirichlet (or essential) boundary conditions

ue
i = ûe

i on Γu
e . (15)

According to these conditions the boundary is divided into two (directionally disjoint) parts, i.e.,
Γe = Γt

e ∪ Γu
e . There is an essential difference between the two kinds of conditions. The displace-

ment constraints form the kinematic requirements for the trial functions, ue
i , while the imposed

forces appears in the weak form; thus, the boundary integral, that is, the last of the integrals of
Equation (12), equals

BIe =
∫
Γe

σe
ij n

e
j δu

e
i =

∫
Γt

e

t̂ei δu
e
i . (16)

Here, the property δue
i = 0 on Γu

e has been used.

3.3 Poroelastic–elastic coupling

Let Γp-e be the interface between poroelastic and elastic media. Let ni be the components of the
unit vector normal to the interface and pointing outside the poroelastic domain into the elastic
one. The coupling integral combines boundary integral terms resulting from both, poroelastic and
elastic, weak forms (Equations (5)-(7) and (12)-(13), respectively):

CIp-e =
∫

Γp-e

σt
ij nj δui +

∫
Γp-e

φ (Ui − ui)ni δp+
∫

Γp-e

σe
ij n

e
j δu

e
i (17)

where ne
i = −ni are the components of the unit normal vector pointing outside the elastic domain

(and into the poroelastic medium). Now, the following coupling conditions must be met at the
interface Γp-e:

σt
ij nj = σe

ij nj , (Ui − ui)ni = 0 , ui = ue
i , (18)

The first condition states the continuity of total stress tensor, the second expresses that there
is no mass flux across the interface, and the last one assumes the continuity of the solid dis-
placements [6]. This last condition means also the equality of the variations of displacements,
δui = δue

i . Now, applying the coupling conditions for the coupling integral (17) results in

CIp-e = 0 . (19)
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4 FINITE ELEMENT MODELLING AND RESULTS OF ANALYSES

4.1 Two approaches in modelling of small solid implants

To model a domain of porous layer the mixed formulation of poroelasticity is used while the solid
implants are modelled in two ways. Firstly, they can be very accurately modelled as small elastic
subdomains in the poroelastic domain. Then, the Galerkin finite element model uses the following
weak integral:

WIp + CIp-e +WIe = 0 . (20)

Let us remind that the weak form WIp of the mixed formulation of poroelasticity (5) ensures that
the coupling of the two media is naturally handled [6] (i.e., CIp-e = 0): and so only the continu-
ity between the solid phase displacements and the elastic subdomain(s) displacements must be
ensured, that is, ui = ue

i on Γp-e. However, since the implants are small the finite element mesh
around them becomes dense and the FE model is significantly enlarged (the poroelastic domain
has 4 nodal DoF in 3D, or 3 nodal DoF in 2D). But the predominant effect of the solid implants
(attached to the elastic skeleton of porous medium) is caused by their mass since they are very
small though heavy (and practically rigid) comparing to the poroelastic medium. Therefore, an-
other approach may be proposed: it consists in adding some adequate inertial terms directly to
the weak (variational) formulation of the poroelastic problem, that is,

WIp +MT = 0 where MT =
∫
Ωp

ω2mui δui (21)

is the added (concentrated) mass term. Here, m = m(x) is a (local) distribution of additional mass
added to the solid phase. In general, this approach (mathematically equivalent to the presence of
concentrated masses in the given localizations) is effective if the mass is concentrated in points,
and particularly in the nodes of FE mesh so to preserve it simple. Thus, for a concentrated point-
mass M0 (added in the point x0) one may formally write: m(x) = M0 δ(x− x0), where δ(.) is the
Dirac delta function.

4.2 Acoustic absorption of poroelastic layer

The main purpose of the present analysis of poroelastic layers with solid implants is to asses
how the heavy implants influence the acoustic absorption of layers. The acoustic absorption of
a poroelastic layer fixed to a rigid wall and subject to a plane acoustic wave propagating in the
air onto the layer surface at normal incidence will be computed as follows [3]. First, the acoustic
impedance at normal incidence is determined at the interface between the poroelastic layer and
the air:

Z =
p0

v
, where v = jω ut

1 = jω
[
(1− φ)u1 + φU1

]
. (22)

Here, v is the velocity of propagating wave at the layer–air interface (continuous across this bound-
ary) whereas p0 is the wave pressure. Now, the reflection coefficient in this point is computed:

R =
Z − Z0

Z + Z0
, (23)

where Z0 = %0 c0 is the characteristic impedance of the air (%0 is the air density and c0 the speed
of sound). Finally, knowing the reflection coefficient the acoustic absorption coefficient can be
determined:

A = 1− |R|2 . (24)

This final property is real-valued (unlike the reflection coefficient R, and the impedance Z, which
are complex).

4.3 Results of analyses

Several finite element analyses of poroelastic layers with solid implants were carried out for the
configuration presented in Figure 1 [left]. Poroelastic material data for two different high-porosity
polyurethane foams (termed A and B) was used for this configuration. The thickness of layer is
24 mm. At x1 = 0 mm the layer is fixed to a rigid wall whereas at x1 = 24 mm the plane harmonic
acoustic wave propagates onto the interface between the poroelastic layer and the air. At the
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Figure 1: [left] A 24 mm-thick layer of poroelastic foam (fixed to a rigid wall) with small steel im-
plants (regularly spaced steel balls or rods), with the modelled subdomain shown. [right] Solid
phase (u) and total displacement (ut) in the modelled subdomain of poroelastic layer, with and
without mass implant, at f = 600 Hz.

Foam A. Steel rod diameter = 1.2 mm Foam A. Steel rod diameter = 2 mm

Foam B. Steel rod diameter = 1.2 mm Foam B. Steel rod diameter = 2 mm

Figure 2: The acoustic absorption of the composite poroelastic layers at x1 = 24 mm and:
(a) x2 = 0 mm (facing a rod), or (b) x2 = 4 mm (between two rods). Also the absorption of the
(homogenous) layers with no implants (c). The frequency range: f = 25-800 Hz.

6

19th INTERNATIONAL CONGRESS ON ACOUSTICS – ICA2007 MADRID



depth of 4 mm from the incident surface, and spaced by ∆x2 = 8 mm, thin steel rods are planted
along the x3-axis. Two cases of rod diameters were considered: 1.2 mm and 2 mm. The problem
is modelled as two-dimensional: in the x1x2-plane. Moreover, the symmetry (regularity along the
x2-axis) makes it possible to model only a rectangular slice (of width ∆x2 = 4 mm) of the layer
comprising only a half of one implant (see Figure 1).

There were two purposes of the analysis. First, the conformity between accurately modelled solid
implants (which involves a locally denser FE mesh) and the implants considered as additional
weak mass terms was investigated. It was found that for the present configuration the discrepancy
between the both models is small enough to allow the usage of the second, simpler model. An
obvious conclusion is that the smaller are the implants the better is the conformity. Figure 1 [right]
presents the solid phase and total displacements of the modelled slice (for two cases: the layer
with the implants of diameter 1.2 mm, and the layer without implants). The plots are independently
scaled and so they are rather only qualitative: the imposed boundary conditions, the presence (or
absence) of mass implants are visualized.

The second analysis consisted in determining the acoustic absorption of the poroelastic compos-
ite. To this end, the results of FE analysis (ut at the layer’s surface) were used by the analytical
formulas for the impedance, the reflection and absorption coefficients (see Section 4.2). These
formulas result from a one-dimensional analysis of the plane wave propagation which is slightly vi-
olated if the solid implants are present. Therefore, the absorption coefficient was computed in two
points of the layer surface: at x2 = 0 mm and x2 = 4 mm (see Figure 1 [left]), providing two limit-
values. These values are plotted (for the range of frequency 25-800 Hz) in Figure 2 as curves (a)
and (b), respectively. Moreover, the curves (c) show the acoustic absorption for the homogeneous
layer (i.e., no implants). The results were obtained for the both versions of poroelastic data: foam A
(upper graphs) and foam B (lower graphs), and for the both versions of the steel rod diameter:
1.2 mm (left graphs) and 2 mm (right graphs). Notice that in this latter case the implant mass is
2.78 times bigger than in the case of thinner rods.

Although, the choice of configuration and materials was quite arbitral the following observations
should prove to be general:

• the presence of mass implants significantly increases the acoustic absorption of porous
layers (especially, in medium frequency),

• there is a lower frequency range, however, where the presence of implants deteriorate the
absorption,

• this effect is significantly reduced if the implant mass is bigger; moreover, the range is then
narrowed and shifted to even lower frequencies,

• below this range (i.e., for very low frequencies) the mass implants have no noticeable effect
(there is the same very poor performance of acoustic absorption).

5 CONCLUSIONS

Layers of porous material with heavy solid implants may be modelled as poroelastic media with
adequate point-masses if the implants are very small (and sufficiently heavy). Such approach
should be very efficient for the optimization of composite configuration where the influence of the
distribution of masses for the acoustic absorption of layers is analysed.

The presence of mass implants may significantly increase the acoustic absorption of porous lay-
ers, especially, in medium frequency. It seems that the improvement by distributed masses (im-
plants) may be greater than the one due to the mass effect alone (that is, by a thin, heavy layer).
Therefore, more numerical tests where this influence is analysed should be carried out.

In lower frequency range the passive vibroacoustic attenuation by mass implants ceases to work
and an active approach to the problem proves to be necessary. However, it seems that the most
promising concept should combine active implants, distributed masses and possibly other solid
implants, that is, to create an active poroelastic composite able to significantly dissipate the energy
of acoustic waves also in low frequencies (where it should rely on an active control, whereas in the
high and medium frequency range an excellent passive acoustic absorption would be guaranteed
thanks to the designed absorbing properties of poroelastic composite).
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