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ABSTRACT

The question of the origin of magnetic fields of Ap/Bp stars is still regarded as an interesting puzzle of stellar astrophysics. We
investigate the possibility that the randomness and relative complexity of these fields are remnants of a magnetic instability. In
the studied scenario it is assumed a priori that the surface of an Ap star is slowed down in its early evolutionary stage more than
its analogous A star. This leads to a significant differential rotation in its interior, making it possible to generate a strong toroidal
magnetic field in the radiative zone. Under such circumstances the kink-type Tayler instability is likely to set in. The presented
numerical simulations in a compressible, spherical domain show that the instability can produce large surface magnetic fields, even
of the order of 0.01−1 of the internal toroidal component (depending on the setup). The resulting magnetic fields can then serve as
“initial conditions” evolving into a stable magnetic configuration (however, the matter of long-term stability is not addressed here).
This theory naturally supports the fact that Ap stars rotate typically slower than normal A stars (the Tayler instability is suppressed
when rotation is too fast), it also qualitatively explains the dependence of the apparent obliquity of the main magnetic axis on the
rotation period, as well as the existence of the minimum field threshold (no Ap stars have been observed with fields weaker than
≈102 G). Given that the generation of the initial differential rotation and initial poloidal fields are not discussed here, the results have
a speculative nature and can be viewed as a possible step toward a full understanding of Ap star magnetism.
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1. Introduction

A few percent of all intermediate-mass (1.5−8 M�), near-main
sequence A and B stars are known to be chemically peculiar –
they are usually referred to as Ap/Bp stars and a majority of them
host detectable magnetic fields. Moreover, these are the only
intermediate-mass stars for which magnetic fields have been ob-
served. Up to now, there also have been reports concerning the
detection of magnetic fields in more massive stars (young Herbig
Ae/Be and early B and O stars). Such fields have strengths and
structures alike as in Ap/Bp stars and it is possible that they arise
as a result of a similar mechanism (Donati & Landstreet 2009).

In low-mass stars, the observed magnetic fields are common
and are thought to be generated by a dynamo action in the con-
vection zone. They are characterized by a complex topology and
high variability. On the other hand, Ap magnetism is not only
limited to a small fraction of A stars but also has some specific
properties. The fields reconstructed with oblique rotator model
are shown to have relatively simple large-scale topology which
resembles a dipole or a multipole of lower order, often inclined
to the rotational axis. They also remain essentially unchanged
on long timescales (as long as the main sequence lifetime) and
the magnetic strengths are not correlated with the stellar rota-
tion rates. These arguments are not in favor of an explanation of
Ap magnetism by a dynamo. Such stars actually possess deeply
buried convective zones (apart from thin convective shells close
to the surface). The dynamo can only be fed by the motions
deep in there, and one needs to come up with a mechanism that
transports the generated strong fields from the convective core
to the stellar surface. The buoyant rise of magnetic flux-tubes

was considered to be too slow by Moss (1989) and was studied
in a more elaborate analysis by MacGregor & Cassinelli (2003).
The latter investigation resulted in quick rise times of <106 yr
through most of the radiative envelope, but in slow rise through
the upper 5−10% of the stellar radius. The shortest total rise
times obtained are 10 Myr for a 5 × 105 G flux-tube which
is too long for explaining fields present early on the main se-
quence. Rising flux from a core dynamo would also result in
more variable surface fields than the ones observed. Variations
on a timescale of decades should have been noted by now.

Another characteristic feature of Ap stars is the fact that they
typically rotate more slowly than their nonmagnetic counter-
parts. Rotation periods are usually smaller by a factor of 5−10,
however, extremely slow rotators have been identified with pe-
riods Prot as low as of order 103 days. There is also a differ-
ence in distributions of the obliquity angles between the rota-
tional and magnetic axes for slower and faster rotators. Faster
rotators with periods of 100 days and less tend to have larger
inclination angles, slower ones seem to have both axes aligned
(Landstreet & Mathys 2000). However, recent results by Mathys
(2008) suggest that for the extremely slowly rotating stars (Prot ≈
103 days), the trend is reversed and the inclination angles are
again large (as for the “fast” rotators, Prot < 100 days).

Since most observations are limited to detecting the largest-
scale contributions to the magnetic-field topology, it is difficult
to infer any dependence of the field complexity on the ages or
rotation periods of the stars. Weak evidence for more complex
fields at faster rotation comes from the statistics in Bagnulo et al.
(2002) where the ratio of the quadrupolar to the dipolar compo-
nent appears to decrease with rotation period.
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One of the most striking observational facts about Ap stars
is the existence of a lower threshold of the magnetic field. The
sample analyzed by Aurière et al. (2007) shows that there are no
stars with fields smaller than about 300 G, although such detec-
tion should in principle be possible. Last but not least, Ap stars
are rarely members of close binary systems.

The currently favoured option for the origin of Ap star mag-
netism is the fossil field hypothesis. It is assumed that the fields
originate from the interstellar medium and are amplified and ad-
vected as clouds collapse into protostars. Then the fields evolve
into stable configurations. The question whether such configu-
rations exist is for a long time one of the most important mat-
ters in the subject. No purely analytical solutions are known,
see however Duez & Mathis (2010); Duez et al. (2010). By
means of numerical methods, Braithwaite & Nordlund (2006)
have demonstrated that in their setup, using a specific rescaling
technique, indeed it was possible to find such solutions (having
roughly equal poloidal and toroidal field strengths). According
to their calculations, in order to observe fields with 103 G, the
initial fossil fields should be rather large – of order of 106 G.
Braithwaite (2009) extended this study to generate predomi-
nantly nonaxisymmetric stable solutions arising from a field
spectrum mimicking the left-over state of pre-main-sequence
convection, using the same field-replenishment technique as in
Braithwaite & Nordlund (2006).

Although peculiar A/B stars are the objects outside Solar
System for which magnetic fields have been relatively well ob-
served and studied, little is known about small-scale details.
Even quite sophisticated models involving combinations of a
nonaligned dipole, quadrupole and higher terms seem to be
too limited to provide reliable information about details (e.g.
Bagnulo et al. 2001; Bagnulo 2001). At present, one is left
with a situation where only rather general features of the mag-
netic fields should be considered, but the knowledge is quickly
improving.

Since A/B stars have large radiative zones, it is plausible to
assume that there is no significant turbulent magnetic diffusion.
That implies that weak initial poloidal magnetic fields will be
wound up by any differential rotation resulting in a significant
toroidal component. In the absence of convection, the toroidal
field may become very large and eventually unstable. The insta-
bility that is the most likely to act in such scenario is the kink-
type instability, often referred to as the Tayler instability (TI –
Vandakurov 1972; Tayler 1973; Acheson 1978).

In a radiative zone any radial motions are strongly sup-
pressed by buoyancy. The TI is an instability of toroidal fields
that can grow on almost horizontal displacements and there-
fore is probably the most relevant one in the considered circum-
stances. For a sufficiently large amplitude (depending on the ra-
dial profile of the field), the toroidal field becomes unstable to
nonaxisymmetric disturbances. However, uniform rotation is a
highly stabilizing factor for the TI (Pitts & Tayler 1985). The
rotation frequency Ω is compared with the Alfvén frequency,
ΩA = B/

√
μ0ρ, where μ0 is the magnetic permeability and ρ

is the density of the conducting medium. In particular, in the
rapidly rotating regime with Ω � ΩA, the system is always
stable.

Wade et al. (2007) suggested that the existence of the lower
field threshold can be related to the TI in the sense, that initially
weak poloidal field of fossil origin can be too small to suppress
differential rotation. Such fields become unstable and large-scale
long-term stable structures cannot develop. On the other hand, if

the initial field is large enough, the differential rotation is in-
hibited leading to a weaker, stable toroidal component enabling
development of stable configurations.

Here, however, we consider an exactly opposite scenario in
which the strong surface fields are actually a result of the insta-
bility. When the toroidal field becomes unstable, the TI would
be responsible for “converting” the energy of differential rota-
tion into strong surface fields. Then such fields can evolve into
stable solutions or, in the initial phase, be constantly “fueled” by
the instability as long as the differential rotation is large enough
to wind up the toroidal field. The conditions acting in favor of
the TI are the strong differential rotation and slow overall rota-
tion – both of these can arise as a result of the process of losing
angular momentum at the star surface.

The mechanism for taking away the angular momentum of a
star is not discussed here and assumed to exist a priori. The issue
was addressed for example in the studies by Stȩpień (2000) and
Stȩpień & Landstreet (2002), where it was shown that magne-
tized winds can slow down a star (its surface) by orders of mag-
nitude. From the point of view of the theory considered here,
the fundamental difference between A and Ap takes place at this
stage of evolution – Ap stars are, for some reason, slowed down
(even a little) more than the normal A stars. This can lead to in-
creased differential rotation (stronger toroidal fields) and slower
overall rotation – both in favor of the TI. We do not have to
assume the presence of a primordial field – it is possible that
the fields of a convective dynamo in the first 0.2–2 Myr provide
the magnetism required for spin-down. The convection zones re-
cedes toward the surface, and according to what is known about
stellar dynamos, these fields will be axisymmetric. We will come
back to this issue in Sect. 5.

A similar scenario has been discussed in the studies by Arlt
& Rüdiger (2011a) and Arlt & Rüdiger (2011b). While they
based their simulations on the Boussinesq approximation, we
present results for a fully compressible flow in the present pa-
per. We also observe a clear exponential growth of small ini-
tial noise-like disturbances. In other works devoted to nonlinear
numerical simulations of the TI, it is often assumed that some
constant (in time) external fields exist, usually a toroidal field of
some form (e.g. Arlt et al. 2007). Here the problem is treated as
an initial-value one – all the components of the velocity or the
magnetic field are evolved in time.

The paper is organized as follows:

– Section 2 describes the numerical model.

– Section 3 is devoted to the evolution of initially unstable
toroidal fields under various circumstances. We show there
how rotation and an additional poloidal magnetic field sta-
bilize the TI, and also discuss how rotation impacts on the
geometrical properties of the surface radial magnetic fields.

– Section 4 deals with the question of the stability of a toroidal
field that is created consistently by differential rotation.

– Section 5 further discusses the application to Ap/Bp stars.

2. Numerical model

The model mimics a radiative envelope of a typical A/Ap
star, which is represented as a shell with the radius r span-
ning Rin ≤ r ≤ Rout in the spherical coordinate system
with unit vectors (êr, êθ, êφ). The evolution is governed by the
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MHD equations together with the isothermal equation of state
for the ideal gas,

∂tρ = −∇ · (ρu),

∂tu + u∇ · u = −∇P
ρ
+

1
μ0ρ

(∇ × B) × B − gêr + f

+∇ ·
[
ν

(
∇u + (∇u)T − 2

3
(∇ · u)I

)]
,

∂t B = ∇ × (u × B) + η∇2 B,
P = ρRgasTiso/μ,

where u, B, g, f , ρ, ν, η, μ0 represent respectively the velocity, the
magnetic field, the radial gravitational force, the external body
force, the density, the kinematic viscosity, the magnetic diffusiv-
ity, and the permeability. P is the pressure, Tiso the isothermal
temperature, and Rgas, μ are the gas constant and the molecular
weight. However, from now on, the capital R will simply denote
the distance from the rotation axis, R = r sin θ. Some of the im-
portant parameters characterizing the system are: the speed of
sound c2

s = dP/dρ, the Alfvén speed v2A = B2/μ0ρ, the hydro-
dynamic Reynolds number defined as Re = Rin(Rout −Rin)Ωin/ν,
the magnetic Prandtl number Pm = ν/η, the radial Brunt-Väisälä
frequency N2 = −(g/ρ)∂rρ. In all the calculations presented here
we assume Pm = 1 implying that Re = Rm, Rm being the mag-
netic Reynolds number, Rm = Rin(Rout − Rin)Ωin/η.

As mentioned in the introduction, we treat the problem as an
initial-value one. That is, starting from an initial state (denoted
by ui,Ωi, Bi, ρi), the system is evolved in time without any exter-
nal magnetic background field or force. The only exceptions (op-
tional, explicitly mentioned) are the constant radial gravity when
g � 0 or the additional forcing term f � 0 used in Sects. 3.3
and 4.3. All calculations are done with the use of NIRVANA
code (see e.g. Ziegler 1998, 2008) on a curvilinear, spherical grid
(Ziegler 2011) matching the problem geometry. The calculation
domain also includes the poles, 0 ≤ θ ≤ π, 0 ≤ φ < 2π. The time
stepping is done in normalized units, assuming rin = 1, rout = 2,
ρ ∼ 1, and ν = η = 10−2,...,−3 representing considerably larger
values than numerical viscosity and resistivity of the code (if not
explicitly stated, all the plots are in the normalized units). Due to
the constrained-transport ansatz for the induction equation, the
divergence-free condition is fulfilled up to machine accuracy. To
diminish oscillations of the compressible medium, ρ is initially
always adjusted so that the gas is in the hydrostatic equilibrium
with the gravity g and the centrifugal force (although not with
the magnetic field which is always not force-free). Including the
poles in the domain is considerably time-demanding, however
we find that it gives superior accuracy when compared with “star
in a box” Cartesian simulations. Consequently, the resolution in
all the presented 3D runs was limited to 643. In some runs, the
radial, latitudinal, and azimuthal resolutions were 64, 64, 128 re-
spectively, which gave essentially the same results as the runs
with smaller resolution with the same parameters (particularly,
the values of the growth rates measured were independent of the
resolution used). Moreover, all axisymmetric results were repro-
duced by means of 2D simulations and compared with a higher
resolution of 2562. No significant differences were found in these
cases either.

The radial boundary conditions (BCs) for the velocity are
stress-free. This means that the normal component un = 0 and
the tangential shear stress components S rθ = S rφ = 0 which
leads to ur = 0, ∂r(uθ/r) = 0, ∂r(uφ/r) = 0. The BCs for
magnetic field can be either perfectly conducting or insulat-
ing. The former require vanishing normal component of the

magnetic field and the transverse components of the electric
field, Br = Eφ = Eθ = 0 – in the code this is realized by set-
ting Br to be antisymmetric and Bφ, Bθ to be symmetric. The
insulating BCs are implemented as unphysical, local approxima-
tion, sometimes referred as to “pseudo-vacuum”. It is assumed
that the tangential components of the field are zero, and the nor-
mal component is left unconstrained. Such BCs are utilized in
the code in the way that Bφ, Bθ are antisymmetric and Br in the
ghost zones is simply copied from the last cell adjacent to the
boundary. Such approach significantly reduces calculation time
while still allowing one to obtain surface fields of a star. We can
justify this procedure by the fact that it has been shown that it
does not lead to any spurious results and it has even successfully
reproduced a few laboratory MHD experiments (e.g. Szklarski
& Rüdiger 2007; Stefani et al. 2009; Rüdiger et al. 2012). When
these “pseudo-vacuum” BCs are used in our simulations, as the
initial large-scale poloidal field we choose to use B of the form
of r−2 cos θêr . This is somehow related to a dipolar field but is
compatible with the defined BCs (since Bθ = 0). The BCs in θ
and φ for all variables are periodic.

In all the cases presented below, the instability manifests it-
self as an exponential growth of the disturbances which in the be-
ginning consist simply of noise in the magnetic field. The noise
is essentially composed of magnetic waves in all spatial direc-
tions with random amplitudes which are smaller by a factor of
about 105 than the initial large-scale field.

In the cases where differential rotation is imposed, we use
initial velocity profiles as the ones in previous studies on this
subject (e.g., Arlt & Rüdiger 2011a,b), namely ui = (0, 0,RΩD)
with

ΩD =
Ω0√

1 +
(
2 R

Rout

)2q
, (1)

Rout = 2, q ≤ 2 are subcritical to the Rayleigh instabil-
ity (the Rayleigh criterion for hydrodynamical stability yields
∂RR2Ω ≥ 0).

Obviously, the azimuthal velocity changes during the evo-
lution. It is therefore practical to define a measure that tells us
the average amplitude of the differential rotation at any instance
of time. For a dimensionless measure of the differential rotation
we use

Q =

(
R
∂RΩ

Ω

)
, (2)

where the overbar denotes volume averaging, and ∂R = sin θ∂r +
r−1 cos θ∂θ. Note that an initial q = 2 corresponds to Q ≈ 1.3.
In some of the previous works on the subject, as the measure of
the differential rotation q′, fitted to Eq. (1) at the equator was
used. Since there is no particular reason why the rotational pro-
file (1) should be maintained throughout the simulations, espe-
cially when a relatively large meridional circulation is present,
we find the averaged value Q more appropriate for the diagnos-
tics of the calculations presented below.

As recalled above, the criterion introduced by Pitts & Tayler
(1985) requires

ΩA/Ω ≥ 1 (3)

for the TI to overcome the rotation. In the following, as to es-
timate whether the instability sets in we use the locally defined
Alfvén frequency

ΩA = |B| /R√μ0ρ, (4)
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and the global average w defined as

w = ΩA/Ω =

( |B|
uφ
√
μ0ρ

)
· (5)

The ratio w defined above takes into account variations in density
which are particularly important when initially density stratified
models are evolved. In such cases, in our simulations, the initial
magnetic field is calculated from the potential being proportional
to the density, so that the Lorentz force is independent of the den-
sity stratification. In other words, for the stratified case the mag-
netic field is calculated in the way that at each point the Lorentz
force is the same as in a constant density ρ0 setup. When relating
stratified and unstratified models, it is assumed that for the for-
mer ρ(r = Rin, θ = π/2) = ρ0. Consequently, when one wants to
compare, e.g., growth rates for cases with different initial stratifi-
cations, special care needs to be taken to choose conditions giv-
ing the same w. For example, when we are interested in studying
the field of the form of Bi = r−2 cos θêr, it means Bi should be
calculated using the potential Aφ = [ρ(r, θ)/ρ0]1/2 sin θ/2r (note
that the variations in density in any case were not larger than
about 30%). In the remaining part of the paper we give formu-
lae for the initial magnetic field which are formally applied only
for the models with the constant initial density ρ0. When the ini-
tial ρ(R, θ) is not constant, Bi is calculated using the appropriate
potential.

It is not entirely clear what values ofΩ0 should be chosen for
runs with varied degree of differential rotation, i.e. q in Eq. (1).
To assure a somehow more objective comparison for each case,
Ω0 is therefore adjusted so that the compared runs are character-
ized by the same average parameter w. We find it more informa-
tive in the sense that geometrical properties of the magnetic field
and the differential rotation are both taken into account.

3. Initially unstable toroidal magnetic fields

This entire section focuses on initially unstable configurations
to learn about the properties of the Tayler instability in a fully
compressible, spherical domain. The initial velocity ui and ini-
tial magnetic field Bi are chosen in a way that w � 1. Following
Rüdiger & Kitchatinov (2010; hereafter RK10), the rotation is
rigid, Ωi = Ω0, and the magnetic toroidal field is parameter-
ized by

Bi = sin θ cos nθ
√
μ0ρRΩA0êφ, (6)

with n being either 0 or 1. The first one represents a single mag-
netic belt symmetric with respect to the equator, the second a
dipolar field antisymmetric w.r.t. the equator (two belts with op-
posite signs). Note that using (6) with n = 0 and rigid rotation
Ω0 one gets from (5) w = ΩA0/Ω0 and w = 1

2ΩA0/Ω0 for n = 1.
RK10 studied the influence of the thermal diffusion on the

stability of the system (though for a much smaller Pm ≈ 10−3

than here). They have shown that such diffusion alters the cri-
terion (3) so that the instability sets in for as low values as
ΩA0/Ω � 10−3. However, the growth rates γ become signifi-
cantly smaller and drop quadratically with decreasing magnetic
field whenΩA0/Ω < 1. In the isothermal limit the TI does not set
in for ΩA0/Ω < 1 in the case if n = 0. Remarkably, the situation
is different if n = 1, then the criterion for instability in such limit
becomes

ΩA0/Ω � 10−2 (7)

Fig. 1. Kinetic (Ek) and magnetic (Em) energies demonstrate a typical
growth of the nonaxisymmetric m = 1 mode of the Tayler instability
up to the saturated state. The initial field is of the form of a single belt,
Eq. (6) with n = 0, rotation is initially rigid, Ω0 = 1, w = 2,Re =
1000, cs = 10, g = 0, and perfectly conducting radial boundaries are
used. The growth rate of the m = 1 mode is γ ≈ 0.8ΩA0.

Fig. 2. Evolution of kinetic (Ek) and magnetic (Em) energies in the
r, θ, φ components of the same simulation as shown in Fig. 1. Note the
increased meridional flow induced by the initially not force-free mag-
netic field.

(with accordingly small growth rates, e.g., forΩA/Ω = 0.01, γ ≈
10−5Ω; cf. Figs. 2 and 3 from RK10). If the rotation is sub-
Alfvénic, the TI is always very fast – ΩA/Ω � 1 gives γ � ΩA.

Figures 1 and 2 depict a nonlinear 3D simulation with grow-
ing nonaxisymmetric modes for n = 0 and w = 2 (i.e.,ΩA0/Ω0 =
2). The m = 1 mode grows first and roughly exponentially.
The magnetic BCs are conducting as to be compatible with the
field (6).

We stress here that one of the main problems in numerical
modeling of TI in a stellar context, are the small growth rates for
ΩA < Ω. For example, as it will be shown later, it is fairly easy
to produce toroidal fields by differential rotation which should
be unstable according to (7). However, in order to reach a sat-
urated state, it is necessary to perform simulations for a very
large number of rotations. In practice it is a formidable task. In
reality, 105 rotations are only about one thousand years and are
so short compared to the life-time of the stars that there is no
practical chance of observing a star in the process of developing
instability.

One of the questions that we wanted to address in the com-
pressible study of the TI was the influence of sonic waves on the
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Fig. 3. Magnetic energy of the m = 1 mode versus time for the same
initial conditions as in Fig. 1 but for various sound speeds cs as well as
different magnitudes of radial gravity (expressed in terms of the square
of the buoyancy frequency N2; the first four lines are for g = 0).

growth rates. We performed simulations analogously to Fig. 1
with varied sound speed and radial gravity. The variation of the
sound speed and the subadiabaticity of the stratification led to the
growth rates shown in Fig. 3. The growth rates of the instability
remain unchanged when compared to the nonstratified cases. As
mentioned earlier, the magnetic potential has been multiplied for
the stratified cases by the density ratio ρ(r, θ)/ρ0 so that the av-
eraged quantity w = 2 in all the cases.

If the flow is adiabatic (vanishing thermal diffusivity κ), the
stratification is highly stabilizing since the instability must work
against the buoyancy forces. If non-zero thermal diffusion is
included, the stabilizing effect of buoyancy is reduced on the
length scales increasing with κ. Consequently, as expected, the
simulations show that in the isothermal limit the stratification
has no impact on the growth of the TI and the stabilizing effect of
gravity does not exists. Nonetheless, in the majority of our sim-
ulations g is not zero in order to maintain, the radial dependence
of the density to a certain degree (otherwise centrifugal forces
would create higher density regions close to the outer shell).

3.1. Stabilization by rotation or poloidal field

Fast rotation or the additional presence of poloidal magnetic
fields can suppress the Tayler instability discussed here. The sta-
bilization due to rotation is demonstrated in Fig. 4a) where fast
rotation is in the left part and slow rotation is in the right part of
the diagram. For simulations the growth rates are calculated by
fitting the appropriate exponential function to the values of the
square root of energy in the Br-component for the m = 1 mode.
For TI, for slow rotation, Ω0  ΩA0, the growth rate γ scales as
γ ∝ ΩA (being proportional to the toroidal field strength), while
it is γ ∝ Ω2

A/Ω in the other case. These two scaling regimes are
plotted as b) and c) on the figure.

It is known that combinations of poloidal and toroidal fields
are more stable than purely toroidal or purely poloidal configura-
tions. In fact, all stable fields known in spherical geometry con-
sist of both components. Rüdiger et al. (2011) studied a problem
that is somehow analogous to the one discussed here, however, in
a cylindrical geometry. As a measure of toroidal/poloidal mag-
netic field ratio let us use β defined as

β =
Bφ

Br + Bθ
·

Fig. 4. Normalized growth rate γ of the m = 1 mode (energy of Br).
a) The initial magnetic field is as in Eq. (6), n = 0,ΩA0 = 2 and the
rotation Ω0 is varied as to change w = ΩA0/Ω0. b) The dotted line
is γ = Ω2

A0/Ω0 − 0.8, c) the dot-dashed line γ = ΩA0.8, and d)–f)
show γ for various degrees of differential rotation. The asterisk denotes
a case where the angular velocity was initially increasing outwards (see
Sect. 3.2).

Fig. 5. Growth of the TI for n = 0, rigid rotation Ω0 = 1, w = 2,Re =
1000, cs = 10, g = 0. The solid line is for a purely toroidal field (and
some magnetic noise). The other lines correspond to the evolution with
a non-zero initial large-scale poloidal field.

In this paper the initial large-scale poloidal field is of the form
(due to the specific magnetic BCs discussed in Sect. 2):

Bpol = B0 cos θr−2êr. (8)

Figure 5 depicts how the additional large-scale poloidal field (8)
reduces the growth rate of the instability. Note that the solid line
does not correspond to β → ∞ due to the non-zero initial mag-
netic noise which contains all components of B. The stabiliza-
tion by poloidal fields is evidently a strong effect and has to be
taken into account when one is interested in exciting the TI by
winding up a poloidal component. It is necessary that |Btor| is
significantly larger than |Bpol|. The linear calculations of Rüdiger
et al. (2011) for the cylindrical case show that for β � 10 there
is an exponential increase (with decreasing β) of the magnetic
field strength necessary to trigger the TI. Also nonaxisymmetric
modes m > 1 start to dominate1.

1 In order to qualitatively compare with the βcyl from (Rüdiger et al.
2011), for the cylindrical case we have, assuming μB = 2, η = 0.5 in
their notation, βcyl ≈ 1

3β.
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Fig. 6. Magnetic energy for m = 1 (solid lines, left axis) and the mea-
sure of the mean differential rotation Q for the scenario where the
gas was initially differentially rotating Ωi = ΩD. For different values
q = (0, 0.5, 1, 2),Ω0 was calculated to be (1, 1.5, 1.64, 2.11) respectively
so that all the models have w = 2.

3.2. Differential rotation

One of the aspects addressed in RK10 was the influence of dif-
ferential rotation on the development of TI. Since the most un-
stable modes are nonaxisymmetric, one might anticipate that the
differential rotation will tend to stabilize TI. Indeed, such effect
is present in their calculation (although it is not very large).

Here we test the stability of our model for various degrees
of differential rotation by adjusting the parameter q. Figure 6
shows growth of the m = 1 mode along with mean values Q.
Apparently, such strong Bφ, in terms of w = 2, is enough to over-
come the “smoothing” of m = 1 modes by the differential rota-
tion and the instability develops. However, it might be not the
case for w  1 where rotation itself becomes dominant. Notice
that the differential rotation is maintained throughout the entire
exponential growing process, i.e. Q is roughly preserved.

Figures 4, 6 and 7 demonstrate that in the parameter regime
of interest here (w ≈ 1), the differential rotation does not play
any significant role w.r.t. the onset of the instability and its
growth rates. The horizontal shift between the curves a), d), e), f)
in Fig. 4 for various q is likely just the result of our definition for
the averaged quantity w. Additionally, the run denoted by an as-
terisk in this figure refers to a situation where initially Ωi = Ω

∗
D

was increasing with R,

Ω∗D = 2Ω0 −ΩD = Ω0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝2 −
1√

1 +
(
2 R

Rout

)2q

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,
q = 2. This test assures us that the system is not yet in the
regime of the azimuthal magneto-rotational instability (AMRI).
No AMRI should occur in this case since the angular velocity
increases outwards.

3.3. Influence of rotation on the geometry
of the surface magnetic fields

A full study of the influence of the instability on the shape of
the surface magnetic field would require a proper treatment of
the radial magnetic boundary conditions (preferably including
the atmosphere) and an analysis of magnetic configurations that
are stable over timescales much longer than the ones considered
here (as in e.g. Braithwaite & Nordlund 2006). At this stage of

Fig. 7. Growth rates γ in dependence on the differential rotation param-
eter q for various field-to-rotation ratios w.

research this is not our main concern. However, we find it in-
teresting to see how the resulting fields differ between models
of slow and fast rotation soon after the saturation is reached, es-
pecially for the two regimes ΩA/Ω > 1 and ΩA/Ω � 1. Up
to this point we considered models with conducting boundary
conditions that were consistent with the initial field, Eq. (6), but
obviously could not provide any information about the poloidal
field at the stellar surface, r = Rout. From now on, all the calcula-
tions are done with vacuum-like BCs defined in Sect. 2 which, on
the other hand, can reproduce only the radial component of the
magnetic field Br at the surface. Also, the initial field Bi from
Eq. (6) is in such case not compatible with BCs (this is not a
real problem, since the field quickly adjusts itself so the BCs are
fulfilled).

In the following, we use the antisymmetric, azimuthal
field Bi defined by (6) with n = 1. This configuration resembles
a situation that is much more likely to exist inside the radiative
envelope: two magnetic “belts” of Bφ antisymmetric w.r.t. the
equator arise when a dipole-like poloidal field acts together with
some differential rotation.

As discussed earlier, one of the unresolved issues concerning
Ap stars is the problem of explaining the observed dependence
of the obliquity on the rotation. We have performed a series of
simulations with a forcing term that ensures maintaining the de-
sired rotational profile Ω f throughout the whole simulation. We
do this in order to follow the evolution of the magnetic field in
the presence of the given angular velocity. Without the forcing
term, maintaining the profile Ω f for timescales of our interest
(couple of hundreds of Alfvén crossing times) would not be pos-
sible (see the next section).

The forcing term added to the momentum equation is

f = −〈uφ〉φ −Ω f R

τ
êφ, (9)

〈·〉φ denoting an azimuthal average here, τ the timescale at which
all axisymmetric deviations from the desired rotation profile will
be smoothed out (in this section we use τ = 120/ΩA0). Note that
with such definition of f , all the nonaxisymmetric disturbances
can develop freely. The meridional flow – axisymmetric as well
as nonaxisymmetric – is left unconstrained.

In the ΩA � Ω limit, one expects that the rotation (and
of course the degree of differential rotation) has no effect on
the temporal evolution of the initially unstable magnetic field.
Indeed, various tests showed that for w � 102 the initial field
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t = 22

Negligible rotation

t = 110

t = 450

Fig. 8. Temporal evolution of the surface magnetic field Br in the large-field limit with w = 600. ΩA0 = 12,Ω0 = Ω f = 0.01, Bi =
cos θ

√
μ0ρRΩA0êφ,N2 = 0, η = ν = 10−2, cs = 10. At times, from the top, t = 22, 110, 450 Ω−1

A0. The radial field is scaled with the volume-
averaged Bφ at the given time.

with n = 1 evolves into apparently stable configurations, see
Fig. 8. In the beginning of the simulation, as it is typical for this
current instability, the fastest growing m = 1 disturbances are
concentrated close to the axis. However, eventually, the resulting
field somehow resembles a dipole inclined by 90◦ to the rotation
axis. This structure, which we interpret as the large-scale man-
ifestation of the m = 1 mode, decays on the magnetic diffusion
timescale (which was chosen to be an order of magnitude larger
than in the simulations for the previous section, ν = η = 10−2

so this diffusive decay could be easily identified). Note that in
this figure and all other surface maps as well, Br is not plot-
ted directly but rather scaled by the volume-averaged azimuthal

field, Br/
∣∣∣Bφ∣∣∣.

As will be discussed in Sect. 4, it is rather unrealistic to
expect that the toroidal fields will reach ΩA � Ω under the
assumed circumstances. This is due to the fact that strong
fields will reduce the shear before it produces large enough Bφ.
Therefore it is more plausible to consider a scenario in which
ΩA/Ω � 1. In such a case one should expect that the rotation
can have a significant impact on the generated surface fields, es-
pecially when the differential rotation comes into play since it
can smooth out any nonaxisymmetric features.

Figures 9 and 10 show the surface fields Br for several values
of w for rigid and differential rotation profiles enforced by Ω f
(all the snapshots are plotted for the same time t). The rigid

rotation does not prevent the existence of the already developed
nonaxisymmetric poloidal fields and the nonaxisymmetric sur-
face structure remains. On the other hand, the differential rota-
tion has a large influence on the radial fields by diminishing the
nonaxisymmetric part. After the saturated state is reached in the
simulations, the toroidal component is too weak to drive any in-
stability and, under the considered circumstances, Bφ cannot be
rebuilt from poloidal fields by the differential rotation.

The energies of the m = 1 modes of the radial magnetic
field Br are plotted in Fig. 12 for various parameters. As dis-
cussed earlier, the differential rotation does not prevent the TI
from setting in, however, it clearly reduces the energy in the
m = 1 modes at later stages of the evolution. Naturally, after
the TI ceases to operate, in contrast to the poloidal fields, the
toroidal field is much less affected by the differential rotation
and its evolution is rather independent of q.

4. The instability due to wound up Bφ
This section deals with the generation of unstable magnetic
fields and the subsequent Tayler instability. In the previous
Section, we considered magnetic fields with a strong initial
toroidal component which triggers the TI. These are very un-
likely to be present ab initio, and large Bφ must somehow be gen-
erated, preferably by poloidal fields and differential rotation as
the most likely candidate in the stellar context. In the following

A94, page 7 of 14

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201220262&pdf_id=8


A&A 550, A94 (2013)

w = 60

Rigid rotation

w = 6

w = 1.5

Fig. 9. Snapshots depicting the surface field Br at the time t = 480 Ω−1
A0 for various rates of rigid rotation Ω f = Ω0 giving, from the top, w =

60, 6, 1.5. Other parameters as in Fig. 8.

scenarios we start with an initial Bφ = 0 (however, the magnetic
noise is always added for all the components).

The interplay of poloidal magnetic fields and differential ro-
tation is a subject widely discussed in the context of stellar evo-
lution. In particular, the important question is how the fields
influence differential rotation over time. Already fields much
weaker than what a turbulent dynamo would generate are suffi-
cient to enforce uniform rotation in various contexts such as the
radiative envelopes of intermediate mass stars (e.g. Moss 1992)
or the solar radiative interior (e.g. Mestel & Weiss 1987; Rüdiger
& Kitchatinov 1997; Sule et al. 2005).

4.1. Winding up Bφ by differential rotation

Consider a differentially rotating gas with ΩD(r, θ) in the pres-
ence of an axisymmetric, poloidal magnetic field, Bpol =
(Br, Bθ, 0). Neglecting magnetic diffusion and meridional circu-
lation, we get from the induction equation that ∂tBr = ∂tBθ = 0
and Bφ is wound up according to

∂tBφ = r sin θBpol · ∇ΩD. (10)

This toroidal component together with Bpol reacts back on the
azimuthal component of the velocity by a Lorentz force ∝BrBφ
leading to harmonic oscillations with period roughly equal to
the period of a magneto-hydrodynamic wave along the lines of

force, τ1 = R
√
μ0ρ/B2

pol (e.g. Mestel 1953). This means that

after a time ≈τ1, the torque due to the produced Bφ will signif-
icantly affect the rotational velocity. For a typical star, an initial
field of the order of μG is sufficient to generate forces that will
influence the internal differential rotation of the star during its
lifetime (Rüdiger & Kitchatinov 1997; Spruit 1999).

Let as assume that the differential rotation amplifies Bφ lin-
early. According to the local approximation by Spruit (1999)
which takes into account rotation and magnetic diffusion, the
time at which the instability sets in can be estimated as

tcrit =
R
√
μ0ρ

q′Bpol

(N
Ω

)1/2 (
η

R2Ω

)1/4

= τ1
1
q′

(N
Ω

)1/2 (
η

R2Ω

)1/4
,

q′ being a dimensionless measure of the differential rotation,
q′ = RBpol · ∇ΩD/Ω|Bpol|. For a typical A star, tcrit is a very short
time: in CGS N = 10−3,R = 1011, η = 103,Ω = 10−6, Bpol = 1
and q′ = 0.1 give a τcrit = 0.18τ1 or ≈103 years. In reality, the
amplification by differential rotation diminishes when Lorentz
forces start to become important, so the actual τcrit may be of
similar value as τ1. It all depends on the steepness of the differ-
ential rotation whether the fields become Tayler unstable before
ceased differential rotation provides no more amplification.

A detailed discussion concerning the initial rotational pro-
file, and therefore the estimation of the value of q′, lies beyond
the scope of this paper. We speculate that the difference between
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w = 60

Differential rotation

w = 6

w = 1.5

Fig. 10. As in Fig. 9 but for various rates of differential rotation Ω f = ΩD with q = 2 and ΩD chosen so that, again, w = 60, 6, 1.5 (from the top).

q = 0 q = 0.5 q = 1 q = 2

Fig. 11. Radial surface field at t = 340 Ω−1
A0 for w = 1.5 and various values of differential rotation, q = 0, 0.5, 1, 2 (from the left). The remaining

parameters as in Fig. 8.

a normal A star and an Ap star lies especially in the steepness of
the differential rotation. In such case an Ap star would be char-
acterized by larger q′ than its normal counterpart.

The effect of initially nonaxisymmetric fields is not so ob-
vious. As discussed by Mestel (2012, and references therein) in
his Chapter 9, oblique poloidal fields are likely to be destroyed
rather than acting toward uniform rotation. Since it is an inter-
play between wind-up, diffusion and instability, it is not straight-
forward to draw clear conclusions for real stars. For the scope of
this paper we assume initially oblique poloidal fields are negli-
gible in the angular-momentum transport.

From the point of view of numerical modeling of the TI due
to azimuthal magnetic fields produced by differential rotation,
one may think that it is crucial to reach the ratio ΩA/Ω � 1

giving a growth rate of the instability of the order of the rotation
period. As discussed above, calculations by RK10 show that for
a dipolar magnetic geometry and ΩA/Ω = 0.01, the growth rate
γ ≈ 10−5Ω. Such value can easily lead to an instability during a
stellar lifetime, however, it is impossible to simulate numerically
such large number of rotations of a differentially rotating body
in order to obtain a saturated state.

Assuming Ω being constant in time and initially Bφ = 0, we
can roughly estimate that the Bφ should be largest at the time τ1
(and much larger than the poloidal component). From Eq. (10)
we obtain the upper limit

max

(
ΩA

Ω

)
= max

(
R

Bpol · ∇ΩD

|Bpol|ΩD

)
, (11)
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Fig. 12. Decay of nonaxisymmetric m = 1 modes of Br for various w
and q. For rigid rotation, q = 0, the decay takes place at the magnetic
diffusion timescale.

which depends solely on the geometry of the initial poloidal field
and the rate of differential rotation (in these considerations ΩA
refers to the Alfvén frequency of the toroidal field only). For ex-
ample, using the Eqs. (1) and (8) one obtains max (ΩA/Ω) =
4qq sin θ(R/Rout)2q/(1 + 4q(R/Rout)2q) giving max (ΩA/Ω) =
0.33, 0.8, 1.9, 2.9, and 3.9 for q = 0.5, 1, 2, 3, and 4, respectively.
However, these values are significantly overestimated since the
above formula does not take into account that the growth of Bφ
is no longer linear when ∇ΩD gets reduced.

A crude approximation that does not neglect such feedback
can be derived from the momentum and the induction equations
assuming a linear change of ∂rΩ in time from its initial value
∂rΩi to 0 (mimicking the point where

∣∣∣Bφ∣∣∣ reaches its maximum).
Neglecting some less important terms,

Bφ(t) =

t∫
0

rBr sin θ(∂rΩi)(1 − t′/t1)dt′

Ω(t) =

t∫
0

BrBφ(t′)
r2 sin θ

dt′ + Ωi

and setting ∂rΩ(t = t1) = 0 one can find that

max

(
ΩA

Ω

)
=

rBr∂rΩ0

2Ω0

×
√

3∂rΩ0

Br[−2r∂rBr∂rΩ0 + Br(∂rΩ0 − r∂rrΩ0)]
·

(12)

Substituting our profile for the differential rotation (1) and the
initial field (8) into the above equation, we get maximum val-
ues of ΩA/Ω to be 0.17, 0.32, 0.61, 0.86, and 1.1 for q =
0.5, 1, 2, 3, and 4, respectively (in the domain r ∈ [0,∞), θ ∈
[0, π/2)). Note that already q = 3 in ΩD is hydrodynamically
unstable according to the Rayleigh criterion and will probably
halt the growth of Bφ much earlier.

These rough calculations show that a differential rotation and
an initially weak poloidal component cannot easily produce an
azimuthal magnetic field that is strong enough to excite the TI
which will grow on reasonably short timescales suitable for a
numerical simulation. According to the above assumptions, even
for q = 2 one can get at most γ = 10−2Ω which is still rather
small from the numerical point of view. This is of special impor-
tance when one deals with stress-free radial boundaries where
differential rotation decays by means of hydrodynamical trans-
port (of course, the situation would look different if a boundary
driven or a forced flow would be considered).

Fig. 13. A 2D simulation demonstrating the process of winding up of Bφ
by the differential rotation, Ω0 = 1, cs = 10, g = 0, q = 2, Br0 = 0.1,
a) unconstrained flow; b) the meridional circulation was canceled ur =
uθ = 0; c) constant background velocity field, ∂tu = 0; Bφ eventually
decaying due to the magnetic diffusion; d) smaller initial magnetic field,
Br0 = 0.05.

(12)

Fig. 14. Dependence of max (ΩA/Ω) and max (w) on the differential ro-
tation parameter q, as obtained from 2D simulations (parameters other
than q are as in Fig. 13). The dashed line was calculated by Eq. (12).

The above discussion assumed initially axisymmetric fields.
This can be justified due to the process of rotational smoothing,
which in a star smears out any weak nonaxisymmetric field on a
short timescale (see e.g. Spruit 1999). Neglecting the meridional
flow is a simplification that has no dramatic effect, but we should
keep in mind that it also reduces the differential rotation on the
long term thus further reducing the maximally possible ΩA/Ω.

Figure 13 depicts the process of winding up Bφ by the differ-
ential rotation from the poloidal field of the form from Eq. (8)
in an axisymmetric 2D simulation. Various conditions are con-
sidered – an unconstrained flow with stress-free boundary condi-
tions for two different strengths of the initial poloidal field, a flow
for which the meridional circulation was canceled, uθ = ur = 0,
and a flow with the constant velocity background, ∂tu = 0. The
small discontinuities for a) and b) are due to the fact that the ac-
tual locations of the maximum change with time. As predicted,
the maximum of ΩA/Ω is independent of the strength of the ini-
tial poloidal field. For the case with constant u, the growth of Bφ
is limited only by the magnetic diffusion.

Figure 14 shows the three quantities characterizing the
wound-up Bφ as a function of q: max (ΩA/Ω),max (w), and the
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Fig. 15. Suppression of the differential rotation by the poloidal field,
Eq. (8), with various amplitudes. The other parameters are as in Fig. 13.

value calculated using Eq. (12). For various q, Ω0 was chosen
so that in all these cases the initial kinetic energy is equal. One
can see that for the largest q = 2 (which is close to the hydro-
dynamical instability according to the Rayleigh criterion), the
maximum value of the averaged quantity max (w) is about 0.1
(max (ΩA/Ω) ≈ 0.4, see Fig. 13). This is a rather small value
bearing in mind the growth rates of the TI. Naturally, the growth
of Bφ is so much limited due to the decrease in the differential
rotation. This is shown in Fig. 15 where one can see that the
mean degree of differential rotation Q is significantly reduced
even after couple of turns. Also note that in the purely hydrody-
namical case – the solid line – for the considered Re ≈ 103, Q
decreases by about 50% after 10 rotations by means of viscous
and hydrodynamical-transport effects.

We conclude that the wound-up Bφ does not guarantee that
the TI will be triggered in our numerical model. In the fact we
were unable to “observe” the instability in any freely evolv-
ing scenario (i.e. stress-free BCs, no external magnetic fields or
forcing) using initial conditions having subcritical toroidal field.
One shall also keep in mind that the TI does not only require
large Bφ but also Bφ � Bpol since the presence of relatively
strong poloidal field suppresses the instability, cf. Sect. 3.1. In
the end, we are left in a situation where some numerical tricks
are necessary in order to obtain the exponential growth of the TI
by winding up an initially weak poloidal component.

4.2. Winding up Bφ using a constant velocity field

In this section, we wish to obtain numerical states that are TI un-
stable due to the wound up Bφ. We achieve this here by dividing
simulations into two stages:

i) Initial weak poloidal field (of the form as in Eq. (8) or just the
random noise) is wound up by the time-independent differen-
tial rotation, ∂tu = 0, meaning that the momentum equation
is not evolved. In such case the growth of Bφ is limited only
by the magnetic diffusion and its strength is determined by
the time of winding (ΩD is the same for all simulations in
this section).

ii) When the toroidal field becomes strong enough (in terms
of w � 1), the constraints on the velocity are removed and
the system is let to freely evolve (with stress-free and vac-
uum BCs).

Fig. 16. Shape of the toroidal magnetic field produced by the constant
velocity field (0, 0,ΩDR), q = 2. The solid (dashed) lines represent posi-
tive (negative) Bφ, the arrows illustrate the poloidal component. Initially
the magnetic field was: Bi = Bpol from Eq. (8) (left) and the random
noise for all the components (right). Of course, in the latter case, the
polarity with respect to the equator can be arbitrary.

The typical field geometry of the field obtained in step (i) is de-
picted in Fig. 16. The role of the initial magnetic field has a
rather small influence here – Br ∝ r−2 cos θ and random noise
eventually reach similar axisymmetric configurations (which are
essentially defined by ΩD and the magnetic BCs). The ratio
toroidal/poloidal depends on the time of winding up in step (i)
and the magnetic diffusivity η. The simulations reveal that, for
our scenario, the maximum possible ratio scales as

max (Bφ/Bpol) ∼ 0.04η−0.8. (13)

This sets a limit for the magnetic diffusivity – if it would be
too large, the magnetic fields would actually start to be dis-
sipated before Bφ � Bpol is achieved. In particular, for the
value of η = 10−3 one obtains max (Bφ/Bpol) ≈ 10 which is
enough to overcome the stabilizing effect of the poloidal com-
ponent. Of course, this issue is important only from the nu-
merical point of view – the microscopic magnetic diffusivity in
stars is believed to be much smaller so that the diffusive time-
scale is longer than a stellar life time. Scaling the equations
to physical units corresponding to a typical A star, one obtains
max (Bφ/Bpol) ∼ 3 × 1010 η−0.8

cgs giving max (Bφ/Bpol) ≈ 108 for
ηcgs = 103 cm2 s−1.

Figure 17 shows the evolution of the energies in different
components of u and B for a typical simulation of step (ii). It is
understood that the field created in step (i) is by no means force-
free. Consequently, at the beginning of the unconstrained stage
the system is far from an equilibrium and a highly dynamical
process takes place. The energy of the meridional flow quickly
increases from zero to values comparable to the energy of the
toroidal magnetic field. Nonetheless, the instability sets in and
the energy of m = 1 as well as the energy of the poloidal mag-
netic field grows by many orders of magnitude.

Note that at t = 0, the radial field is practically zero at the
surface (the initial magnetic noise is constructed in a way which
satisfies Br = 0 at r = Rin, r = Rout). Therefore, the relatively
large surface fields visible in Fig. 18 arise solely due to the TI.
The maximum surface fields reach about 10% of the mean in-
terior Bφ. In Fig. 19 we plot the surface-averaged |Br| scaled by
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Fig. 17. A typical simulation of step (ii) from the procedure described
in Sect. 4.2. The initial Bφ has been wound up from the magnetic noise
eventually reaching a configuration as in Fig. 16 with w = 100. At the
time corresponding to t = 0 in the plot, the constraints on the velocity
were removed and the system could evolve freely, cs = 100, N2 ≈ 104.

the volume-averaged
∣∣∣Bφ∣∣∣ in dependence on the initial w (that

is w which is calculated for a flow at the end of step (i)). The
threshold values for w that lead to significant surface fields is
larger than unity though. We explain this by the fact that an in-
creased Bφ is required due to the mentioned transfer of magnetic
energy into kinetic energy. Nonetheless, it can be concluded that
the instability is responsible for producing average surface fields
being of the order of 1% of the volume-averaged toroidal field
in this scenario.

4.3. Forced slow-down of the rotation

Another way of obtaining the TI unstable states that are ac-
cessible to numerical studies is to start a simulation without
any constraints and then, at some arbitrarily chosen time t′,
take away the kinetic energy of the azimuthal rotation so that
ΩA/Ω becomes supercritical. One can understand this as a brak-
ing process in the pre-main-sequence evolution of the star that
leads to the relatively long rotation periods of Ap stars. In the
model described below we start with Bi = B0r−2 cos θêr, ui =
ΩDRêφ, q= 2 and, around the time t′, we apply a forcing that
brings down the flow to the desired regime where w � 1. The
forcing has the form of a smooth transition

f = −
(

(〈uφ〉φ −Ω f R)êφ + 〈ur〉φêr + 〈uθ〉φêθ
τ

)

× tanh(5(t − t′) + 1)
2

· (14)

Figure 20 depicts kinetic and magnetic energies for a simula-
tion with Ω f = 0.03Ω0, t′ chosen to be about 15 rotations,
t′ = 15 [2π/Ω0] and τ = 400 [2π/Ω0]. After reaching this time,
the forcing term is responsible for taking away the angular mo-
mentum and ensuring rigid rotation with Ω f . While changing
the azimuthal rotation, there is a very significant increase of the
meridional circulation which can lead to spurious results due to
the hydrodynamical mechanisms only. To get rid of this effect,
the analogous forcing is applied also for the ur and uθ compo-
nents (unlike in the case discussed in Sect. 3.3). This means that
the axially averaged meridional circulation is significantly re-
duced. The exponential growth of m = 1 mode visible in the
figure, clearly indicates that taking the azimuthal energy from
the system leads to the fast growth of the TI.

Note that, unlike in the simulations presented in the previous
section, initially the radial component of magnetic field is not
negligibly small. At the moment of the onset of the TI, it is one
or two orders of magnitude smaller than Bφ. In particular, close
to the critical w the structure of surface radial field is determined
by the initial conditions and essentially does not change even
when the saturation is reached, Fig. 21, top (w corresponds to
the square in Fig. 22). Only for slower rotation (smaller Ω f ),
one can observe the complex structures overtaking the initial Br,
Fig. 21, bottom (the triangle in Fig. 22).

For the considered scenario, the important question is the de-
pendence of the growth rate of the TI on the ratio Ω f /Ω0 char-
acterizing the amount of angular momentum taken from a star.
From the results plotted in Fig. 22 one concludes that it is enough
to slow down the differentially rotating flow by ≈10% in order
to trigger the instability. In the figure, the growth rate γ is scaled
with the Alfvén frequencyΩ′A0 which is calculated at the time t′.

5. Discussion

We have considered the possibility that the Ap/Bp star phe-
nomenon can be a result of the current-driven Tayler instabil-
ity. In the depicted scenario, a differentially rotating star pro-
duces strong toroidal fields in its radiative zone, and is then spun
down. The braking allows the TI to set in. This provides a mech-
anism for transporting the energy of the toroidal field into a large
poloidal component at the star’s surface. Our study aims at us-
ing differential rotation for the consistent generation of the fields
leading to the surface patterns. Braithwaite (2009) used a tur-
bulent initial field as to represent the remnants of a convective
phase of the star to reach nonaxisymmetric surface patterns. The
actual evolution of the magnetic-field fluctuations is apparently
not too different in these two studies, but the origins of the fluc-
tuations differ. We added rotation as a discriminating parameter
between unstable and stable configurations and may therefore
have a handle on separating normal A stars from Ap stars.

As shown in Sect. 3.3, the problem of explaining the corre-
lation between the rotational and the magnetic axes, would be
replaced by a question about a mechanism that relates rotation
rates and the degree of internal differential rotation. In particu-
lar, fast rotating stars would have to be characterized by a much
weaker differential rotation. Alternatively, they would have to
have the differential rotation reduced much sooner than slow
rotators.

This view is naturally supported by theories explaining the
loss of angular momentum in the pre-main-sequence phase by
magnetized winds (Stȩpień 2000; Stȩpień & Landstreet 2002).
It is reasonable to assume that slower rotators which were
slowed down due to some surface effects will posses respec-
tively stronger internal differential rotation, while faster rota-
tors will spin less differentially. This would result in smooth-
ing the nonaxisymmetric poloidal field for the slowly rotating
Ap stars, leading to a dipolar field with small obliquity, while
the faster among the Ap stars may keep their nonaxisymmet-
ric fields emerging at the surface. Obviously, addressing these
question in more details is only possible when an actual sce-
nario responsible for slowing down a star is incorporated into
the model (especially including its influence on the internal ro-
tation). In the present paper, all these effects were parameter-
ized with q,Ω f /Ω0, t′, etc., leaving the integration with real pre-
main-sequence braking models for further studies.

Also note that in the presented simulations the decay of the
m = 1 mode is extremely fast when differential rotation is main-
tained by the forcing term. One of the key matters that is going
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Fig. 18. Map of the surface magnetic field at t = 0.3 [2π/Ω0] (this t is not shown in Fig. 17) after removing the constraints on the velocity at the
moment when w reached 100 in step (i), Sect. 4.2.

Fig. 19. Surface-averaged Br scaled by the volume-averaged Bφ in de-
pendence on the strength of the initial toroidal field (represented by w
which is determined by the time of winding up the field in step (i),
Sect. 4.2). The values of Br and Bφ were calculated for the flow soon
after saturation, at t = 0.1 [2π/Ω0] (corresponding to the rightmost side
of Fig. 17).

to be addressed in further studies is what is the role of the in-
stability on the reduction of differential rotation. The shear is
certainly not reduced solely by the gas viscosity over the stel-
lar life-time. The TI or other magnetic instabilities provide an
efficient mechanism for transporting angular momentum from
the stellar interior to the surface. One candidate is the magneto-
rotational instability (Arlt et al. 2003).

As mentioned in the introduction, some recent observations
(Mathys 2008) indicate that the obliquity angles are large for
very slowly rotating Ap stars (Prot >∼ 103 days). This fact can be
explained in the framework of the theory presented here as fol-
lows: stars that are spun down so significantly will posses large
ΩA/Ω and rotation, differential or not, will have little impact on
the large-scale fields produced by the instability. Consequently,
the fields will have a tendency to build up the configuration de-
picted in Fig. 8. The surface fields obtained are all dominated
by the l = 1, m = 1 mode. We cannot exclude that on the long
term, secondary effects like thermodynamically driven flows will
favour other especially higher-l modes. If observations eventu-
ally show that fields emerge as m > 1 modes, one should look
into the conditions for the TI to excite larger m, or the proposed
scenario may render invalid. There was no reliable statistics of
observed field complexity versus stellar age or versus rotation
rate available at the time of writing this paper.

We should stress that in the presented calculations we were
not able to obtain a definitive stable magnetic configuration after
the instability ceases to operate. Although the results (e.g. Fig. 8
and later) appear to by rather stable over hundreds of Alfvén
crossing times, there is no guarantee that these structures are

Fig. 20. Differentially rotating flow withΩ0 = 55, q = 2, cs = 100, N2 ≈
104 winds up Bφ from a weak poloidal field of the form of Eq. (8). After
about 15 rotations, the forcing term starts to operate, slowing down the
flow to a rigid rotation with Ω f = 0.03Ω0 which leads to instability.

stable on very long (e.g. magnetic-diffusive) timescales. Treating
the problem of stability of such fields is numerically uncer-
tain and rather impossible without introducing some numerical
tricks. Nonetheless, it seems plausible to assume that the TI-
generated “initial conditions” can have a significant impact on
the configuration of the long-term stable fields.

One of the aspects of Ap/Bp magnetism that is naturally ex-
plained by the presented approach is the existence of the lower-
field threshold. The observed minimal surface magnetic field is
simply related to the strength of toroidal fields, that is, to the
amount of internal differential rotation. To estimate this thresh-
old, let us assume that the ratio of the Alfvén frequency to the
rotational frequency in a star ΩA∗/Ω∗ is similar as in the above
calculations,

ΩA

Ω
≈ ΩA∗
Ω∗
,

then, using the result that the averaged radial surface field is of
the order of 1% of the averaged Bφ (Fig. 19), from the definition
of w we obtain

Bφ∗ ≈ wΩ∗R∗ √μ0ρ ≈ 102Br,surf.

For a 2.5 M� star with R = 1.5 R�, ρ = 0.015 g/cm3, a rota-
tion period of 10 days, and a critical w ≈ 0.1 (Fig. 22), one gets
Br,surf ≈ 300 G. This is basically what is observed, so one can as-
sume that our results are roughly of the right order of magnitude.

The spin-down of the stars relies on the presence of magnetic
fields in the first place, during their pre-main-sequence evolu-
tion. Since fossil fields are not considered in our scenario, these
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Fig. 21. Surface radial magnetic fields for Ω f /Ω = 0.2 (top) and Ω f /Ω = 0.03 at the same time t = 50 [2π/Ω0]. At the top, only the remnant of the
relatively large initial Br can be seen.

Fig. 22. Growth rate γ as a function of the slow-down ratio Ω f /Ω. Ω′A0
represents the averaged Alfvén frequency at the moment when the slow-
down begins, i.e. at the time t′. The square and the triangle mark Ω f /Ω
of the snapshots from Fig. 21 (top and bottom respectively). The upper
abscissa represents the averaged value w which is reached as the result
of the slow-down.

fields must be generated in the convective dynamo of the early
Ap star. A convective shell is present for about 0.6 to 5 Myr in
4-solar-mass and 2-solar-mass stars, respectively, assuming solar
metallicity. As the convective shell recedes toward the surface,
the dynamo will cease eventually, and the remaining convection
destroys most of the fields by turbulent diffusion. Fields remain-
ing in or pumped into the increasing radiative interior will per-
sist, however, and may be considered the initial fields for our
simulations.

In summary, we have shown that it is possible to trigger the
current-driven kink-type instability – or Tayler instability – by
a parameterized spin-down of a flow in a compressible spheri-
cal shell resembling the radiative zone of Ap/Bp stars. The TI
will convert the large-scale toroidal field generated by differen-
tial rotation into relatively strong surface radial fields. The pre-
sented approach explains qualitatively the observed relation be-
tween obliquity and rotation; why slow rotators are preferred
among such stars; and, more quantitatively, the existence of a
minimum surface magnetic field. Undoubtedly, before accepting
this scenario as a possible mechanism for Ap/Bp magnetism,
it is necessary to consider the evolution of rotation/differential

rotation and the interaction with a protostellar disk in a more
detailed manner.
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