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1. INTRODUCTION
Structural Health Monitoring (SHM) has become a hot
and intensively researched field in civil engineering:
monitoring and damage identification play important
roles in maintaining integrity and safety of structures
(Yi et al. 2012; Zhou, Yan, Wang and Ou 2013). Many
effective methods have been proposed for damage
identification (Fan and Qiao 2011; Moragaspitiya et al.
2012; Wang et al. 2013; Zhou, Yan and Ou 2013).
However, accurate global identification of large real-
world structures is not easy due to their complex and
often unknown boundary conditions, temperature effect
(Xia et al. 2012) , nonlinear components, small
sensitivity of global response to localized damages, etc.
Furthermore, global identification (parameter
identification of the global structure) often involves
large numbers of unknowns and sensors. This is costly,
rarely feasible in practice, and usually yields severely

Advances in Structural Engineering Vol. 18 No. 1 2015 137

Frequency-Domain Substructure Isolation for Local

Damage Identification

Jilin Hou1,*, Lukasz Jankowski2 and Jinping Ou1,3

1School of Civil Engineering, Dalian University of Technology, Dalian 116024, China
2Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland

3School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, China

(Received: 2 March 2014; Received revised form: 30 July 2014; Accepted: 20 August 2014)

Abstract: This paper proposes a frequency-domain method of substructure
identification for local health monitoring using substructure isolation method (SIM).
The first key step of SIM is the numerical construction of the isolated substructure,
which is a virtual and independent structure that has the same physical parameters as
the real substructure. Damage identification and local monitoring can be then
performed using the responses of the simple isolated substructure and any of the
classical methods aimed originally at global structural analysis. This paper extends the
SIM to frequency domain, which allows the computational efficiency of the method to
be significantly increased in comparison to time domain. The mass-spring numerical
model is used to introduce the method. Two aluminum beams with the same
substructure are then used in experimental verification. In both cases the method
performs efficiently and accurately.

Key words: structural health monitoring (SHM), damage identification, substructuring, frequency domain,
boundary.

ill-conditioned identification problems. The
substructuring approach seems to be a possible solution.
At present, there are two main kinds of substructuring
methods that can be applied to substructure
identification: (1) Mechanical substructuring/coupling
methods (MSC methods), which assemble dynamic
characteristics of the global structure from known
dynamic characteristics of all its substructures. In
applications to substructural monitoring, the global
structure is first separated into several independent
substructures, and then dynamic tests and identification
are performed separately on each substructure. The
substructures are then coupled back into the global
structure via displacement coordination on the interface
(Ewins 2000, 469-499; Maia and Silva 1997, 265-302).
(2) Substructuring/decoupling methods (SD methods),
whose purpose is to decouple an unknown substructure
from an unknown global structure for the purpose of
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multi-storey shear building to a few degrees of freedom
only (Dofs) and use overlapping substructures, then
they apply directly the ARMAX method for
identification. Zhu et al. (2013) identify the structural
damage, the external moving force and interface forces
of adjacent substructures simultaneously from the
measured dynamic acceleration responses. The above
methods are formulated in time domain. There are also
many studies of substructure identification in frequency
domain. In order to avoid the need for complete
instrumentation of the substructure, Yuen and
Katafygiotis (2006) presented an output-only bayesian
frequency-domain approach for substructure
identification and monitoring in linear MDOF systems.
Tee et al. (2009) use System Equivalent Reduction
Expansion Process to condense the sub-model for
substructural identification. Zhang et al. (2010)
introduced a control system to identify storey
parameters in a shear structure using Cross Power
Spectral Density (CPSD). Xia et al. (2010) developed
Kron’s substructuring method to compute the first-order
derivatives of the eigenvalues and eigenvectors.

The substructure and the global structure remain
coupled by the unknown interface forces that are
exposed on the separated substructural interface. As
these forces influence substructural responses, the
methods used for substructure identification are very
different from the methods of global identification,
which cannot be directly applied to the substructure in
all their variety and flexibility. Damage of the global
structure can be detected by direct signal processing of
the constructed response using time series methods
(Nair et al. 2003) or wavelet analysis (Rucka and Wilde
2010), or be estimated by optimizing the finite element
(FE) model of the substructure using its flexibility
matrix (Duan et al. 2005), natural frequencies and mode
shapes (Hassiotis 2000), time-domain response (Suwal/a
and Jankowski 2012) or frequency-domain response
(Lin and Ewins 1990), etc.

Hou et al. (2012) have proposed the Substructure
Isolation Method (SIM), where the isolated substructure
is an independent structure and all global identification
methods can be applied to its identification. The SIM
proceeds in two stages. First, in the isolation stage,
measured responses are directly utilized to construct the
responses of the isolated substructure, which is an
independent virtual structure with the same structural
parameters as the real substructure, but isolated from the
global structure with virtual supports placed on the
interface. Then, in the identification stage, local
identification of the substructure is performed based on
the constructed responses of the isolated substructure
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local substructural monitoring or identification. To this
end, first a local dynamic test is performed on the global
structure, and then the local substructure is analyzed by
taking into account the interaction between it and the
global structure. Methods of this kind do not separate
the substructure from the global structure during the test
(Tee et al. 2005). The MSC methods are usually used in
mechanical or aerospace field. For structures in civil
engineering, only the response of a global structure can
be obtained during its service period and it is impossible
to mechanically separate its substructures. Therefore
most existing substructural approaches for structures in
civil engineering are substructuring/decoupling (SD)
methods. The method proposed in this paper belongs
thus to SD methods. Such methods can focus on local
small substructures; they need only a few sensors placed
on the substructure and yield smaller and numerically
much more feasible identification problems.

To detect and locate the substructural damage, one
can compare locally sensitive information obtained
before and after damage. For example, Yun and Bahng
(2000) used natural frequencies and mode shapes for
local monitoring of stiffness modifications. Bao et al.
(2012) used the damage basic probability assignment
(BPA) function of substructures for preliminary damage
localization. An and Ou (2013) presented a model
updating method that utilizes four cost functions
involving free vibration accelerations and local mode
shapes to detect local damage of a truss structure.

A substructure is a local part of the global structure,
and so it is not independent of the global structure. In
order to focus on the substructure only, most existing
SD methods separate the substructure from the global
structure; the interface forces are then used for coupling
both structures and need to be identified together with
substructural parameters. The identification is
performed mostly based on the equation of motion of
the substructure. Koh et al. (2003) employed genetic
algorithms (GA) as the search tool for its advantages
including the ease of implementation and the desirable
characteristics of global search. Tee et al. (2005)
developed a divide-and-conquer approach for
identification at the substructural level of first-order and
second-order models. Law et al. (2010) identified the
coupling forces between substructures using the damped
least-squares method. Wang et al. (2011) employed the
concept of the “quasi-static displacement” vector to
simplify the interface forces, and use a GA method to
identify the substructure. A multi-feature GA method
was used by Trinh and Koh (2012) to estimate
substructural mass, damping and stiffness parameters.
Xing and Mita (2012) confine each substructure of a



and any of the standard methods aimed originally at
global identification. The selection of the identification
method usually depends on the characteristics of the
constructed responses of the isolated substructure. This
paper uses natural frequencies to optimize the
substructure.

In the original formulation of the SIM (Hou et al.
2012), the isolated substructure and its responses were
constructed in time domain. It involved computing a
solution to a very large and extremely ill-conditioned
discrete linear system, which originated from a
discretization of a system of Volterra integral equations
of the first kind and had the dimensions proportional to
the number of the considered time steps. Solution of
such a system is time-consuming, which significantly
limited the manageable measurement time interval. This
paper formulates the SIM in frequency domain, which
dramatically improves its computational efficiency:
even though significantly longer measurement time
intervals are used, the method performs much faster.
The next section derives the SIM using frequency-
domain responses. Section 3 makes use of a simple
mass-spring system to introduce the application of the
method. The last section verifies experimentally the
proposed approach using an aluminum cantilever beam.

2. SUBSTRUCTURE ISOLATION METHOD
IN FREQUENCY DOMAIN (SIM-FD)

2.1. Construction of the Isolated Substructure

Denote by x(t) the vector of displacements in all Dofs of
the global structure, and by M, C and K the
corresponding mass, stiffness, and damping matrices. It
is assumed that the Eqn of motion in time domain can be
written as:

(1)

where the vector f (t) collects all the external excitations.
The Fourier transform F, applied to both sides of (1),
yields the frequency-domain quasi-static form of the
equation of motion:

(2)

where X(ω) = (Fx)(ω) and (F)(ω) = (Ff)(ω) Let
the subscript “s” denote the Dofs internal to the
substructure, “b” the Dofs of its interface and “r” all
the Dofs outside the substructure. Henceforth, these
subscripts will be used to mark the corresponding blocks
of system matrices and the corresponding parts of
response and excitation vectors. Eqn  can be thus stated
in the equivalent form,

− +( ) ( ) = ( )ω ω ω ω2M j C + K X F

Mx t Cx t Kx t f t( ) ( ) ( ) ( )+ + =

Assume that n+1 external excitations F0(ω), F1(ω),
…, Fn(ω) are applied to the structure and let X0(ω),
X1(ω), …, Xn(ω) be the corresponding responses.
Denote by P(ω) the following linear combination of the
excitations:

(4)

where Zi(ω) are arbitrary complex combination
coefficients. Let Y(ω) denote the corresponding
structural response, which is a similar combination that
can be stated separately for internal and interface Dofs
as

where the matrices D(ω) and B(ω) are composed of the
respective responses of the internal and interface Dofs
and the vector Z(ω) collects the combination
coefficients,

(6)

For the reasons described in Section 2.3, F0(ω)is
called the basic excitation, and the corresponding
response X0(ω) is the basic response; F1(ω), …, Fn(ω),
are the constraining excitations, and the corresponding
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responses X1(ω), …, Xn(ω), are the constraining
responses. Correspondingly, the matrices and B(ω),
D(ω) are called the constraining matrices.

Since the substructure is assumed to be linear, the
linearly combined excitation P(ω) and the linearly
combined response Y(ω) satisfy together the equation of
motion (see Eqn 3). The first row of this equation can be
then written as

(7)

where

(8)

is the vector of the interface forces that couple the
substructure to the outside structure via the interface
Dofs. If the combined responses of the substructure
interface vanish, Yb(ω) = 0, then the coupling interface
forces Pc(ω) also vanish, and Eqn 7 is simplified into

(9)

According to the second equation of Eqn, the
combined interface responses Yb(ω) vanish and Eqn (9)
holds, if the combination coefficients Z(ω) satisfy

(10)

Eqn (10) is a linear equation that is uniquely solvable
if the matrix B(ω) has full column rank, which is
possible only if the number n of the constraining
excitations/responses is not smaller than the number of
the interface Dofs. The solution is given by

(11)

where the superscript “+” denotes the pseudo-inverse of
a matrix. The corresponding combined response of the
substructure can be then stated in the explicit form as

(12)

In the above analysis, the combination coefficients
are chosen in such a way that the combined response of
the substructure interface vanish. This is equivalent to
adding fixed supports in all Dofs of the interface and
thus to full isolation of the substructure from the global
structure. In other words: given the properly linearly
combined excitation Ps(ω), the coupling interface forces
Pc(ω) vanish and the substructure responds with Ys(ω)

Ys s bD Bω ω ω ω ω( ) = ( ) − ( ) ( )[ ] ( )+
X X0 0

Z ω ω ω( ) = − ( )  ( )+
B hX 0

0 0= ( ) + ( ) ( )Xb Bω ω ωZ

− + +( ) ( ) = ( )ω ω ω ω2M j C Kss ss ss s sY P

P Yc sb sb sb bM j C Kω ω ω ω( ) = − − + +( ) ( )2

− + +( ) ( ) = ( ) + ( )ω ω ω ω ω2M j C Kss ss ss s s cY P P ,

as an independent structure, see Eqn 9. Notice that the
excitation Pc(ω) and the response Ys(ω) are not directly
measured, but rather artificially constructed from
measured data. Hence, the constructed system is not
physical but virtual. Such an independent virtual
substructure is called the isolated substructure. It is
isolated from the outside structure by adding fixed
virtual supports in all Dofs of their interface.

The above approach requires the responses to be
measured in all Dofs of substructure interface.
Therefore, it is hardly applicable to substructures with a
large number of interface Dofs. The proposed method
needs thus a proper selection of the substructure, so that
it has a simple interface. However, the identification of
the isolated substructure can be performed using
standard methods of global identification, and so there is
no similar limitation imposed on the interior of the
substructure, which can be complex with a large number
of Dofs.

2.2. The Virtual Support and Other Types of

Sensors

In the previous section, all the responses are assumed to
be displacement in substructural and interface Dofs.
Consequently, the frequency response of the isolated
substructure is derived based on fixed virtual supports.
In fact, other kinds of virtual supports can be also used
to emulate other types of boundary conditions,
depending on the type of the substructure and sensors
placed on its interface. In the following, isolation of a
plane beam is used as an illustrative example. Figure 1
shows the exposed interface of the substructure. For the
sake of simplicity, the axial displacement of the neutral
axis and the axial force are ignored for the moment. The
following physical quantities are of interest on the
interface: the internal shear force p(t) and bending
moment M(t), the vertical displacement v(t), the
rotation θ(t) and the axial strain ε(t) of the beam
surface. Notice that, in the absence of axial
displacement and force, the strain ε(t) is proportional to
the bending moment, but much easier to measure. Four
different types of boundary conditions can be now
formulated,
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Interface p (t), n (t)

M (t ), q (t)

e (t )

The rest of global substructure 

Figure 1. A beam substructure



(13)

which define four kinds of virtual supports that can be
applied in the interface to isolate the substructure, see
Figure 2.

In practice, it is usually impossible to place physical
supports or apply the proper loads to make the interface
responses satisfy one of the four conditions listed in Eqn
13. However, Section 2.1 shows that a number of
nonzero interface responses can be linearly combined to
zero, so that the combined response satisfies the
boundary conditions. As a result, the type of the virtual
support depends on the types of interface sensors. For
instance, if v(t) and θ(t) are measured, then the virtual
fixed support 1 can be constructed by a linear
combination of the measured responses. Or, if responses
v(t) and ε(t) are measured, the virtual pined support 2
can be constructed. In real applications, the shear force
p(t) is hard to measure, so that the 3rd and 4th kind of
virtual supports will be usually not used.

As in Section 2.1, assume that there are n+1
excitations and denote the corresponding responses by

for the interface sensors 

(that need to be compliant in type with one of ) and by

for the sensors placed 

inside the substructure. The substructure and all the
sensors are linear, so that Eqns 4 to 6 hold. As a result,
Eqn (10) can be solved to find the combination
coefficients that make the combined response satisfy the
boundary conditions. Finally, the corresponding
combined response of the isolated substructure is given
by Eqn 12. Notice that for a complete isolation, Eqn 10
needs to be exactly satisfied, which means that B(ω)
must be of full row rank. Rows of B(ω) correspond to
interface sensors and its columns to combination
coefficients Zi(ω), and hence the number n of
constraining excitations/responses must not be smaller
than the number of the interface sensors.

If axial displacement of the neutral axis of the beam
and axial force are to be considered, the strain ε(t) of the
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surface of the beam is no longer a direct substitute for
the internal bending moment. In such a case, two strain
sensors can be placed on the opposite faces of the beam
in the same distance from its neutral axis: the axial stress
and the bending moment will be proportional to the sum
and to the difference of their measurements,
respectively.

2.3. Local Damage Identification

Local identification of substructure damages is
equivalent to damage identification of the isolated
substructure, which is an independent system that has its
own natural frequencies and mode shapes that can be
found by investigation of the constructed response Ys(ω)
and the corresponding combined excitation Ps(ω) of the
isolated substructure,

(14)

where Fs
i(ω) is the part of the vector Fi(ω) that

corresponds to the internal Dofs of the substructure, see
Eqn 4, and the combination coefficients are given by
Eqn 11 to ensure proper isolation.

As a result, local damage identification can be
performed by optimizing a vector µ of certain
parameters in the FE model of the isolated substructure
that are assumed to quantify the damage. Specific
meaning of the parameters is application-dependent
(e.g., stiffness modification ratios). The optimization
can be performed by any of the classical methods that
have been originally aimed at global identification.
Selection of a particular method depends on
characteristics of the constructed response, which is
dependent on the combined excitation Ps(ω) of the
isolated substructure. The combined excitation is
particularly easy to find, if Fs

i(ω) = 0 for i = 1, …,n, that
is if all the constraining excitations are applied on the
interface or outside the substructure. In such a case, the
combined excitation of the substructure equals its basic
excitation Fs

0(ω). The combined response Ys(ω) is then
the response of the isolated substructure to the basic
excitation only.

In this paper, a modal hammer is used as the
excitation in experiment. This is a quasi-impulsive
excitation with a broad spectrum that excites many
natural frequencies of the isolated substructure. The
vector µ of damage parameters is identified by
minimizing the following objective function
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Figure 2. Four types of virtual supports



where ωi
m is the ith identified natural frequency of the

isolated substructure and ωi
F(µ) denotes the natural

frequencies of its FE model;

2.4. Fast Fourier Transform (FFT) of the

Response

In real applications the measured response is discrete, so
the Fast Fourier Transform (FFT) needs to be used to
compute the frequency response. When the time-domain
signal is of a finite length and does not tend to zero in
the integration time, spectral leakage is inevitable
(Harris 1979). It can significantly affect the accuracy of
the frequency response constructed in Eqn. To minimize
its effects, the windowing process is employed during
the FFT. This paper tests the exponential window
we(t;η) and the Hanning window wh(t),

(16)

(17)

where η denotes the decay rate of the exponential window
and T denotes the measurement time interval. The Fourier
transform with the exponential windows is equivalent to
the Laplace transform, ,

where L is the Laplace operator and s = jω + η. If the
exponential window is used, Eqn (12) should be stated
as

(18)

A useful feature of the exponential window can be
considered to support its feasibility. Compare the free
response of an n-Dofs structure with the same response
after windowing,

(19)

where φi is the shape of the ith mode, ωi is the ith natural
frequency, ξi is the damping ratio, and 
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. The exponential window increases 

the damping ratio of the free response by and

does not change its frequency content, which is unlike
other windows including the Hanning window.

2.5. Isolation in Frequency Domain vs. Isolation

in Time Domain

Isolation in time domain (Hou et al. 2012) (SIM-TD)
and in frequency domain (SIM-FD) are both based on
the same concept: the substructure is isolated from the
global structure into an independent structure by adding
virtual supports on its interface. The time-domain
counterpart of Eqn (10) and the corresponding formula
for the response of the isolated substructure are 

(20)

During the isolation process the first equation is
solved to find the functions zi(t), which are then
substituted into the second equation to find the response
of the isolated substructure. The first equation is a
system of Volterra integral equations of the first kind
(Kress 1989). The advantages and disadvantages of the
time- and frequency-domain approaches can be
summarized as follows:

1) The SIM-TD directly uses the measured time-
domain responses, so that it avoids the errors related to
the Fourier transform. However, the computations
extensively employ time-consuming convolutions and
require solving a discretized version of a system of
Volterra integral equations of the first kind, which is an
extremely ill-conditioned problem that requires
numerical regularization techniques.

2) In the SIM-FD, the computational effort is
significantly reduced, as all the convolutions are
efficiently performed in frequency domain. The
computations can be focused on a selected frequency
range only, which further reduces the computational
time. As a result, a larger number of responses measured
in a longer time interval can be used. However, the SIM-
FD approach may introduce inaccuracies related to the
FFT and spectral leakage.
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3. NUMERICAL EXAMPLE
This section uses a mass-spring system for initial
verification of the proposed isolation method in
frequency domain.

3.1. Six-Dof Mass-Spring System

The mass-spring system is a 6-Dof structure shown in
Figure 3(a). The stiffness of each floor is k = 2 kN/m; all
the lumped masses are m = 4 kg. The 1st and 2nd order
damping ratios are 1%. The substructure consists of the
4th, 5th and 6th mass, see Figure 3(b).

3.2. Excitations, Sensors and the FRF

(Frequency Response Function)

Assume that two acceleration sensors are used, X3 and
X5, placed respectively on the 3rd and 5th mass.
Assume also that two impulse excitations, F3 and F6,
can be applied respectively to the 3rd and 6th mass.
Altogether four responses (denoted Xi-Fj) are
simulated; they correspond to the four terms used in Eqn
12 to construct the response of the isolated substructure,
see Table 1.

Figure 4 plots the simulated FRFs of the global
system. They are directly used in Eqn 12 to construct the
FRF of the isolated substructure. The result is compared
in Figure 5 to the accurate frequency response computed
using the FE model of the substructure. The response
obtained using the SIM is the same as that directly
computed, which confirms that the isolated substructure
can be constructed successfully. The stars in Figure 5, as

well as in Figures 8 to 11, mark the accurate natural
frequencies computed using the FE model of the
isolated substructure.

3.3. Windowing and the FFT

In order to simulate a real application with time-domain
excitations, a simulated hammer excitation is applied at
F3 and F6, see Figure 6. The responses of the global
structure are shown in Figure 7. The sampling frequency
is 200 Hz and the time interval is T = 2.56s.

Three windowing functions are used to decrease the
spectral leakage: no windowing, the exponential
window (Eqn 16) and the Hanning window (Eqn 17). In
order to increase the frequency resolution of the FFT,
several zeros are added in front of the windowed
responses (the measurement time interval is increased
eightfold and filled with zeros at the beginning). The
results of the FFT are used in Eqn 12 to construct the
FRF of the isolated substructure. Figure 8 to Figure 10
compare the FRF constructed using the SIM to the
actual FRF computed using the FE model. The
theoretical FRF is smooth, and peaks appear only
around structural frequencies. But due to truncation of
the measured response in time domain, there is spectral
leakage in its computed fast Fourier transform, so that
the computed FRF is not smooth and has many small
peaks, see Figure 8 (No-FEM). For this reason, the
isolated substructure constructed using such a frequency
response cannot provide reliable modal information, see
Figure 8 (No-SIM). It can be seen that only the
exponential window (Figure 9) can lead to consistent
results, provided the window decay rate is properly
selected. Even if the Hanning window (Figure 10) yields
almost the same positions of the peaks, the amplitudes
deviate significantly. As mentioned in Section 2.4, the
exponential window only increases the damping ratio of
the free response and does not change its frequency
content, which is unlike other windows including the
Hanning window. Therefore, the exponential window is
selected in the method.

The exponential window increases the effective
system damping. Thus, the constructed FRF depends on
the window decay rate η or, alternatively, on the
attenuation ratio r at the end of time interval T, which
are related to each other by

(21)

Four exemplary values of the parameter r are tested
to construct the FRF of the isolated substructure, see

η = −
In r

T
.
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Figure 3. A 6-Dof mass-spring system

Table 1. Excitations and responses

Excitations

Sensors Constraining F3 Basic F6

Interface X3 X3-F3: B(ω) X3-F6: X
0
b(ω)

Internal X5 X5-F3: B(ω) X5-F6: X
0
s(ω)



Figure 11. For r = 1e-1, there are two peaks near the first
natural frequency, which might suggest that 1e-1 is not
small enough to reduce the spectral leakage. On the
other hand, too small r introduces too much damping

into the system, which is apparent in Figure 11. For this
numerical example, it is thus decided to use a
compromise value of r = 1e-2.

The main reason of spectral leakage is that the
amplitudes of the truncated structural responses are
not low. The exponential window can be used to
decay the responses. In order to determine the
attenuation ratio r, structural damping is assumed to
be zero, and then there is no attenuation of the
simulated structural response. In this way, the
attenuation is determined only by the attenuation ratio
r. Hammer excitation in Figure 6 is applied in Dof 3
and DOf 6, and the accelerations of Dof 3 and DOf 5
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Figure 7. Responses of the global structure



are measured and used to construct the structural
response of the isolated substructure. The response
X5-F6 is shown in Figure 12.

First, the influence of the attenuation ratio r on the
constructed isolated substructure is studied. Let r=10–α,
α ∈[0,3], and compute the nephogram of the
constructed frequency response of the isolated
substructure in dependence on the frequency and the
attenuation ratio r (Figure 13). The dark color represents
large amplitudes, that is the location of the dark color
marks the eigen frequency location of the isolated
substructure. The three dark lines reflect the relation
between the first three frequencies of the isolated
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substructure and the attenuation ratio r. It can be seen
that the smaller value of α, i.e. the bigger value of r,
corresponds to larger errors between the constructed
frequency and the actual values (the dotted lines in
Figure 13) of the isolated substructure. The error can be
neglected when α is greater than 2, i.e. r is less than
0.01.

Then the influence of the time length T of response
on the constructed isolated substructure is studied. Let
r = 0.01, and the range of time length T be (0, 25s]. The
frequency response of the isolated substructure is
constructed using the measured response during time
[0,T]. Figure 14 shows the nephogram of the
constructed frequency response of the isolated
substructure in dependence on the frequency and time
length T. It can be seen that the constructed values
have good accuracy. Therefore, when r = 0.01, the
frequency response of isolated substructure can be
constructed accurately no matter the length of the
measured time.

Besides, the attenuation ratio r aims to decay the
structural response, and its value can be 0.01. Therefore,
in the coming experiment verification, let r = 0.01.

4. EXPERIMENTAL VERIFICATION
4.1. Experimental Setup

An aluminum cantilever beam is used for experimental
verification. The beam is vertically suspended on a
stable frame, see Figure 15(a). Its upper end is fixed to
the frame, and the bottom end is either free or fixed
using a “sponge support” (Figure 15(b)). The
dimensions of beam is shown in Figure 16. The cross-
section is 2.7 cm × 0.31 cm. Young’s modulus of the
beam is 70 GPa, and the density is 2700 kg/m3. The
beam is slender, so that the axial strain can be neglected;
the gravity is considered: when any of the beam
segments is tilted off the vertical equilibrium position,
the gravity affords a certain restoring force, which is
considered in the equation of motion. The upper part
with the length of 79.4 cm is the substructure to be
isolated and locally identified, see Figure 16. In the
experiment, a segment with the length of 10.23 cm is cut
evenly along its width on two sides as shown in Figure
15(c) and the dimension of the damage is shown in
Figure 17. There are 15 notches on each side. The depth
of each notch is 0.783 cm, and the average distance
between two adjacent notches is 10.23/(15–1) = 0.73
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cm. Because notches are very narrow, the mass of the
damaged section is assumed to remain unchanged. The
beam width is 2.7 cm, therefore the damage factor of the
damaged section is calculated as 1 – 0.783 × 2/2.7 42%.
Then the damaged section is taken as one of the
segments to be identified.

Since the beam is slender, it is easy to excite its high
natural frequencies. The FEM model of the
substructure is thus densely divided into 48 elements
(95 Dofs). In most other SD methods of local
substructural monitoring, the full state of the
substructure (in all its Dofs and at each time step) need
to be computed, so that the substructure cannot have
too many Dofs. In the method proposed here, the
substructure can be as complex as required: only the
complexity of its interface is limited by the necessity of
placing sensors in the interface Dofs. As a result,
application to large and complex substructures with a
large number of internal Dofs is possible. A relatively
dense division of the substructure into 48 elements is
used to verify this point.

Three PVDF piezoelectric film sensors are placed on
the substructure to measure the strain; a laser vibrometer
(Figure 15(d)) is used to measure the velocity in the
transverse direction. They are numbered Sensors 1 to 4,
respectively. Sensor 3 (“strain3” in Figure 15(a)) and
Sensor 4 (“Velocity” in Figure 15(d)) are located on the
substructure interface to measure its responses.

Two versions of the beam are tested: the original
beam with a free bottom end (beam 1) and the same
beam with an additional “sponge support” on the free
end (beam 2). These beams share the same substructure,
hence they can be used to verify the robustness of the
isolation process with respect to unknown changes of
the outside structure including potential nonlinearities
of beam 2 introduced by the “sponge support”. All the
measurements are separately performed on each of the
beams.
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A modal hammer is used to apply excitation in the
transverse direction. Two sensors are placed on the
interface, so at least three excitations need to be
separately applied, including one basic excitation inside
the substructure and two constraining excitations
outside it. In order to make the measured responses
independent of each other, the position of each
excitation is limited to a different part of the beam, see
Table 2. The excitation is applied by hand: note that a
more accurate positioning is not required, which is a
practical advantage of the method.

Since the beam is slender and light, the original FE
model is built considering the gravity of the cantilever
beam and the weight of the strain sensors, as well as the
stiffness of the sensors. Hammer excitation knocks the
beam randomly and frequencies of the beam are
identified using the measured responses. Table 3
(Identified) lists the first seven identified frequencies of
the intact beam and the damaged beam. The original FE
model is simple, Young’s modulus and the geometrical
parameters are accurate, as well as the fixed end
constraint. The masses and stiffnesses of the strain
sensors are updated using the measured response, which
is a simpler procedure not introduced here in detail. The
frequencies of the updated FE model are listed in Table
3 (FEM) and compared to the identified values. Errors
are computed using Eqn 22. It can be seen that the
updated FE model is very accurate. 

(22)ε ω ω
ωi

i i

i

=
−F m

m

The isolated substructure has virtual supports, so it
cannot be excited directly, and its natural frequencies
cannot be obtained experimentally. But the FE model of
the global structure is accurate and so the corresponding
damaged substructure FE model is accurate, and it can
be used directly for comparison with the constructed
frequencies of isolated substructure.

4.2. Measured Responses

In order to obtain the necessary dynamic information of
the structure, the sampling frequency of 10 kHz is used,
and the measured time interval is T = 4 s. Two beams
and three excitations are used, there are thus six groups
of measured responses, see Figure 18. The legend
X(i,j,k) denotes the response of the ith sensor to the jth
hammer excitation measured in the kth beam.

4.3. Substructure Isolation

The measured interface responses (sensors 3 and 4) are
used to construct a single virtual pinned support on the
interface, see Section 2.2. The corresponding FRFs of
sensors 1 and 2 (as if placed in the isolated substructure)
are constructed by Eqn 12. In order to confirm that the
numerically isolated substructure is independent of the
global structure (its constructed response is not
influenced by modifications of the outside structure),
responses of beam 1 are combined with responses of
beam 2. Such an approach might be also convenient in
practice: if the substructure is unchanged, then the
measured responses can be combined with those
measured in another time, no matter whether the
components outside the substructure are changed or not.
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Table 2. Excitations and their positions

Number Type Position

1 Basic excitation Inside the substructure
2 Constraining excitation Outside the substructure, near the interface
3 Constraining excitation Outside the substructure, far from the interface

Table 3. The comparison of the natural frequencies

Intact Damaged

Order Identified FEM Error Identified FEM Error

1 1.46 1.46 0.12% 1.37 1.34 -2.61%
2 8.63 8.63 0.04% 8.55 8.55 -0.09%
3 24.09 24.04 -0.20% 23.57 23.59 0.08%
4 47.14 47.08 -0.12% 44.99 44.64 -0.79%
5 77.93 77.84 -0.12% 74.65 73.39 -1.70%
6 116.31 116.29 -0.02% 113.00 112.34 -0.58%
7 162.55 162.42 -0.08% 159.00 158.79 -0.13%



To this end, the basic and the constraining responses
measured either in beam 1 or in beam 2 can be used.
There are four combinations and, consequently, the four
corresponding FRFs of the isolated substructure are
constructed. Their amplitudes are plotted in Figure 19,
where the legend Xi-B(j,k) denotes the FRF of the ith
sensor in the isolated substructure constructed by using
the basic responses of the jth beam and the constraining
responses of the kth beam. For comparison purposes, the
stars mark the natural frequencies computed using the
FE model of the damaged substructure.

The attenuation ratio r in the numerical example
above is adjusted by constructing frequency responses

with different values of r, and the value is chosen that
makes the constructed frequency response close to the
actual one. Such data are not available in experimental
practice, hence the value determined in the numerical
example is accepted also here, that is r = 0.01 (decay
rate η = 1.5). The peaks of the constructed FRFs (Figure
19) are obvious, and the first seven natural frequencies
of the isolated substructure can be thus obtained by
peak-picking. They are in good agreement with the
natural frequencies computed using the FE model of the
damaged substructure, see Table 4. It shows that the
biggest error is 2%, and in all four cases, the constructed
frequencies of the damaged isolated substructure are

Advances in Structural Engineering Vol. 18 No. 1 2015 149

Jilin Hou, Lukasz Jankowski, and Jinping Ou

(a) Beam 1, basic response (excitation 1) 

0 1 2 3 4
−2

−1

0

1

2
V

ol
ta

ge
 (

V
)

Time (s)

(b) Beam 2, basic response (excitation 1) 

−2

−1

0

1

2

V
ol

ta
ge

 (
V

)

0 1 2 3 4
Time (s)

(c) Beam 1, constraining response (excitation 2) 

−2

0

2

V
ol

ta
ge

 (
V

)

Time (s)

0 1 2 3 4

 

(d) Beam 2, constraining response (excitation 2) 

−2

−1

0

1

2

V
ol

ta
ge

 (
V

)
0 1 2 3 4

Time (s)

(e) Beam 1, constraining response (excitation 3) 

V
ol

ta
ge

 (
V

)

Time (s)
0 1 2 3 4

−3

−2

1

0

1

2

3

 

(f) Beam 2, constraining response (excitation 3) 

−1

0

1

V
ol

ta
ge

 (
V

)

0 1 2 3 4

Time (s)

X(4,1,1)

X(2,1,1)
X(3,1,1)

X(1,1,1)

X(4,1,2)

X(2,1,1)
X(3,1,2)

X(1,1,2)

X(4,3,1)

X(2,3,1)
X(3,3,1)

X(1,3,1)

X(4,3,1)

X(2,3,2)
X(3,3,2)

X(1,3,2)

X(2,4,1)

X(2,2,1)
X(3,2,1)

X(1,2,1)

X(4,2,2)

X(2,2,2)
X(3,2,2)

X(1,2,2)

Figure 18. The measured responses of beams 1 and 2



close to those of its FE model, which proves that the
isolated substructure is constructed accurately. In all
four combination cases, the identified natural
frequencies are similar, which confirms that the
isolation process is independent of the outside structure:
if the substructures are the same, the constructed
isolated substructures are also the same, no matter the
outside that can be unknown, nonlinear or changing.

4.4. Identification of the Isolated Substructure

The substructure is divided into five segments, see Figure
20, where each segment contains 9 or 10 finite elements.
The second segment is actually damaged, so that the

actual damage extents of the five segments are [1 0.42 1
1 1]T. The damages of the substructure are identified by
minimizing the square distance (Eqn 15) between the
constructed natural frequencies of the isolated
substructure and the natural frequencies computed using
its FE model. The damages are identified with a good
accuracy in all four combination cases, see Figure 21 and
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Figure 19. The four constructed FRFs of the isolated substructure

Table 4. Natural frequencies of the isolated substructure (Hz)

Experimental identification

Theoretical FEM B1-B1 B1-B2 B2-B1 B2-B2

Order Intact Damaged ω error ω error ω error ω error

1 17.685 17.519 17.4 –0.68% 17.4 –0.68% 17.2 –1.85% 17.2 –1.85%
2 57.332 52.007 52.4 0.75% 52.4 0.75% 52.6 1.13% 52.6 1.13%
3 119.154 112.949 112.7 –0.22% 112.8 –0.13% 112.5 –0.40% 111.5 –1.30%
4 203.297 195.661 195.7 0.02% 195.7 0.02% 193.3 –1.22% 192.4 –1.69%
5 310.471 290.037 288 –0.71% 289 –0.36% 289.3 –0.25% 289.2 –0.29%
6 439.947 413.933 415 0.26% 416 0.50% 416.5 0.62% 416.2 0.54%
7 592.476 551.067 553 0.35% 553 0.35% 546.8 –0.78% 546.7 –0.80%

1 2 3 4 5

Figure 20. Division of the substructure into five segments



Table 5. The proposed method performs well with a
substructure with 95 Dofs, which makes it a substructure
significantly more complex than the substructures used in
most other SD methods of local substructural monitoring.

5. DISCUSSION
5.1. Time-Domain and Frequency-Domain Method

This paper proposes a frequency-domain method of
substructure isolation. In comparison to the time-
domain method (Hou et al. 2012), it is computationally
significantly more efficient, which is one of its main
advantages. Let n be the number of the constraining
excitations (interface sensors), and denote by nt the
number of the time steps. Since the number of spectral
lines after the FFT is proportional to the number of the
time steps, and for each spectral line a pseudoinverse of
an n × n matrix needs to be computed, the time
complexity of the frequency-domain method, including
the cost of the FFT, is . The 

isolation in time-domain requires a single computation

O n n nn nt t t
3 +( )log

of the pseudoinverse of a large nt n × nt n matrix, which
yields a significantly higher time complexity of .

For example, the measurement time interval considered in
this experiment is 4 s, while for the time-domain method
it is only 0.4 s (at the same sampling rate). Despite the ten
times longer time interval, the frequency-domain method
is approximately six orders of magnitude faster.

In terms of accuracy, there is no significant difference
between the damage extents identified here (Figure 16)
and the damage extents identified using the time-
domain approach and the same objective function
(Figure 18, Hou et al. 2012).

5.2. Constraining Excitations

The matrix B(ω) in Eqn (12) consists of structural
responses to constraining excitations. To avoid
excessive ill-conditioning, the correlation between its
columns should be as close to zero as possible.
However, if closely-spaced, similar constraining
excitations are used, then the corresponding responses
are also similar and the correlation is high. Therefore,
essentially different constraining excitations should be
used; in this example, they are applied in different
positions with a certain distance from each other.

5.3. Substructure Interface and Constraining

Sensors

Two factors need to be considered in practical
application of the method. The first is the selection of
the substructure, which should have a simple interface
with the outside global structure. The second is the
selection of the constraining sensors and their location
on the interface: it depends on the intended type of the
virtual supports, which should ensure that the
constructed response of the isolated substructure is
sensitive to the local information being identified.

O n nt
3 3( )
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Figure 21. The identified damage extents of the substructure

Table 5. Identified damage extents of the substructure and their absolute errors

Segment number 1 2 3 4 5

Actual damage 1.000 0.420 1.000 1.000 1.000

B1-B1 Identified 0.976 0.462 0.950 1.000 1.000
Error –2.36% 4.15% –5.02% 0.00% 0.00%

B1-B2 Identified 0.972 0.463 0.966 1.000 1.000
Error –2.85% 4.32% –3.44% 0.00% 0.00%

B2-B1 Identified 0.906 0.514 0.975 1.000 0.959
Error –9.39% 9.40% –2.54% 0.00% –4.14%

B2-B2 Identified 0.949 0.535 0.923 1.000 0.906
Error –5.11% 11.50% –7.72% 0.00% –9.38%



6. CONCLUSIONS
This paper extends the substructure isolation method
(SIM) into frequency domain (SIM-FD). The efficiency
and accuracy of the approach are verified using a mass-
spring numerical model and a beam experiment. The
method focuses on local damage identification of the
substructure, so that, in contrast to other substructuring
methods, unknown interface forces (damping
coefficients, state vectors, etc.) do not need to be
identified. Therefore, damage parameters are the only
unknowns, so that local identification can be generally
easier and numerically more stable. It is an advantage in
applications to substructures that feature a larger
number of internal Dofs. The proposed SIM-FD
transfers the isolation process from time domain into
frequency domain. The isolated substructure can be
constructed separately for each frequency of interest,
which significantly decreases the numerical costs of
isolation. During the isolation process, selection of the
windowing function for the FFT is important. The
exponential window is suggested, which avoids the
spectral leakage and preserves the frequency
information of the isolated substructure.

The SIM requires the interface responses to be
measured in order to construct the virtual supports. In
complex boundary conditions, it may restrict the
applicability of the method. This limitation is a subject
of an ongoing research.
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