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Abstract The aim of this paper is to present a constitutive model in the case of an
uniaxial tension of the polycrystalline materials including the inter-granular metallic
layers, creating its internal structure. The paper is focused on the discussion of the
elastic properties of a composite components influence on the overall material re-
sponse. The effective continuum model was applied to get the constitutive relations.
Representative Volume Element (RVE) was analysed taking into consideration an
initial internal structure of the material obtained from SME photographs. Owing to
a high complexity of the internal structure of the composite material, FEA technique
was used to get macroscopic stress-strain correlations. They include gradual changes
of the internal structure of the material due to porosity and cracks development
under tension.

Keywords Polycrystalline ceramics · inter-granular layers · different elastic
properties of components

1 Introduction

Ceramic polycrystalline composites have a non-linear and complex response to ap-
plied loads due to their internal structure. Experimental observations show that the
most important element of the internal structure is the thin layer between grains.
The size of these layers is relatively small in comparison to the grain diameter.
These composites can be treated as two-phase materials. The inter-granular layers
can significantly change the macro-response of the material. This is particularly ev-
ident when the two phases are made of different materials. For example, the grains
may be brittle but the thin layers exhibit properties of a metallic material, so the
softening effect due to porosity development should be taken into account. Micro-
pores act as stress concentrations and locally change the state-of-stress, leading to
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b)a)

Fig. 1 SEM photograph: (a) fracture surface of polycrystalline ceramics, (b) FEA model (RVE)

the development of cracks. Experimental results show that defects develop mainly
inter-granularly and cause in-homogeneity and induced anisotropy of the solid.

The paper is focused on the discussion of the elastic properties of a composite
components influence on the overall material response. Modelling of such a material
response is possible by the application of effective continuum models. Representa-
tive Volume Element (RVE) was analysed by taking into consideration an initial
internal structure of the material obtained from SME photographs, Fig. 1. Owing to
a high complexity of the internal structure of the composite material, FEM technique
was used to get macroscopic stress-strain correlations.

2 Formulation of the Problem

Let us consider a composite made of elastic grains (e.g. Al2O3) and visco-plastic
inter-granular phase (e.g. Co). In order to investigate of the material response at
yield limit, assume that the composite is subjected to uniaxial tension and that strains
(observable in experiments) are small. Let us consider RVE, i.e. the smallest part
of the composite that can accurately represent the macroscopic material response.
In comparison to [1] and [2] in this paper a discussion of the: (1) initial elastic
properties and (2) level of porosity in interfaces on the composite behaviour was
done.

2.1 Elastic and Plastic Properties of a Composite Components

Denoting by V̄ (1) the volume fraction of elastic grains in RVE and by V̄ (2) the
volume fraction of visco-plastic interfaces one can estimate the averaged properties
of two-phase composite with application of the linear rule of mixture (RoM),

Pav = P (1)V̄ (1) + P (2)V̄ (2) (1)

where P (1) and P (2) correspond to the properties of grains and interface, respec-
tively.
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In the considered two-phase composite the initial porosity could appear in both
parts of the composite components, i.e. in elastic grains and along interfaces. Let
us assume that the initial porosities are uniformly distributed in both phases inde-
pendently. Then, the effective elastic moduli of solids with non-interacting cavities
could be expressed according to [3]:

Eeff/E0 = 1/(1 + 3p); �eff = 1/3 + (�0 − 1/3)(1 + 3p) (2)

where p denotes: grains porosity p(1) or inter-layer porosity p(2). Figure 2 shows
distribution of the effective moduli in relation to material porosity p. It is necessary
to emphasize that application of linear RoM approach to estimate the porous effec-
tive properties is not enough, because of high nonlinearity. If any phase contains
initial porosity, then effective elastic properties were estimated according to (2) and
then introduced to (1) to estimate averaged composite properties.

The basic mechanical properties used in numerical examples were summarized
in Table 1.

We have assumed the volume fraction of grains as equal to V̄ (1) = 0.9029,
whereas corresponding volume fraction of inter-layers – V̄ (2) = 0.0971.
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Fig. 2 Distribution of effective moduli in relation to material porosity p

Table 1 The basic mechanical properties of the grains (phase 1) and inter-layers (phase 2)

Mechanical property Grains (phase 1) Inter-layers (phase 2)

Young modulus E(1) = 410 GPa E(2) = 210 GPa
Poisson ratio �(1) = 0.25 �(2) = 0.235
Yield limit σ (2)

y = 297 MPa
Fluidity parameter 
(2) = 10−10 − 10−5/(MPa s)
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2.2 Basic Equations

To solve the problem of the polycrystalline composite response it is necessary to de-
scribe visco-elastic-plastic behaviour of the inter-granular layers. According to [4],
the total strain rate can be split into elastic part ε̇e

i j and visco-plastic one ε̇v−p
i j

ε̇i j = ε̇e
i j + ε̇

v−p
i j (3)

If the elastic properties of the material are defined by the elasticity matrix Di jkl ,
then one can find the total stress rate σ̇i j

σ̇i j = Di jkl ε̇
e
kl (4)

When the yield condition is satisfied F(σi j , ε
v−p
kl ) = F0, visco-plastic behaviour

of the material occurs and the inelastic strains appears in part of the material, i.e.
inter-granular layers if

F(σi j , ε
v−p
kl ) > F0 (5)

F0 denotes the uniaxial yield stress. In the general case of non-associated plasticity
theory, the visco-plastic strain rate can be defined in the following form

ε̇
v−p
i j = γ 〈ϕ(F)〉 Q

σi j
(6)

where Q denotes the plastic potential, γ is the fluidity parameter related to the
plastic flow rate and the function 〈ϕ(F)〉 is given by

〈ϕ(F)〉 =
{

0 for F ≤ F0

ϕ(F) for F > F0
(7)

as well as

ϕ(F) = exp[M(F − F0) / F0] − 1 (8)

where M is a constant describing the particular plastic behaviour of the material.
For associative plasticity theory, F = Q and the constitutive equation (6) takes the
form

ε̇
v−p
i j = γ 〈ϕ(F)〉 F

σi j
(9)

In order to get the strain increment Δεv−p(n)
i j it is necessary to define a time incre-

ment Δt (n) = t (n+1) − t (n) for two neighbouring times. Then the strain increment is
equal to
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Δεv−p(n)
i j = Δt (n)[(1 − Θ)ε̇v−p(n)

i j + Θε̇v−p(n+1)
i j ] (10)

when a trapezium rule is applied. Θ is the parameter depending on the chosen time
integration rule.

The visco-plastic strain rate ε̇v−p(n+1)
i j for the time of the loading process t (n+1) is

equal to [4]

ε̇
v−p(n+1)
i j = ε̇

v−p(n)
i j + H (n)

i jklΔσ
(n)
kl (11)

and the matrix H (n)
i jkl is expressed by

H (n)
i jkl(σ

(n)
kl ) =

(
ε̇

v−p
i j

σkl

)(n)

(12)

Introducing equation (11) to (10) gives

Δεv−p(n)
i j = ε̇

v−p(n)
i j Δt (n) + C (n)

i jklΔσ
(n)
kl (13)

where

C (n)
i jkl = ΘΔt (n) H (n)

i jkl (14)

The stress increment can then be calculated according to the following rule

Δσ (n)
i j = D(n)

i jkl(Δε
(n)
kl − Δεv−p(n)

kl ) (15)

or alternatively

Δσ (n)
i j = D̂(n)

i jkl(Δε
(n)
kl − ε̇

v−p(n)
kl Δt (n)) (16)

where the matrix describing the material properties is equal to

D̂(n)
i jkl = (Ii j tw + Di jrsC (n)

rstw)−1 Dtwi j = (D−1
i jkl + C (n)

i jkl)
−1 (17)

The increment of nodal displacements can be calculated knowing the tangen-
tial stiffness matrix K T(n)

sm and the increase of the “so called” vector of pseudo-load
ΔV (n)

m , [4]

Δu(n)
s = [K T(n)

sm ]−1ΔV (n)
m (18)

Having defined problem incrementally, e.g. (13), (16) and (18), one can calculate
the current values of strain, stress and displacement for the time while t (n+1).
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2.3 Yield Conditions for Non-Hardening Material Without
and with Porosity

If the material does not contain any initial porosity and non-hardening effects, we
assume that its behaviour could be described by the following yield condition

F(σsm) =
√

3J ′ = √(3/2)σ ′smσ
′
sm = σ (2)

y (19)

where σ (2)
y is the yield stress of the plastic inter-layers and σ ′sm denotes the stress

deviator. For material with initial porosity of volume content p(2) we adopt Gurson-
Tvergaard yield condition [5, 6]

F =
(
σ M

σ̄

)2

+ 2q1 p(2) cosh

(
3q2σm

2σ̄

)
− (1 + q3[p(2)]2) (20)

where σ M is the Huber – von Mises stress, σm is the mean stress, σ̄ is the Huber –
von Mises stress in the matrix (i.e. in inter-layers) and q1, q2, q3 are the Tvergaard
coefficients. The detailed analysis for different p(2) values has been performed in [7].

3 Numerical Examples

For investigations of the elastic properties influence of the composite phases 1 and
2 on the purely elastic polycrystalline composite behaviour, the RVE (Fig. 1) was
subjected to uniform tension along direction x . To analyse weaker properties of
inter-layers in comparison to grains the following variation of E(1)/E(2) = 10, 5
and 1 were taken into account (assuming E(1) = 410 GPa). For the remaining ratios
E(1)/E(2) = 1/5 and 1/10 (with E(2) = 410 GPa) weaker grains in comparison to
interfaces were investigated. Comparing Figs 3 and 4 one can notice highly diverse
displacement distribution for both considered limiting cases. For homogeneous ma-
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Fig. 3 Displacement along: (a) tensile direction ux and (b) perpendicular direction uy for
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Fig. 4 Displacement along: (a) tensile direction ux and (b) perpendicular direction uy for
E(1)/E(2) = 1/10

terial (E(1) = E(2) = 410 GPa) appropriate distributions are: regular vertical (ux ) or
horizontal strips (uy). As it was expected, the deformations of RVE are much higher
in case of composite with weaker grains, Fig. 5. If the inter-layers have significantly
less elastic modulus in comparison to grains, umax

y does not change substantially.
Figure 5 presents also the influence of the initial porosity of the inter-faces (p(2))
on the RVE response. This phenomenon has a great importance in case of compos-
ites with weak grains (left part of the plot). Figures 6 and 7 specify differences in
stresses distributions: σxx and σyy for both considered limiting cases. For homoge-
neous material (E(1) = E(2) = 410 GPa) they are uniform and σxx = 400 MPa and
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Fig. 8 Displacement ux distribution for: (a) E(1)/E(2) = 1 (elastic continuum) and (b) E(1)/E(2) =
1.95 and plastic behaviour of the inter-layers, Table 1
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Fig. 9 Stress distribution σxx for: (a) E(1)/E(2) = 1 (elastic continuum) and (b) E(1)/E(2) = 1.95
and plastic behaviour of the inter-layers, Table 1

σyy = −206 MPa. Then the σxx stress concentration for case E(1)/E(2) = 10 is equal
to 1.626, whereas for E(1)/E(2) = 1/10 − 9.275.

If in the composite appears straight crack, then the displacement of RVE is totally
different. Figure 8a shows displacement distribution for purely elastic RVE (E(1) =
E(2) = 410 GPa), whereas in Fig. 8b both phases are described according to Table 1.
Due to inter-layers the maps of displacements are not smooth and the maximum
displacement is 8.91% higher in the second case.

One can observe also differences in stress distributions in two considered ex-
amples due to inter-layers presence, Fig. 9. The stress concentrations appear at the
discontinuity tips and its growth could be along inter-layers.

4 Conclusions

The presented results established the influence of the elastic component properties
in polycrystalline composite material on the total macroscopic response. The pres-
ence of the initial porosity will significantly increase all deformation characteristics
of the composite material. The occurrence of cracks in a polycrystalline structure
which contains visco-plastic inter-layers will significantly change the stress and dis-
placement distributions causing local stress concentrations and further crack growth.
The obtained results could be useful for engineers who are introducing new tech-
nological approaches to the modeling of modern composite materials for special
applications in order to get desired macro-properties of the composite using data
concerning their components.
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