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ABSTRACT- Objects called quantum dots are formed during epitaxial growth. They 
have a different chemical composition than the surrounding layer and their existence 
creates non-uniform stress fields. The stresses can be very high in the close proximity of 
these islands. This paper presents a stress calculation procedure, which employs a 
hyperelastic anisotropic constitutive model. Results for two numerical examples are 
given. 
 
INTRODUCTION: The process of manufacturing a semiconductor is based on the 
sequential creation of layers of different materials, for example, up to 100 alternative, 
separate layers of SiGe and Si. These are known as heterostructures. During the 
manufacture of SiGe/Si, fluctuations in the chemical composition, in the form of 
quantum dots of SiGe, are created. Because of the different crystallographic constants of 
Si and Ge, internal strains and stresses are generated (known as misfits). These strains 
and stresses influence, for example, the optical properties of the material. Similarly, 
cracking may be apparent, Einfeld et al. [2002]. Other examples include GaN, InGaN, 
InGaAs and. CdTe/ZnTe/GaAs, where similar defects can occur during their 
manufacture. These stress fields can be highly undesirable, for example in the composite 
GaN, InGaN, which is used in the production of lasers  and where optical defects must be 
avoided. 
 
PROCEDURE: The constitutive model is described by Dluzewski et al. [2000, 2005]. 
The kinematics of the constitutive model starts from the following decomposition, 
namely, , where is the lattice deformation tensor,  is the chemical 
deformation tensor and is the dislocations gradient being a function of the continuous 
field of lattice distortions . The field β is obtained by differentiating the piece-
wise continuous lattice displacement field. The Cauchy stress tensor is of the form 
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dependencies ,  is a fourth-order tensor decomposed in the eigenvector 

basis,  is a fourth order tensor of elastic stiffness and ε is the strain tensor. The 
equation of equilibrium  is discretized using the finite element method, 
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Zienkiewicz and Taylor [2000], taking the form faP =)( , where  The FE 
approximation of the displacement and the dislocation field is given by and 

, where and  are the shape functions for the displacement and 
dislocation fields, respectively. To solve the FE equation using the Newton Raphson 
method, we need the tangent stiffness  
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The required elastic constants and the lattice constants of the alloy of  SiGe are calculated 
by applying Vegard’s law  
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where x denotes the amount of Ge, cij and r are the lattice constants. 
 
NUMERICAL EXAMPLES: The first sample consists of two layers of Si (100x100x20 
nm each). It contains an inclusion modelled using a 4 element patch in the centre of the 
sample below the surface. The inclusion consists of a 30% mixture of SiGe. The elastic 
constants for Si and Ge are taken from Baker and Arzt [2000] and Herzog [2000]. The 
lattice parameter of Si is  m. The constants for the mixture SiGe are obtained 
using Vegard’s law and they are presented in Table 1.  

1010431.5 −⋅

 
Table 1. Material constants 

 
GPa  Si Ge SiGe (30%)
c11   165.8 128.5 139.69 
c12 63.9 48.3 45.0 
c44 79.6 66.8 75.76 

  

               
          (a)       (b) 

Fig. 1. Effect of inclusion on (a) the vertical displacement field and (b) the stress 11σ   
The lattice parameter for the mixture is m. The displacement and stress 1010493.5 −⋅ 11σ  
fields generated by the inclusion are presented in Fig. 1. The displacements are in the 
range m to  m and 111073.0 −⋅ 1010739.0 −⋅ 11σ  reaches a maximum value of  -200 MPa.  
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The second sample has dimensions 100x100x40 nm. The circular dot (SiGe) has a 
diameter of 20 nm and is covered by two layers of Si. The displacement and stress 11σ  
fields in the sample are shown in Fig 1. The largest displacements are concentrated 
around the island and the maximum value is  m. Two regions of high 
absolute value of stresses can be observed. The gradients of stresses in the regions of 
thespots are very high since the values of stress vary from -480 MPa to 1900 MPa.  

1010133.0 −⋅

 

                    
    (a)     (b) 

Fig. 2. Effect of a SiGe/Si dot on (a) the displacement field and (b) the stress 11σ  
 
FINAL REMARKS: The results presented shows that high stresses appears in the 
region of quantum dot, which represent material inclusions. The results can be 
qualitatively compared with experimental observations.  
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