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The three-dimensional structures of a set of �never born proteins� (NBP, random amino acid
sequence proteins with no significant homology with known proteins) were predicted using two methods:
Rosetta and the one based on the �fuzzy-oil-drop� (FOD) model. More than 3000 different random
amino acid sequences have been generated, filtered against the non redundant protein sequence data
base, to remove sequences with significant homology with known proteins, and subjected to three-
dimensional structure prediction. Comparison between Rosetta and FOD predictions allowed to select
the ten top (highest structural similarity) and the ten bottom (the lowest structural similarity) structures
from the ranking list organized according to the RMS-D value. The selected structures were taken for
detailed analysis to define the scale of structural accordance and discrepancy between the two methods.
The structural similarity measurements revealed discrepancies between structures generated on the basis
of the two methods. Their potential biological function appeared to be quite different as well. The ten
bottom structures appeared to be �unfoldable� for the FOD model. Some aspects of the general
characteristics of the NBPs are also discussed. The calculations were performed on the EUChinaGRID
grid platform to test the performance of this infrastructure for massive protein structure predictions.

Introduction. – The search for techniques aimed at the generation of new proteins
for pharmacological and biotechnological applications is widely developed nowadays
[1– 3]. This involves the selection of proteins of desirable activity among those present
in Nature, as well as the production of new polypeptide compounds resulting from
libraries of peptides with random amino acid sequences [4] [5]. The final aim of these
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studies is the selection of polypeptides with enhanced biological activity, altered
catalytic properties, or higher structural stability. It can be assumed that amino acid
sequences not observed in real proteins may be an abundant source of unknown
biological activities, which – eventually – may be useful for biomedical applications.

An estimate of the number of possible random sequences of, for example, just 70
amino acid residues [4] leads to conclude that the existing sequences which occur in real
proteins are a tiny minority of all the possible sequences. Thus it is reasonable to
assume that the huge number of potential proteins characterized by sequences not
observed in Nature (also known as �never born proteins� – NBP) can be an ensemble
hiding many biological functions not observed in the biochemistry developed so far by
living organisms.

The experimental characterization of some NBP produced by phage display
techniques and focused on structural aspects was already presented in [4] [5]. In that
study, the resistance to proteolytic digestion was used as a folding criterion. The high
frequency of folded structures in a totally random library observed in the above
mentioned study suggests that the globular folding represents a general feature of
hetero-polypeptide structures. Thus the selection of corresponding properties such as
specific binding and/or catalysis seems to be possible in the set of NBP.

The search for bioactive protein molecules was one of the aims of the
EUChinaGRID project (EUChinaGRID – www.euchinagrid.eu). The search for
biologically active NBP is performed using two different structure prediction methods:
a stochastic one represented by the Rosetta ab initio method [6] and a heuristic one, the
�fuzzy-oil-drop� (FOD) model [7], assuming the hydrophobicity irregularity (defi-
ciency) as the criterion for active site identification [8 –10]. The proteins selected on
the basis of the similarity between the structures predicted according to both methods
are planned to be synthesized and analyzed by NMR as an experimental validation of
the structures generated in silico.

As a preliminary study, before the analysis of the ensemble of NBPs, the
performance of the FOD model in the identification of the active site region of a
protein molecule was tested on existing proteins of defined polypeptide chain length
(70 amino acid residues) [11 –13]. Following this approach, the localization of the
potential active site (including any ligand binding cavity) is defined on the basis of the
specificity of the hydrophobicity deficiency/excess distribution in a particular protein
under consideration [14] [15]. In the above mentioned preliminary study, the
irregularities of the hydrophobicity distribution (the basis of the FOD model) of
natural proteins appeared to be highly structure/function specific [9] [10]. The same
technique was thus applied for the structural and functional comparative analysis of
FOD and Rosetta predicted structures.

Principle of the Methodology. – The protein structure prediction is usually based on
the internal non-bonding interactions which are optimized (global or local energy
minima) to represent the structure of the protein. The natural environment is usually
mimicked by the presence of water molecules. The model presented in this work
(applied for protein structure prediction) assumes the presence of an external force
field generating the environment for the folding polypeptide chain. The external force
field is expressed by a three-dimensional Gauss function. The standard interpretation
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of this function as probability density distribution is treated as hydrophobicity density
distribution.

The three-dimensional Gauss function is as follows:
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Htj is assumed to represent the hydrophobicity distribution in a particular grid point
belonging to the protein body. The hydrophobicity maximum is located in the center of
the ellipsoid and decreases in a distance-dependent manner according to the three-
dimensional Gauss function. The mean value at which the Gauss function reaches its
maximum is localized at the (0,0,0) point in a coordinate system. The values of standard
deviation sx, sy, sz calculated separately for each dimension (axis) represent the size of
the drop which depends on the length of the polypeptide under consideration. The
length of the polypeptide determines the size of the protein molecule and thus the size
of the ellipsoid expressed by sx, sy, sz. The detailed analysis of the relation between the
length of the polypeptide and the size expressed in the ellipsoid parameters is presented
elsewhere [16].

Before the external hydrophobic force field can be defined, the protein molecule
must be oriented in the space according to the following procedure:

1. The geometric center of the molecule must be localized in the center of the
coordinate system.

2. The longest distance between two residues (represented by the effective
atom – geometric center of side chain of the amino acid) must overlap one of the axes (say
x-axis).

3. The molecule must be rotated around the x-axis to orient the longest inter-
projections (on y,z plane) distance along the y-axis.

4. The linear size (the maximum inter-atomic distance along the x, y, and z axes),
increased by 9 � in each direction (the cutoff distance for hydrophobic interaction),
allows the calculation of sx, sy, sz.

This is how the geometric parameters of the protein molecule can be interpreted
according to the Gauss function.

The empirical (observed) distribution of hydrophobicity can be different than the
idealized one. The empirical hydrophobicity distribution can be calculated according to
the Levitt [17] function:
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where Hoj represents the empirical hydrophobicity value characteristic for the position
of the j-th grid point, Hr

i represents the hydrophobicity characteristic of the i-th amino
acid, rij is the distance between the j-th grid point (its hydrophobicity is equal to 0.0) and
the i-th effective atom in the amino acid, and c expresses the cutoff distance, which has
a fixed value of 9.0 � following the original paper. The grid point collects the
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hydrophobicity interaction in its close neighborhood (9 �). Hosum represents the sum of
all the grid points hydrophobicity. Any hydrophobicity scale available in literature may
be applied to calculate the observed hydrophobicity density [18 –22].

The grid system mimicking the environment is defined with the constant step size
(detailed information can be found in [7]).

Since both values are standardized (the coefficient 1/Hsum), the differences between
theoretical and empirical values expressing hydrophobicity density in a particular point
of space can be calculated according to:

D ~Hj ¼ Htj �Hoj

The D ~Hj values measure the discrepancies between expected (theoretical) and
observed (empirical) hydrophobicity distribution. The lower the difference the more
the hydrophobic residues are buried in the central part of the globule and better is the
exposure of hydrophilic residues on the surface of the protein body.

The protein folded in high accordance with the idealized �fuzzy oil drop�
distribution satisfies the condition to be very well soluble in water solution. In
consequence such molecule is unable to represent any biological function understood
as the tendency to interact with other molecules (ligand, proteins). This is why the
discrepancies between these two distributions are observed. Some of them are
identified as aim-oriented (or function-oriented).

Since the Gauss function is of continuity character, D ~Hi values when calculated for
the positions of effective atoms (averaged position of side chain) reveal the specific
characteristics of each residue with respect to the hydrophobicity distribution.

The profile of D ~Hi (expressing the value of difference for each amino acid) reveals
some maxima, which are related to hydrophobicity deficiency. The hydrophobicity
deficiency (D ~Hi>0) seems to represent a potential binding site. The potential ligand
may adhere in this area as the complementary element compensating the hydro-
phobicity deficiency and yielding a regular smoothed hydrophobicity distribution.
Negative D ~Hi values represent areas of higher hydrophobicity than expected. Areas
with such characteristics, when localized on the surface of protein, seem to represent
potential areas responsible for protein-protein complex creation.

The protocol of the folding simulation according to the presented model is as
follows:

1. Orientation of the molecule as described above.
2. Energy (internal non-bonding interactions) minimization procedure is per-

formed.
3. Optimization procedure aimed at obtaining hydrophobicity distribution accord-

ance between observed and expected hydrophobicity distribution is performed.
The three steps are repeated iteratively until the convergence level reaches the

expected value. Each iteration is performed for a smaller size of the �drop� (decrease of
sx, sy, sz values) until the size reaches the volume appropriate for the particular
polypeptide chain length (relation between number of amino acids in the chain and the
volume of the protein in its native form is presented in [16]).

Step 2 of the presented procedure is a sort of relaxation due to the absence of any
external constrains, while step 3 has the character of a squeezing step pushing the
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molecule to increase its density (the starting structure displays a very low packing
density) [23].

A molecule folded according to the presented model produces the molecule with
hydrophobic residues buried entirely in the interior of the molecule and hydrophilic
residues exposed on the surface. A molecule with these characteristics is perfectly well
soluble although deprived of any kind of biological activity (understood as the
tendency to interact with ligands, substrates, and proteins).

The D ~Hj profile (calculated for points representing the effective atoms) reveals the
discrepancies which in some proteins appeared to be of aim-oriented form, ensuring a
high specificity versus the potential interacting (complexing) molecules [9] [10]. This is
why the form of the final D ~H profiles for proteins folded in silico presented in this
article are taken as the criteria for biological function prediction, at least to the extent
of identification of potential protein surface areas ready to interact with other molecules.

The described model was applied for protein folding simulation as well as for
potential biological function recognition of molecules under consideration. The
D ~Hprofiles obtained for proteins discussed in this work are compared with profiles
of other proteins available in the PDB (proteins of around 70 amino acids length) [11 –
13]. The characteristics of their biological activity with respect to D ~Hprofiles was taken
as the basis for possible biological activity recognition of �never born proteins� at least
limited to the recognition of areas on the protein surface ready to interact with other
molecules.

The presented FOD model oriented on the active site identification belongs to the
tools available online [24 – 36]. The detailed comparison of FOD model in respect to
Sumo [37] [38] and ProFunc [39] was given in [8]. Available methods are of stochastic
character while the FOD model is rather of heuristic character and is possible to be
applied individually for any protein molecule.

Results. – The comparative analysis presented in this paper is focused on the
structural and functional comparison of structures generated using Rosetta and the
FOD model to discuss the possible bioactivity of the proteins under consideration. The
presence of hydrophobicity irregularities in the proteins generated in this work allows
the identification of putative active sites also through comparison with the hydro-
phobicity profiles of real proteins [4] [5].

Structure Comparison. The RMS-D values were calculated for all proteins (objects)
for final structures selected according to the procedure described in the Exper. Part.
The selected proteins are presented in Table 1. The additional optimization procedure
(in vacuo and in water solvent) was applied for all the discussed structures folded
according to FOD model. The final results measuring the structural similarity are
shown in Table 2.

The RMS-D values are quite large for proteins of this small size (70 amino acids). It
must be emphasized that the sequences under consideration are highly peculiar. There
is no structural database for this kind of sequences. The highest values of RMS-D (R
structures) are due to the fact that these polypeptides appeared to be unfoldable for the
FOD model (S structures).

Secondary Structure Identification. Secondary structure content of the final
predicted structures using DSSP program [40] is given in Table 3.
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Interestingly, the b-structure is underrepresented in S forms (FOD-calculated
structures), although the content of the b-structure in R form (Rosetta calculation) is
the lowest one in comparison to other secondary structural forms. A similar a-helical
percentage was found in structure 3208, a very high percentage was found in both
approaches for structure 1570. A similar percentage for random coil content was found
for structure 2748. The percentage of turns appeared to be similar in 2300, 1281, 1167,
386, and 372.

Active Site Recognition. The identification of areas of high discrepancy versus the
idealized hydrophobicity distribution is assumed to express the functional specificity
(highly positive D ~Hj values – area of hydrophobicity deficiency – are assumed to
indicate areas ready to interact with a specific ligand with hydrophobicity distribution
complementary to the hydrophobic cavity; highly negative D ~Hj values – higher than
expected hydrophobicity – if occurring on the surface of the protein, are assumed to
indicate areas for potential protein– protein interactions).

The D ~Hj profiles for selected structures are given in Fig. 2, and 3-D representation
of the hydrophobicity irregularity distribution over the molecules under consideration
is presented in Fig. 3.

The profile of D ~Hj observed for molecule 1000 presented in Fig. 2 characterized by
the SE parameters represents the example of lowest difference between R and S
structure. Additionally the analysis of SE parameters for in vacuo and in water
simulation (after FOD folding based simulation and additional in vacuo and water
optimization without any constraints) show that the influence of environment is
negligible in this case. The structural changes resulted from the additional optimization

CHEMISTRY & BIODIVERSITY – Vol. 6 (2009)2316

Table 1. Amino Acid Sequences of the Proteins Selected for Analysis

Sequence
ID

Sequence

102 GGNIQNDYIGVETGGVQSMQPHVFAVRPYPGETQAIARNQQGVNRDQTCVCPTTCMNGGDMCPMPTSNYN
372 HDACGGEDRPDVCLEPTHEHAPMAICRLKFRSTTSDFMKWGYFWLPSPSLLSLTTWRKTIKRFVIYHHSM
386 SECVEGVKTFFKFCRNARHVGTEQDQPCVHSSPHLIYPDHLEQGTILKDWNVWKYCFMVFDIGAGWSDRY
435 HKHLFAYNYMSDHTQRFRSAQYTICTSMFVNDNRPLLNDAPFEYLHWYSFLFFMCLHKDCTPLKRYFEQC
438 IKGLYSTNMKEGVMNLKDAKQHYERDKAESMTRFCEYIQIACVQAPHIWPFNTSYLFCGQKWQTRDGMIL
595 DGCGCLEPMFDYIHFDRAFDTKFVGITWVADLRQWSGHLCTYAELNRPTCTGEDQVCQCDVNHGRIPCIK
913 NRNKTEIEWHTCKIAWNCQLHKDDAPGIFMGHTYSSNANGYECPKMQLRCRTAYAQYMHLQGQFCQNPND

1000 RNALFDGIPTVYCWTLADSQWWACYQYRALCCIKGRCVFERITDSYVRMVTKLIRRFGYANPHPFNCECT
1056 KMHLDAIESKYWHVPTQTVNDSALFAPTQEMLAPSSSVYYLLINMSRSYHEFLVRVKKPMEDEACNQCVA
1134 TCSDDRVPSHQTDAFNQHQFITLRLWFDFFWYRKRMHTGVSARSDEDNGRSCSNQWSDDMSGCRWQQDCY
1167 VPARGFWLGHQPIVWWHDCTYWTPPLLLASWFEWCIGVCRKSLSAWVNTVELYIKEETVPKYWTVASEPH
1281 GDTPRQFWQWWQDQGNHMEDDDYHPDYCHHGKGLKLSKALPPPIAEEIIWDEAAYSPLSPVRQGGYQKKC
1349 GVGDSACCHMNASTPNWEMVHKWWHCKKDTPRICNTIFAMLTQLLQWNQLPWQRLQFSQWEIWMHCWNMV
1356 WMPQCKVHDGYDCSIMFAHKNPLYQYKAYMANEAAVPRRRTEQCCQYGQGYWETMHDPMTMMHKHLGKHA
1570 CGNVYMFDVCIDHDWDQTDHIMWQLGKYNGCCNPHFHEWSEWYPFFFFLLAVADCRTGVWLNQLDFTRKP
1736 YIDFRLSCCLGGQCWSFMYQWIQTFCRSASSLWMAWVQCFNVIVVINPWYMYYTQCRYCMCCDVYHCGQS
2265 WTSEGDFSWLDAFYWCKKMWQFVSDFPHHAQVEVNFQPWEARIRWHSDFKALQGKMPGNHWHGYTRCPMQ
2300 MDQSSDSLEVNWEDSLQVGTWGDIDLKLRMNFSWWCLKFWMNQTGVNASNSTGSHDGICHIRMRFSCHWW
2748 TWYIRMTGSLDFLTDDKRFRQTMKQDTMQPDHKILWKQPINYARIIEANLAKEWFIREYNHNMQSWENGT
3208 SMSWLFTADGFNMNSPENIVWMANLIAGCKWRNQMPVNQPIDCATKQMADQLETFQPPNSFMNLCSIYEC



procedure changed the RMS-D value (the spatial positioning of particular residues)
keeping the general distribution of hydrophobicity irregularity conserved.

The similarity/differences between D ~Hj profiles for R versus S form can be
measured quantitatively by applying the correlation between D ~Hj R and D ~Hj S
measurement. The correlation coefficients (calculated according to Pearson [41] and
Spearman [42]) are given in Table 4.

The highest similarity of hydrophobicity irregularity in both structures S and R was
found for proteins 1281, 2300, 595, and 372. Taking into account the D ~Hj characteristics
of proteins of similar polypeptide chain length deposited in the Protein Data Bank
(PDB) [11 – 13] [43], for the structures generated according to the FOD model, the
functional characteristics presented in Table 5 can be hypothesized. The potential
binding sites of more than 400 proteins (of 70 amino acid residues in their sequence)
present in PDB were previously analyzed [11 – 13] and treated as a database for the
analysis discussed in this article. The analogy may be treated only qualitatively, taking
into account the information entropy (SE) values and D ~Hj profiles similarity and
subjective visual interpretation.
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Table 2. RMS-D Values Calculated for Backbone Atoms. Simple FOD simulation is compared to Rosetta
(d). Influence of correction procedure is shown in: a) original FOD structure vs. additional optimization
Amber in vacuo, b) original FOD structure vs. optimization in explicit water, and c) relative change
between in vacuo and Amber with Amber in water environment. Additional energy minimization of
FOD structures did not significantly influence the similarity between Rosetta and FOD structures: d)
simple FOD simulation vs. Rosetta, e) FOD with Amber in vacuo correction vs. Rosetta, f ) FOD with

Amber in water correction vs. Rosetta.

ID a) Opt. in
vacuo vs.
FOD

b) Opt. in
water vs.
FOD

c) Change
between
in vacuo
and water

d) FOD vs.
Rosetta

e) FOD
(in vacuo)
vs. Rosetta

f) FOD
(in water)
vs. Rosetta

102 1.642 1.418 1.283 7.562 7.773 7.723
372 1.193 1.194 1.468 12.139 12.373 12.326
386 1.277 1.226 1.254 23.139 23.163 23.437
435 1.685 1.344 1.619 10.140 10.381 10.479
438 1.432 1.558 1.313 28.222 28.600 28.240
595 1.632 1.378 1.448 9.687 9.865 10.209
913 1.364 1.281 1.458 14.866 14.788 15.159

1000 1.568 1.362 1.408 7.077 7.115 7.464
1056 1.393 1.445 1.335 7.848 7.923 7.916
1134 1.691 1.483 1.552 25.990 26.240 25.628
1167 1.748 1.820 1.334 19.861 18.459 19.082
1281 1.339 1.515 1.401 8.955 9.370 9.390
1349 1.174 1.392 0.989 7.493 7.895 7.865
1356 1.287 1.143 1.185 7.628 7.637 7.529
1570 1.610 1.754 1.363 15.409 15.347 15.367
1736 1.438 1.298 0.998 20.011 19.897 19.787
2265 1.441 1.530 1.265 31.807 31.640 31.614
2300 1.706 1.551 1.162 6.693 6.815 6.693
2748 1.456 1.287 1.189 18.899 18.363 18.654
3208 1.537 1.510 1.595 23.033 23.023 23.123



Entropy Scale. The entropy scale (SE, SEmax, SErel and I) calculated for maxima (þ)
and minima (�) distribution along the polypeptide chain under consideration is
presented in Table 6.

The highest similarity between S and R forms was found for structure 1570, according
to all SE based parameters. The lowest similarity was found for the structure 2265 taking
SE parameters as criteria for comparison. For each sequence pair-wise alignments with
all other sequences, using the LALIGN program from the FASTA package [44] version
35 was performed (scoring matrix BLOSUM50 and gap open/extension penalties equal
to �10/�2 ). The lowest similarity to other sequences is exhibited by sequence 1056
(lowest maximum Waterman-Eggert score equals to 37, lowest number of results obtained
– detected similarities). The highest sequence similarity characterizes sequences 1349
and 1736 (Waterman-Eggert score equals to 71). Maximum similarity scores and scores
for alignment of two identical sequences are given in Table 7.

The High RMS-D Structures. The high values of RMS-D were obtained due to
structures S, which appeared as �unfoldable� with a high percentage of random coil
structural forms and very elongated forms.

The structure of a real protein present in PDB, a dimer of two chains of 70 amino
acids each (PDB code 2NWT), represents a structure with a highly unfolded form
(Fig. 4). The D ~Hj profile for this protein displays only one fragment of positive D ~Hj

values. The SE parameters appeared to be very similar to those calculated for S
structures of high RMS-D values (measuring the discrepancy between R and S forms,
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Table 3. Percentage of Secondary Structures in the Proteins under Consideration

Sequence ID Rosetta (R structures) FOD (S structures)

a b Turn RCa) a b Turn RCa)

102 52.9 5.7 21.4 20 12.9 0 48.6 38.6
372 41.4 5.7 30 22.9 30 2.9 32.9 34.3
386 60 2.9 14.3 22.9 17.1 0 14.3 68.6
435 42.9 8.6 25.7 22.9 27.1 0 38.6 34.3
438 37.1 2.9 38.6 21.4 62.9 0 14.3 22.9
595 42.9 8.6 27.1 21.4 24.3 0 37.1 38.6
913 52.9 5.7 22.9 18.6 21.4 2.9 42.9 32.9

1000 44.3 0 22.9 32.9 17.1 2.9 42.9 37.1
1056 38.6 11.4 31.4 18.6 25.7 0 47.1 27.1
1134 51.4 0 30 18.6 25.7 0 37.1 37.1
1167 51.4 5.7 21.4 21.4 28.6 0 25.7 45.7
1281 20 8.6 31.4 40 41.4 0 35.7 22.9
1349 60 8.6 15.7 15.7 21.4 0 44.3 34.3
1356 25.7 8.6 44.3 21.4 42.9 0 34.3 22.9
1570 71.4 5.7 8.6 14.3 55.7 0 20 24.3
1736 65.7 5.7 18.6 10 18.6 0 24.3 57.1
2265 30 20 31.4 18.6 24.3 0 22.9 52.9
2300 32.9 5.7 37.1 24.3 15.7 0 35.7 48.6
2748 35.7 5.7 37.1 21.4 61.4 0 17.1 21.4
3208 41.4 5.7 37.1 15.7 47.1 0 21.4 31.4

a) RC¼ random coil.
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Fig. 1. F,Y Angles distribution on the Ramachandran map for selected R and S structures. Red circles:
S structures; blue triangles: R structures.



see Table 8). According to SE� the closest molecule to 2NWT is 2748S, according to Iþ
the 438S, according to SE� the structures 386S and 438S, and according to I� the
structure 1736S.

De novo Designed Proteins. Another protein of 70 amino acid residues present in
the PDB fits well with the subject of this article. This is a synthetic construct (PDB code
2AVP, chain A, Table 9) and is a very good example for the discussion focused on the
expected binding sites (see Fig. 5).

This protein appears to be similar to proteins generated and presented in this work:
according to SEþ of the protein 2300S, according to Iþ of the proteins 435S, 1056R,
1000S, 3208R, 1356R, 1570R, and 372R, according to SE� of the proteins 372R, 1134R,
and 2300R, and according to I� of the proteins 1000R and 435 R.

The 2AVP appeared to be most similar for the following proteins: 372, 1056, 435
taking the SE parameters as criterion for comparison, although only experimental
verification could measure the degree of structural similarity.
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Fig. 2. DH̃ Profiles for selected molecules



The proteins with 70 amino acid residues in the polypeptide chain categorized
according to their biological function (as it is given in PDB) were taken as control
group (P group) for comparative analysis with the R and S forms of NBP. These groups
were: ribosomal proteins, RNA/DNA binding proteins, metal binding proteins, hem
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Fig. 3. 3D Presentation of selected structures. Similar DH̃j profiles (from left to right: 1000, 2300, 435):
first row, forms R; second row, forms S. Different DH̃j profiles (from left to right: 1134, 2265, 3208): third

row, forms R; fourth row, forms S.



binding proteins (cytochromes), antibiotics, toxins, enzymes (EC 2.7.7.6), growth
factors, serine protease inhibitors, antifreeze proteins, chaperones, and proteins of
unknown function. The two additional groups: R and S of proteins of structure
generated according to Rosetta and FOD model were taken for comparative analysis
using all SE parameters as criterion for comparison.
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Table 4. Correlation between DH̃j Values as Predicted in S and R Structures. The statistically significant
correlations are presented in bold character.

Sequence ID Normal distribution Pearson Spearman

102 R yes 0.28644 0.364955
S yes

372 R yes 0.46118 0.509859
S yes

386 R yes 0.37244 0.407821
S yes

435 R no 0.487219
S yes

438 R no 0.204689
S yes

595 R yes 0.45341 0.453396
S yes

913 R yes �0.1479 �0.133024
S yes

1000 R yes 0.383921
S no

1056 R yes 0.343190
S no

1134 R no 0.147826
S yes

1167 R yes 0.323134 0.265611
S yes

1281 R yes 0.51589 0.501986
S yes

1349 R yes 0.41180 0.432211
S yes

1356 R yes 0.28936 0.280203
S yes

1570 R yes 0.16194 0.101146
S yes

1736 R yes 0.027242
S no

2265 R yes 0.221555
S no

2300 R no 0.489039
S yes

2700 R yes 0.254343
S no

3208 R yes 0.15917 0.158044
S yes



Statistical Analysis of the R and S Forms With Respect to Real Proteins with 70
Amino Acid Residues in Polypeptide Chain. Only results which appeared to verify the
significant differences are shown and discussed here.

All significant differences found according to the statistical analysis point out the R
group as significantly different versus P and S group. The SEþ , SEþmax, and Lþ
(number of fragments of positive D ~Hj), SE�max, and L� (number of fragments of
negative D ~Hj) parameters appeared significantly different for the R group versus the S
and P groups according to the non-parametric test (Wilcoxon and Kruskal-Wallis,
Table 10).

One way variance analysis (ANOVA) for Iþ (the distribution of which appeared to
be of normal character) and I� verified the R group as also significantly different with
respect to the S and P groups (Table 11 and Fig. 6). The general characteristic of all
three groups is given in Table 12.

According to the statistical analysis, the group of proteins R appeared to be
significantly different analyzing the SE parameters. Higher values of SE parameters
mean significantly higher differentiation in the sense of the distribution of fragments of
positive and negative D ~Hj values. This was seen also in the discussion of possible
biological activity. The surface of R proteins was covered by a significantly higher
number of areas of opposite hydrophobicity character. The relation of areas of positive
and negative D ~Hj characteristics in natural proteins (group P) and in proteins S
(generated according to �fuzzy oil drop� model) appeared similar.

Discussion. – In this article, a large data base of random 70 amino acid residues long
protein structures, generated according to two different structure prediction/folding
simulation methods, was analyzed with respect to structural similarity and possible
functional characteristics, taking the SE parameters as the criterion for comparison.
Taking this analysis into account, some characteristics pointing out a potential
bioactivity for some members of the data set were presented in Table 5.
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Table 5. The Short Characteristics of the Final 20 Structures Generated According to the R and the S
Model. The short characteristics of possible biological activity are suggested according to the basis of the

observation of real proteins of 70 amino acid residues in polypeptide chains.

Sequence ID R Form S Form

435 Few dispersed cavities open too much
to bind ligand

Quite good cavity for ligand binding

2300 Antifreeze-like protein Quite good ligand binding cavity
595 Antifreeze-like protein Quite good cavity to bind ligand
372 Quite good ligand binding cavity Quite good ligand binding cavity

1000 Highly dispersed hydrophobic
deficiency/excess

Quite well-defined ligand binding cavity

102 Highly hydrophobic deficiency area
on the surface

Quite well-defined ligand binding cavity

1349 Quite well-defined ligand binding cavity Quite well-defined ligand binding cavity
1356 Antifreeze-like protein Quite well-defined ligand binding cavity
1056 Antifreeze-like protein Antifreeze-like protein
1281 Few ligand binding cavities One ligand binding cavity
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Table 6. SE Parameters Describing the Structural/Functional Specificity of the Objects. The first (upper)
values correspond to the R model, the lower values to the S model: in vacuo and in water solution. All

values are in bits.

Sequence ID SEþ SEþmax SEþ rel Iþ SE� SE�max SE� rel I�

1000 3.071 3.907 0.214 63.608 3.200 3.807 0.159 55.904
3.011 3.585 0.160 31.503 3.142 3.459 0.091 41.142
3.275 3.322 0.158 39.900 3.063 3.460 0.114 44.346

2300 3.231 4.087 0.209 81.805 3.443 4.087 0.157 67.001
2.072 3.459 0.401 28.050 2.662 3.321 0.199 41.082
2.324 3.000 0.225 30.351 1.382 3.000 0.539 26.363

372 2.625 3.700 0.290 42.854 3.354 3.807 0.120 53.900
2.999 3.585 0.163 50.782 3.114 3.459 0.010 35.855
3.046 3.585 0.150 43.761 3.165 3.460 0.080 35.801

435 3.907 3.907 0.076 50.372 2.969 3.907 0.240 59.562
2.804 3.170 0.115 32.144 2.509 3.170 0.208 28.818
2.913 3.585 0.187 39.183 3.105 3.585 0.134 36.668

595 2.935 3.700 0.207 52.263 3.004 3.585 0.162 43.924
2.287 2.807 0.185 24.772 1.976 2.585 0.236 14.669
2.481 3.000 0.173 29.061 2.037 2.807 0.274 20.633

102 2.652 3.700 0.283 23.169 2.634 3.585 0.265 41.950
2.806 3.585 0.217 45.020 3.116 3.585 0.131 42.656
2.863 3.585 0.131 42.656 2.863 3.459 0.172 38.706

1056 2.817 3.585 0.214 39.822 2.755 3.585 0.231 53.033
2.867 3.459 0.171 38.990 2.867 3.322 0.137 38.307
2.745 3.459 0.206 33.664 3.036 3.322 0.086 35.910

1281 2.729 3.907 0.301 54.508 3.170 4.000 0.207 55.488
2.912 3.590 0.158 38.128 2.917 3.459 0.446 38.984
2.602 3.322 0.217 27.638 2.407 3.322 0.275 35.825

1349 2.828 3.170 0.108 25.611 2.883 3.322 0.132 38.408
2.750 3.000 0.083 26.050 1.648 3.170 0.480 17.993
2.627 3.000 0.124 21.021 1.892 3.170 0.403 28.625

1356 2.548 3.459 0.263 41.104 2.550 3.459 0.262 24.111
2.582 3.459 0.253 36.666 3.045 3.322 0.083 30.775
2.521 3.459 0.271 30.708 2.687 3.322 0.191 40.628

913 2.976 3.907 0.238 52.821 3.181 3.807 0.164 49.739
2.619 3.459 0.243 40.773 1.964 3.459 0.432 26.997
2.577 3.000 0.141 21.816 1.985 3.000 0.338 19.585

1570 3.289 3.807 0.136 42.646 2.867 3.807 0.247 38.724
2.202 3.000 0.266 36.660 3.045 3.322 0.350 30.275
2.471 3.459 0.285 49.109 2.626 3.459 0.241 39.655

2748 2.255 1.067 0.321 26.486 2.684 3.322 0.192 41.059
0.654 2.585 0.747 10.424 1.814 2.585 0.298 20.955
0.766 2.585 0.703 14.877 2.104 2.585 0.186 13.087

1167 2.260 3.585 0.369 45.051 2.900 3.700 0.216 44.720
1.639 2.807 0.416 17.008 1.998 2.807 0.288 21.301
1.815 3.000 0.345 29.147 2.121 3.000 0.293 26.713

1736 2.846 3.585 0.206 45.916 2.616 3.460 0.244 41.504
1.692 2.807 0.397 16.928 2.674 3.000 0.108 21.626
1.798 2.807 0.359 29.408 2.568 3.000 0.144 22.197

3208 2.815 3.700 0.239 40.823 2.530 3.807 0.335 49.295
1.349 3.000 0.550 17.679 1.611 3.170 0.492 27.314
1.354 2.807 0.922 17.185 0.990 1.585 0.375 8.554



For proteins shown in Table 5 presenting a �Quite good cavity to bind the ligand�,
the hydrophobicity deficiency is localized in a deep cavity (in the hydrophobic core of
the molecule) with gradual decrease of hydrophobicity deficiency in the direction of the
surface, reaching zero discrepancy versus the idealized hydrophobicity distribution on
the surface. According to the characteristics of natural proteins analyzed with the same
method [11 – 13], this is potentially an optimal binding site for a specific ligand. Thus it
appears that some of the NBPs could indeed display a ligand binding activity and
potentially also a catalytic activity.
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Table 6 (cont.)

Sequence ID SEþ SEþmax SEþ rel Iþ SE� SE�max SE� rel I�

386 2.859 3.807 0.249 52.991 3.036 3.700 0.179 44.384
1.255 2.807 0.564 24.980 1.859 2.807 0.337 22.584
1.467 3.000 0.511 29.503 1.607 3.000 0.464 30.307

1134 3.156 4.000 0.211 62.283 3.432 4.000 0.142 60.288
1.648 2.000 0.176 10.011 1.045 2.322 0.550 6.861
1.032 2.000 0.484 7.583 1.087 2.322 0.632 19.371

438 2.320 3.322 0.302 30.383 1.947 3.170 0.386 27.223
0.775 1.585 0.511 2.592 1.797 2.000 0.102 8.946
0.827 1.585 0.478 9.058 1.895 2.000 0.053 8.434

2265 3.630 4.523 0.197 73.147 3.992 4.460 0.104 95.248
0.090 1.000 0.909 6.461 1.018 1.585 0.357 8.050
0.078 1.000 0.922 0.014 0.990 1.585 0.357 8.554

Table 7. Maximum Similarity Scores for Pairwise Sequence Alignments

Sequence ID Maximum score Score for 100% identity

1000 54 531
102 38 528

1056 37 471
1134 53 537
1167 55 542
1281 42 544
1349 71 564
1356 47 536
1570 67 564
1736 71 568
2265 56 562
2300 56 535
2748 44 496
3208 54 512
372 52 516
386 57 527
435 67 519
438 42 496
595 45 538
913 49 529



Some of the proteins analyzed display highly dispersed fragments of hydrophobicity
deficiency and excess, meaning that there are many small areas suitable for hydro-
phobic ligand binding. However, such cases were not observed in real proteins present
in PDB. It cannot be excluded that in these cases both used methods fail in finding the
right solution for the folding of the corresponding sequences or, in alternative, that the
structures predicted may be only marginally stable. This is a point that will be clarified
only through production and experimental structural characterization of these proteins.
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Fig. 4. The 2NWT protein (status of unknown function). a) Secondary structure of the chain A, b)
dimeric structure of the protein, c) chain A in the color representation proportional to D ~Hj value (shown
in e)), d) the complexation area showing the dark blue (hydrophobicity higher than expected on the

surface of protein), e) D ~Hj profile as calculated for chain A in 2NWT protein.

Table 8. SE Parameters for the Protein 2NWT – Chain A and B (unknown function) in Comparison with
S Proteins, which Failed to be Folded

Protein or Sequence ID SEþ SEþmax SEþ rel Iþ SE� SE�max SE� rel I�

2NWT-A 0.00 0.00 NotDef 0.00 0.96 1.00 0.04 2.09
2NWT-B 0.75 2.58 0.71 8.91 1.84 2.81 0.34 21.72
3208 1.35 3.00 0.55 17.68 1.61 3.17 0.49 27.31

1.35 2.81 0.92 17.18 0.99 1.58 0.37 8.55
1134 1.65 2.00 0.17 10.01 1.04 2.32 0.55 6.86

1.03 2.00 0.48 7.58 1.08 2.32 0.63 19.37
438 0.77 1.58 0.51 2.59 1.80 2.00 0.10 8.95

0.83 1.58 0.48 9.06 1.89 2.00 0.05 8.43
2265 0.09 1.00 0.91 6.46 1.02 1.58 0.38 8.05

0.08 1.00 0.92 0.01 0.99 1.58 0.38 8.55



Regarding the proteins classified as �Antifreeze-like protein�, this term should be
understood as follows. The FOD model directs the hydrophobic residues toward the
center of the protein molecule with simultaneous exposure of the hydrophilic residues
on the protein surface. A polypeptide chain folded ideally according to this model
should be a molecule exposing all the hydrophilic residues on the surface with well
concentrated hydrophobic amino acids in the center of the protein body. Such molecule
would be very well soluble with no special activity in the sense of interaction with other
molecules. The binding characteristics of such a molecule could well be represented by
highly soluble antifreeze molecules, which according to the FOD model seem to be
folded in high accordance with this model displaying negligible small (or none)
hydrophobicity distribution discrepancy versus the theoretical distribution.

A general comment concerns the S structures interpreted as �unfolded�. Among the
structures of real proteins present in the PDB, one molecule was found to be classified
as unfolded (PDB code 2NWT). The SE parameters of this structure are highly
comparable to those of the structures analyzed in the present work and classified as
unfolded. This particular protein is quite peculiar. It is an element of a large protein
complex (ribosome). Thus the structure is generated independently and afterwards
complexed to the larger multi-molecular complex. Alternatively, its polypeptide chain
could fold in a specific cavity of another component of the complex. Calculated
parameters for this protein seem to be similar to proteins of S form characterized by
high RMS-D values (calculated versus the Rosetta structures). This observation is even
more interesting taking into account that the protein under consideration has the status
�unknown function� according to the PDB classification.

The structures characterized by high RMS-D values, comparing the R and S forms,
could also be interpreted as a failure of the S model. It was indeed observed that some
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Fig. 5. The 2AVP protein of the category of de novo designed proteins (according to PDB notation). a)
D ~Hj Profile of 2AVP protein, b) 3-D presentation of 2AVP according to D ~Hj value in color scale shown

in a).

Table 9. Short Description and SE Parameters for the de novo Designed Protein 2AVP-A, Which Is an 8
Repeat Consensus TPR Superhelix de novo Synthetic Construct

SEþ SEþmax SEþ rel Iþ SE� SE�max SE� rel I�

2AVP-A 2.017 3.8071 0.312 41.74 3.537 3.807 0.071 57.32
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Table 10. Results of the Statistical Analysis Verifying Difference Significance between Group R vs. Group
P and S as Obtained According to Wilcoxon (Rank Sums) for Parameters Given in a Head of each Sub-

Table

SEþ Kruskal-Wallis test value of statistics¼7.5115, p¼0.0234

Proteins N Sum of Scores Expected under Ho Std. dev. under Ho Mean score

P 182 19760 20293 367.813 108.571
R 20 2969 2230 274.000 148.450
S 20 2024 2230 274.000 101.200

SEmaxþ Kruskal-Wallis test value of statistics¼17.526, p¼0.0002

Proteins N Sum of Scores Expected under Ho Std. dev. under Ho Mean score

P 182 19234.5 20293 365.369 105.684
R 20 3369 2230 272.180 168.450
S 20 2149.5 2230 272.180 107.475

Lþ Kruskal-Wallis test value of statistics¼17.526, p¼0.0002

Proteins N Sum of Scores Expected under Ho Std. dev. under Ho Mean score

P 182 19234.5 20293 365.369 105.684
R 20 3369 2230 272.180 168.450
S 20 2149.5 2230 272.180 107.475

SE� Kruskal-Wallis test value of statistics¼8.787, p¼0.0124

Proteins N Sum of Scores Expected under Ho Std. dev. under Ho Mean score

P 182 19671 20293 367.813 108.082
R 20 3035.5 2230 274.000 151.775
S 20 2046.5 2230 274.000 102.325

SE�max Kruskal-Wallis test value of statistics¼13.642, p¼0.0011

Proteins N Sum of Scores Expected under Ho Std. dev. under Ho Mean score

P 182 19466.5 20293 365.238 106.959
R 20 3232 2230 272.082 161.600
S 20 2054 2230 272.082 102.725

L� Kruskal-Wallis test value of statistics¼13.6417, p¼0.0011

Proteins N Sum of Scores Expected under Ho Std. dev. under Ho Mean score

P 182 19466.5 20293 365.238 106.959
R 20 3232 2230 272.082 161.600
S 20 2054.5 2230 272.082 102.725

Table 11. The Results of ANOVA Test to Verify the Differences between R vs. P and S Group for Iþ and I�
(Iþ ANOVA F¼ 9.75, p<0.001)

Proteins N Mean Iþ Mean I�

P 182 33.676 36.424
R 20 47.383 49.273
S 20 33.833 34.333



sequences were too difficult to be folded according to the FOD model as compared to
the Rosetta model. The hydrophobic deficiency of the surface of the protein molecule,
observed for this class of proteins in the S model means that the hydrophobic core
(assuming it exists in the protein molecule) gets �opened� too much and gets exposed on
the surface of the molecule. Potentially, such areas could interact with other proteins
with a highly hydrophobic area on the surface. However, according to the analysis of
about 300 70 amino acid residues long proteins present in the PDB, such a situation
does not occur in real proteins.

Conclusions. – This work was carried out with two main aims. The first one was to
assess the possibility of exploring the enormous sequence space of proteins not present
in nature in the search for protein molecules endowed with potentially useful biological
functions. To this aim, we tested the performance in terms of efficiency and the
agreement between two protein structure/folding prediction software tools, the Rosetta
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Fig. 6. The parameters (mean value and standard deviation) calculated according to ANOVA test. a) for
Iþ and b) for I� .



ab initio protein structure prediction software and the FOD model for protein folding
simulations. Results obtained are encouraging in terms of the number of amino acid
sequences that can be sampled, though many of the random sequences analyzed seem
to be challenging with respect to the reliability of the structure prediction. In fact a low
level of agreement has been observed between the predictions carried out with the two
complementary methods. The origin of this result has to be analyzed in detail and could
well be due to the intrinsic nature of the sequences analyzed and possibly to a low
tendency to achieve a stable three dimensional form. Once a larger sample of NBP will
be studied it will be possible to analyze statistically significant deviations of NBP from
real proteins in terms for example of sequence composition and presence/abundance of
particular amino acid residues. Nonetheless, the FOD model seems to be able to

CHEMISTRY & BIODIVERSITY – Vol. 6 (2009)2330

Table 12. The Characteristics of All Three Groups (P: upper row, S: middle row, R: lower row in each
cell) Expressed by Mean Values, Standard Deviation, Minimum Value, Maximum Value, and Number of

Amino Acids in Polypeptide Chain

Variable Mean Std. Dev. Min Max N

N Amino acids 69.417 1.721 64 73.000 182
70.000 0 70 70.00 20
70.000 0 70 70.00 20

SEþ [bit] 2.473 0.605 0 3.535 182
2.171 1.128 0.966 3.582 20
2.872 0.388 2.254 3.630 20

SEþmax [bit] 3.338 0.460 0.097 4.087 182
3.134 0.919 1.00 4.000 20
3.734 0.304 3.170 4.524 20

DSEþ [bit] 0.865 0.354 0 1.829 182
0.963 0.494 0.324 2.133 20
0.861 0.252 0.299 1.325 20

Iþ [bit] 33.676 12.214 0 78.869 182
33.833 18.989 2.722 62.601 20
47.383 15.312 23.169 81.805 20

Lþ [bit] 10.527 2.610 1 17.000 182
10.150 4.380 2.000 16.000 20
13.600 3.050 9.000 23.000 20

SE� [bit] 2.611 0.488 0.957 3.573 182
2.464 0.768 1.072 3.539 20
2.957 0.768 1.072 3.539 20

SE�max [bit] 3.389 0.398 1 4.087 182
3.217 0.724 1.585 4.000 20
3.719 0.301 3.170 4.459 20

DSE� [bit] 0.779 0.324 0.042 2.203 182
0.752 0.339 0.307 1.462 20
0.761 0.235 0.439 1.277 20

I� [bit] 36.424 11.424 2.087 71.439 182
34.333 15.171 7.310 58.985 20
49.273 15.178 24.111 95.248 20

L� [bit] 10.835 2.569 2 17.000 182
10.250 3.878 3.00 16.000 20
13.450 2.946 9.00 22.000 20



capture structural properties of the proteins analyzed which can lead to hypothesize the
putative functional properties of a protein molecule. Attempts to produce and
experimentally characterize some of the proteins described in the present work are
currently in progress and will allow to validate the computational approach under-
taken.

The second aim of this work was that of setting up an infrastructure for massive
protein structure prediction initiatives exploiting the potential of grid computing
techniques within the framework of the EUChinaGRID project. This was an
interdisciplinary collaborative effort that involved grid experts, bioinformaticians,
and biochemists. From this viewpoint, results presented in this work demonstrate that
the infrastructure is able to support the prediction of a huge number of protein
structures and to provide tools that allow the access to this enormous computing power
also to researchers not trained in grid computing. This type of infrastructures could be
exploited not only for the study of non natural proteins, the test case and the topic of
the present work, but also for initiatives aimed at predicting the structure of a large
number of natural proteins for biomedical purposes.

The problem of �noisy� sequences seems to be of high importance in relation to
biological function in immunoglobulin production [45]. The hyper-variable loops
sequences and structures seem to be the excellent database relevant to NBP
investigation. The comparative analysis of these sequences and structures with respect
to the NBP problem will be the subject of a prospective research project.

The authors wish to tank Prof. Luisi, who actually devised the original idea and the definition of
NBPs. The authors are very grateful to Prof. Leszek Konieczny, Institute of Medical Biochemistry,
Jagiellonian University – Collegium Medicum Krakow, Kopernika 7, Poland, for fruitful discussion. Many
thanks for administrative work to Smietanska Anna, Kruk Alicja, Klepacz-Zielinska Ewa, Rak-Gubernat
Katarzyna, and Starzyk Stanisław.

The work was financially supported by the European Commission EUChinaGRID grant (contract
number: 026634).

Experimental Part

Random Amino Acid Sequences Generation. Random amino acid sequences (70 amino acid residues
long) were generated using the utility RandomBlast. The utility has been described in detail elsewhere
[46]. Briefly, RandomBlast consists of two main modules: a pseudo random sequence generation module
and a Blast software interface module. Random numbers generated by the utility are translated into
single character amino acid code using a conversion table. Single amino acids are then concatenated to
reach the specified sequence length. Each generated sequence is then given as input to the second
RandomBlast module, an interface to the blastall program [47], which searches for statistically significant
similar sequences in the non-redundant NCBI protein sequence database [48]. Blastall output is then
retrieved by RandomBlast, and the E-value [49] extracted from it. If the E-value is greater than or equals
the threshold chosen by the user, the sequence is valid and is added to the output file. Note that in our
case we regard as valid only the sequences that do not display significant similarity to any protein
sequence present in the database, so that, contrary to the normal Blast usage, valid sequences are those
displaying an E-value higher than the threshold. For the production of NBP sequences the E-value
threshold was set to 1.0 in order to be sure to sample the sequence space far away enough from the
ensemble of natural known proteins.

Rosetta Model Description. Rosetta-abinitio is an ab initio protein structure prediction software
which is based on the assumption that in a polypeptide chain local interactions bias the conformation of
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sequence fragments, while global interactions determine the three-dimensional structure with minimal
energy which is also compatible with the local biases [6]. To derive the local sequence–structure
relationships for a given amino acid sequence (the query sequence) Rosetta-abinitio uses the Protein
Data Bank to extract the distribution of conformations adopted by short segments in known structures.
The latter is taken as an approximation of the distribution adopted by the query sequence segments
during the folding process [6]. In details, Rosetta workflow can be divided into two phases. In the first
phase, the query sequence is divided in fragments of 3 and 9 amino acids. The software extracts from the
data base of protein structures the distribution of three-dimensional structures adopted by these
fragments based on their specific sequence. For each query sequence a fragments data base is derived
which contains all the possible local structures adopted by each fragment of the entire sequence. In the
second execution phase, using the derived fragments database, for each query sequence the sets of
fragments are assembled by Rosetta in a high number of different combinations using a Monte Carlo
procedure. The resulting structures are then subjected to an energy minimization procedure using a semi-
empirical force field [6], in which the principal non-local interactions considered by the software are
hydrophobic interactions, electrostatic interactions, main chain H-bonds, and excluded volume. The
structures compatible with both local biases and non-local interactions are ranked according to their total
energy resulting from the minimization procedure. In the present work, for each query sequence only the
highest ranking predicted structure was considered for further analysis (see below).

�Fuzzy-Oil-Drop� (FOD) Model Based Protein Folding. The model under consideration is based on
two main assumptions: 1) the simulation of the protein folding process rather than the prediction of the
protein structure; 2) a multi-step nature of the protein folding process is assumed according to the
experimental observations indicating the presence of intermediates in this process:

U! I1! I2! . . . . . . . . . . . . Ik! . . . . . . . . . . . . . N

where U unfolded, N native form, I intermediates, the number of which is assumed to be two in the model
applied in this work:

U!ES!LS!N

where ES early stage, LS late stage intermediate.
The ES model is based on the following assumption: the conformational subspace is limited to the

area of the Ramachandran map which appears to be optimal for backbone conformation [50] [51].
The structure of LS is generated in the presence of an external force field of hydrophobic character.

This external force field is expressed by a three-dimensional Gauss function which represents the
hydrophobicity (traditionally the value of the Gauss function is interpreted as probability) density
distribution, in agreement with the commonly accepted model of hydrophobic core in proteins [52]. The
method accepts all conformations of the folding polypeptide which display optimal internal (side chain–
side chain) interaction and additionally optimal hydrophobic side chain–side chain interaction accordant
with the external force field. Minimization of the difference between the idealized (Gauss function)
distribution and that observed in the folding polypeptide directs the folding process toward hydrophobic
core generation with the simultaneous exposure of hydrophilic residues on the protein surface.

A protein structure generated according to this model produces a very well soluble molecule with no
specific activity (in terms of exposure of surface areas with hydrophobicity deficiency/excess [10]).

Analysis of hydrophobic density distribution with respect to the idealized one reveals highly specific
irregularity most frequently localized in a well-defined area, which very often represents the active site of
the protein molecule [9]. This observation allows the use of the above described method for biological
activity (ligand binding cavity) identification.

Some attempts to fold a protein in the presence of a specific target molecule (co-enzyme, ligand, or
even substrate) have been undertaken to verify the possible participation of these molecules during the
folding process [14] [15].

The small-size-protein molecules (relatively low number of degrees of freedom) are not always able
to eliminate the hydrophilicity buried or hydrophobicity exposed in the final structure. The degree of the
disagreement is highly sequence specific. The similar example (56 amino acid residues) analyzed in [7]
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shows that the hydrophobicity discrepancy present in the in silico folded protein molecule may be of high
accordance with the one present in the crystal structure, evident from the parallel curves on the D ~Hj

profile representing the in silico folded and the native structure of this protein.
The profile representing the D ~Hj values distribution along the polypeptide chain appeared to be

highly specific for the folded protein and thus it may suggest the possible binding site.
The D ~Hj profile (D ~Hj¼ ~Ht

j � ~Ho
j where ~Ht

j and ~Ho
j are idealized and observed hydrophobicity

distribution for each j-th amino acid residue, resp.) may be used for structural/functional similarity
search. The comparative analysis may be easily performed comparing the entropy (information entropy
[53]) of the folded chain comparing the distribution of D ~Hjmaxima and D ~Hj minima observed in a
particular protein with the entirely random distribution of fragments (their length and intensity) of
positive and negative D ~Hj values.

The details concerning the early stage (ES) intermediate structure generation were presented in
details elsewhere [51] [54].

Calculation Protocol. The simulation of the folding process according to the FOD model consists of
20 consecutive minimizations of two kinds: the standard internal energy minimization (non-bonding
interaction) and the D ~Hj minimization (as described above), applied alternating one after the other.

The internal energy is calculated according to the ECEPP/3 force field [55–59], and its optimization
is performed by a numerical method with analytic gradient and Hessian approximation from second
update (until convergence is reached).

The hydrophobicity driven optimization procedure is performed according to the non-gradient
Rosenbrock method (up to 5000 steps – estimated as optimal on test runs). After every pair of simulated
hydrophobic collapse (constraint in the form of limited oil-drop size) and consecutive relaxation
(absence of any external constraints), a Gaussian expressing the theoretical spatial hydrophobicity
distribution in D ~Hj calculation is monotonically shrinking in three directions. In the final step of the D ~Hj

minimization, the size of the �fuzzy oil-drop� reaches the shape that is in approximation characteristic for
water-soluble proteins of given length [54].

According to the model description, amino acid residues in the FOD model (particularly for the
hydrophobicity driven step) are represented by their effective atoms (averaged position of atoms in side
chains). These steps are followed by the standard nonbonding interaction optimizations. The number of
these steps was insufficient to eliminate possible highly energetic mutual approaches of atoms. An
increase in the length of final optimization procedure (non-bonding interaction) was necessary due to the
unusual character of the random amino acids sequences under consideration.

This is why an additional optimization procedure was applied: energy minimization in vacuo and in
the presence of water solvent. Amber 9 molecular dynamics suite [60] [61], was used with empirical force
field ff99 [62]. Both in vacuo and in explicit solvent calculations, non-bonding pair-wise interactions were
cut off at 12 �. The TIP3P three point rigid water model was used for the solvent [63].

For each structure, the calculation procedure took 50000 optimization steps and led to the decrease
of the overall potential energy in the system. Additionally calculations in explicit solvent were preceded
by water molecules equilibration (20000 steps).

Protein Selection. The three dimensional structures of 3300 NBP amino acid sequences, generated
both according to Rosetta (called R in this article) and the FOD methods (called S in this article – as they
appeared using the standard procedure implemented on the grid system), were ordered according to
RMS-D values obtained by a pair-wise structural comparison using the Kabsch method [64]. The ten top
(the lowest RMS-D values pairs) and ten bottom (the highest RMS-D values pairs) structure pairs were
selected for detailed analysis in this work. The complete set of proteins in forms R and S will be analyzed
and presented in further articles.

The amino acid sequences of the selected proteins are reported in Table 1.
Binding Site Characterization. The entropy of a binding site involving residues close in sequence is

low, compared with the entropy of a binding site formed by residues evenly distributed in sequence.
Information entropy (SE) calculated for fragments with positive D ~Hj (D ~Hp

j ) measures the amount of
uncertainty about the organization of residues forming the binding site (see the examples discussed in
[7]).
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SEþ ¼ �
XK

j

pjlog2pj½bit� (1)

where K denotes the number of fragments with positive D ~Hj, and

pj ¼
XNij

i¼1

D ~Hp
i

D ~Hp
t

(2)

where Nij represents the number of positive D ~Hp
i values belonging to j-th fragment and D ~Hp

t is the sum of
all positive D ~Hj values in the whole polypeptide chain.

The SEþ value characterizes a particular protein and may describe an active site (fragments with
positive values). Another quantity used in the study of binding sites is the information (I) necessary to
localize residues creating the binding site. The participation of particular residues in the active site
creation is understood as a probability expressing conjunction of events (close mutual localization) and
can be created according to Eqn. 3.

I ¼ �log2

YK

j¼1

pj (3)

where K has the same meaning as in the Eqn. 1.
Both quantities (SE, I) describe similar characteristics of the event of selected residues participating

in the organization of a structural element treated as an active site.
Computational Platform (Grid System). Pharmacology appears as the one of the important

consumer of large scale computing [65]. As a computing facility for conducting the simulations described
in this work, we used the computing Grid provided by the EUChinaGRID project [66]. The
intercontinental infrastructure comprised twelve clusters, five of them in China and seven in Europe, with
a total of 257 machines with 644 CPUs. The machines are managed using gLite middleware [67], which
automatically distributes the computing tasks onto worker nodes, managed in turn by local queuing
systems, such as Torque or LSF.

The software used for computation had to be prepared for running on the Grid. This required
packaging all the programs, libraries, and steering scripts into a self-contained single distribution, which
was deployed on the Grid Storage Element and available for download. Then, a script which was
submitted for processing on the Grid was responsible for downloading this pre-packaged distribution,
installing it, running and storing the output. As the storage for the generated output, we used gLite
Storage Element, and LFC catalogue for registering the files.

To facilitate the management of the experiment which comprised the order of 10000 structures, we
set up a database and an experiment management system which was integrated within a portal as a user
interface. For automating the process of submission of jobs onto the Grid we used LCG-API [68] and
GridSphere framework [69]. This allows to monitor the progress of the experiment, statistics on the
completed jobs, etc. It is also possible to preview the generated structures and perform simple analysis
thanks to the tools integrated with the portal.

Using the Grid infrastructure was proven to be very convenient for the large scale computing.
Assuming that computing a single protein structure requires approximately one CPU hour, it would be
possible to compute only 24 structures per day on a single machine. Using only a part of the whole Grid
infrastructure (there were other jobs running concurrently) we were able to achieve a peak throughput of
ca. 900 structures per day. As a future work we are investigating the possible usage of tools for
management of experiments such as Taverna workflow system [70] or ViroLab virtual laboratory [71].

Tools Available on the Portal. Preliminary comparative result analysis is available on the portal. The
tools available are the following: visualization of secondary structure assignments, F/Y maps showing the
dihedral angles distribution in a particular protein and contact maps. The superimposed structures can be
immediately visualized by launching a JavaWebStart viewer based on Molecular Biology Toolkit [72].

CHEMISTRY & BIODIVERSITY – Vol. 6 (2009)2334



Another JavaWebStart viewer, Reveal, shows molecular surfaces unraveling areas with high observed vs.
theoretical hydrophobicity discrepancy [73–75].

Statistical Analysis. The sets of parameters describing three groups of proteins: S (according to �fuzzy
oil drop� model), R (according to Rosetta method), and P (natural proteins of 70 aa in polypeptide
chain) as described in [11–13]. The non-parametric tests (Wilcoxon test and Kruskal-Wallis test) were
applied for variables representing other than normal distribution and ANOVA test for variables
representing normal distribution. The SAS program was applied for calculation to verify the hypothesis
of significant differences between parameters as they appeared in a particular group.
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