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Abstract 
Understanding the propagation of acoustic waves through a liquid-perfused porous solid frame-
work such as cancellous bone is an important pre-requisite to improve the diagnosis of osteopo-
rosis by ultrasound. In order to elucidate the propagation dependence upon the material and 
structural properties of cancellous bone, several theoretical models have been considered to date, 
with Biot-based models demonstrating the greatest potential. This paper describes the funda-
mental basis of these models and reviews their performance. 
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1. Introduction 
Understanding the propagation of acoustic waves through cancellous bone is an important pre-requisite to 
improve the diagnosis of osteoporosis by ultrasound. Bone essentially has two types of structure, both having 
the same mineralised collagen composition. Cortical bone has porosity less than 30% and may generally be con- 
sidered to be solid; cancellous bone has porosity greater than 30% and consists of a complex open-celled porous 
network of rod- and plate-shaped elements termed trabeculae. The porosity of human cancellous bone ranges 
between 70% and 95%, the remaining volume being perfused with bone marrow. In the adult human vertebral 
body for example, both horizontal and vertical trabeculae range from 50 - 120 μm in thickness and space at in- 
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tervals of between 1200 - 5000 μm and 700 and 2000 μm respectively [1]. 
Osteoporosis leads to nearly 9 million fractures annually worldwide [2], and over 300,000 patients present 

with fragility fractures to hospitals in the UK each year [3]. Direct medical costs from fragility fractures to the 
UK healthcare economy were estimated at £1.8 billion in 2000, with the potential to increase to £2.2 billion by 
2025, and with most of these costs relating to hip fracture care [4]. 

Two mechanisms give rise to the structure of bone, modelling and remodelling. “Modelling” is the process 
primarily responsible for maintaining bones in their correct shape as they grow and respond to its biomechanical 
environment; it also controls the cortical thickness and marrow cavity diameter of bones as they age. “Remodel- 
ling” is mainly concerned with the continual replacing of old cancellous bone and occurs at discrete foci on the 
surface of the trabeculae. During remodelling, osteoclast cells create a resorption cavity that is subsequently 
filled with new collagen by osteoblast cells. In osteoporosis, there is an asymptomatic negative imbalance in 
remodelling, thereby creating a bone loss, particularly at sites of predominantly cancellous bone such as the 
spine, hip, wrist, and heel; this ultimately leads to skeletal fragility and increased risk of fracture [5].  

The conventional method of assessing osteoporosis in the clinical environment is bone mineral density (BMD, 
g∙cm−2), an areal parameter describing the bone mineral content (BMC) within a projected area. BMD is gener- 
ally measured at sites most at risk of osteoporotic fracture, the spine, hip and wrist. BMD is generally measured 
using the technique of dual energy X-ray absorptiometry (DXA) [6]. The body may be considered to consist of 
three tissue components: bone, lean and fat. By assuming a certain proportion of lean/fat tissue overlying a bone, 
the BMC may be derived by solving simultaneous attenuation equations for two X-ray energies. True volumetric 
bone density may be derived using quantitative computed tomography (QCT) utilising a conventional CT scan-
ner, a calibration phantom being scanned with the subject to convert Hounsfield numbers into g∙cm−3 [7]. QCT 
is increasingly being used, particularly at the lumbar spine although there is a higher radiation dose compared to 
DXA. Although generally utilised as a research tool for the measurement of excised tissue samples obtained 
from the pelvis, micro CT provides a typical spatial resolution of 0.01 mm and hence replicates the true trabecu- 
lar structure, compared to resolutions of approximately 1 mm for both DXA and QCT. A technique that is gain- 
ing increasing interest is magnetic resonance imaging (MRI) which essentially measures the water content of 
tissues. Bone does not therefore give an MR signal, although its presence may be inferred from a “negative” 
image [8]. 

Quantitative Ultrasound (QUS) generally involves measurements of the transmission of ultrasonic signals, ei- 
ther along a cortical bone surface or through a bone such as the heel and phalanx [9]. There are two fundamental 
measurement parameters, velocity (ms−1) and attenuation (dB). Velocity is obtained by dividing the propagation 
distance by the corresponding transit time, with through-transmission measurements recorded at the calcaneus 
(heel) and phalanx, and surface-transmission recorded primarily at the tibia. Attenuation is generally expressed 
as Broadband Ultrasound Attenuation (BUA, dB∙MHz−1) at the calcaneus, describing the linear increase in at- 
tenuation with frequency between 200 kHz and 600 kHz. It has been clinically demonstrated that velocity pro- 
vides higher precision, expressed as CV% whereas BUA exhibits higher dynamic range. It is generally accepted 
that of the QUS options, BUA measurement at the calcaneus provides the most accurate indication of osteo- 
porotic fracture risk, particularly for hip fracture. Due to technical limitations, ultrasound measurements cannot 
be performed routinely at the common anatomical sites affected by osteoporosis (spine, hip and wrist).  

A fundamental relationship exists linking the velocity ( )v  of a sound wave to the elasticity ( )E  and den- 
sity ( )ρ  of a material, namely ( )v E ρ= √  although the elasticity modulus used in the relationship is de- 
pendent upon the sound propagation mode; for example Bulk modulus +4/3 of the Rigidity modulus for the lon- 
gitudinal wave (), the rigidity modulus for the shear wave and the Young’s modulus for the bar wave. Young’s 
modulus is derived from mechanical testing and longitudinal velocity from ultrasound measurements [10]. A 
similar fundamental relationship does not exist for BUA. It has been shown however that BUA follows a para- 
bolic-type dependence on porosity having a minimum values corresponding to both solid bone (0% porosity) 
and marrow (100% porosity) [11]. Hence, similar BUA values may be obtained for a few marrow pores within a 
largely solid bone and a few bony trabeculae within a largely marrow sample. A parameter that follows a similar 
pattern is the surface area of the bone-marrow interface; associated with this, a linear relationship between BUA 
and fractal dimension has been demonstrated [12].  

Even though more than twenty years have passed since BUA was first described [13], there remains a lack of 
a fundamental understanding of the dependence of ultrasound propagation, and BUA, in particular, upon the 
material and structural properties of cancellous bone. In order to elucidate these relationships, a number of theo- 
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retical approaches have been considered including scattering, simple mixtures, idealized microstructures, and 
Biot. Scattering is caused by sudden spatial changes in elastic properties, the magnitude being dependent on 
relative size of in-homogeneities and the ultrasound wavelength. Multiple Scattering may also be considered, 
being a combination of the original and previously scattered waves. Boutin [14] has combined rigid-porous the- 
ory and scattering to investigate the low frequency scattering of acoustic wave propagation in heterogeneous 
media made of air and motionless inclusions. It should be noted however that scattering theories are only valid 
for low concentrations of isolated inhomogeneity and are not generally applicable to the study of cancellous 
bone. The simple mixture theory expresses velocity in terms of bone volume fraction, density, and bulk modulus. 
Chernov’s theory [15] combines scattering and simple mixture theory via velocity fluctuations and scatterer size. 
Simple mixture theories have also had limited success for porous media such as cancellous bone. Two theories 
that are inherently applicable to the solid framework perfused with a visco-elastic fluid are the Schoenberg and 
Biot theories. Schoenberg’s theory [16]-[18] considers periodically alternating parallel solid-fluid layers but 
does not consider the viscous absorption. The theory predicts two compressional waves, often referred to as 
“fast” and “slow” respectively, when the waves propagating through the solid frame of bone and marrow are in- 
phase and out-of-phase respectively. The angular dependences of phase velocities for the fast and the slow 
waves in cancellous bone have been predicted [19], along with the anisotropic behaviour of acoustic wave 
propagation [20]. Biot theory was specifically developed to describe acoustic wave propagation in fluid-satu- 
rated porous elastic media [21] [22]; although originating for geophysical testing of porous rocks, it has been 
used extensively to describe the wave motion in cancellous bone. The Biot theory allows for an arbitrary micro- 
structure, with separate motions considered for the solid elastic framework (bone) and the interspersed fluid 
(marrow), induced by the ultrasonic wave, and also includes energy loss due to viscous friction between solid 
(bone) and fluid (marrow). In addition to the two compressional waves predicted by Schoenberg’s theory, the 
Biot theory also predicts a shear wave. McKelvie and Palmer [23] were first to apply Biot theory to ultrasonic 
wave propagation in cancellous bone. Hosokawa and Otani [24] first observed experimentally the two theoreti- 
cally predicted compressional waves in cancellous bone at ultrasonic frequencies. The Biot model has since 
been used extensively to describe the wave motion in trabecular (cancellous) bone [25]-[28]. Attenborough et al. 
[29] presented tortuosities deduced from audio-frequency measurements in air-filled cancellous bone replicas 
and showed that there was strong anisotropy. The Biot theory has been further developed including semi-ana- 
lytical approach that allows for transverse anisotropy in the frame elastic moduli, tortuosity and permeability for 
geophysical applications [30]. A modified Biot-Attenborough (MBA) model has also been proposed for acoustic 
wave propagation in a non-rigid porous medium with circular cylindrical pores starting from a formulation for a 
rigid-framed porous material [31]-[33]. The MBA has been used to predict the dependences of velocity and at- 
tenuation on frequency and porosity in bovine cancellous bone [34] [35]. The Biot model has also been modified 
to include the acoustic anisotropy of cancellous bone by introducing empirical angle-dependent parameters, and 
used to predict both the fast and slow wave velocities as a function of propagation angle with respect to the tra- 
becular alignment of cancellous bone [36]. 

Previous work on the influence of anisotropic pore structure and elasticity in cancellous bone has been ex- 
tended by developing an anisotropic Biot-Allard model allowing for angle dependent tortuosity and elasticity by 
Aygün et al. [37]. The extreme angle dependence of tortuosity corresponding to the parallel plate microstructure 
used by Hughes et al. [20] has been replaced by angle dependent tortuosity values based on data for slow wave 
transmission through air-filled bone replicas. Audio-frequency data obtained at audio-frequencies in air-filled 
bone replicas are used to derive an empirical expression for the angle-and porosity-dependence of tortuosity.  

Most recently, Aygün et al. [38] [39] have transmitted ultrasonic signals through water saturated stereolitho- 
grapical bone replicas and through rigid porous ceramics [40]. Predictions of a modified anisotropic Biot-Allard 
model, which neglects scattering have been compared to measurements made at normal and oblique incidence in 
a water filled tank at 100 kHz and 1 MHz. Remarkably, it is found that the expected occurrence of scattering 
does not cause significant discrepancies between predictions and data at 100 kHz (which would be equivalent to 
1.3 MHz in real bone), perhaps as a consequence of the fact that the samples behave as low pass filters. Scatter- 
ing should be even more important at 1 MHz (equivalent to 13 MHz in real bone) where the fast and slow wa- 
velengths are 3 mm and 1.5 mm respectively. Nevertheless the modified Biot-Allard theory is found to predict 
the observed simple relationship between incident and transmitted waveforms at 1 MHz. Another effect of the 
structural anisotropy will be variation of permeability with direction.  
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2. The Biot Model 
The Biot theory predicts the complex velocities of two compressional waves and a single shear wave, given by; 
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where 22 11 122P R Qρ ρ ρ∆ = + − , PQR  are generalized elastic constants, 11ρ , 22ρ , and 12ρ  are mass coef-
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where bK , fK , and sK  are the bulk module of skeletal frame, fluid, and solid, respectively; N  is the shear 
modulus and φ  is the porosity.  

The bulk modulus of the skeletal frame ( )bK  and the bulk modulus of the solid ( )sK  are given by; 
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where bυ  and sυ  are the Poisson’s ratio of the skeletal frame and the solid, respectively, bE  is the Young’s 
modulus of the skeletal frame given by ( )1 n

b sE E φ= − ,where sE  is the Young’s modulus of the solid, and 
n  depends on the alignment of the structure [41]. 

The total mass of the fluid-solid aggregate per unit volume is given by 11 12 222ρ ρ ρ ρ= + + . The coefficient 
12ρ  represents a mass coupling parameter between fluid and solid, 11ρ  represents the total effective mass of 

the solid moving in the fluid, and 22ρ  depends on the geometry of the frame not on the viscosity of the fluid 
[21]. The mass coefficients may be written 

11 1 aρ ρ ρ= +                                       (7) 
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( )12 1fρ ρ φ α= − −                                    (9) 

where aρ  is the inertial coupling term given by 12aρ ρ= − , 1ρ  is the mass of solid per unit volume of aggre-
gate given by ( )1 1sρ ρ φ= − , and 2ρ  is the mass of fluid per unit volume of aggregate given by 2 fρ φρ= .  

Johnson et al. [42] have presented the dynamic tortuosity as; 
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where α∞  is the tortuosity, Λ  is the viscous characteristic length, η  is the viscosity, and 0k  is the perme-
ability. 

Biot theory considers the material to be isotropic, although tortuosities deduced from audio-frequency meas-
urements in air-filled bone replicas, assuming rigid-porous behaviour, have shown a strong anisotropy Hughes et 
al. [19] have stated that there has been a consistent discrepancy between measured and predicted attenuation. It 
should be noted also that Biot theory does not include thermal effects. When the saturating fluid is air rather 
than a liquid, thermal effects become important and a further modification of the Biot theory is necessary.  

3. The Biot-Attenborough Model 
The Modified Biot-Attenborough (MBA) model was developed to consider acoustic wave propagation in a non- 
rigid porous medium with circular cylindrical pores [31]. The formulation starts from Attenborough’s model [32] 
which is concerned with rigid-framed media and, therefore, does not include the fast wave of the Biot theory, 
and treats the viscous and thermal effects in a separate manner. A non-rigid structure is then allowed for by in-
troducing an additional parameter and boundary condition. A similar formulation to the MBA model has been 
employed [35] with three new phenomenological parameters, namely: the boundary condition, phase velocity, 
and impedance parameters. An idealised microstructure was assumed consisting of circular cylindrical pores and 
considered one-dimensional sound propagation along with the axes of the cylinders.  

The continuity equation of one-dimensional acoustic wave propagation through a single circular cylindrical 
pore filled with fluid is given by; 

f x t
υ ρρ

∂ ∂
− =

∂ ∂
                                   (11) 

where υ  is the averaged particle velocity over the pore cross section for propagation in the x  direction, 
which is taken to be the direction normal to the surface of the model porous medium. The equation of motion is 
given by; 
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where p  is the acoustic pressure, ω  is the angular frequency, and ( )cρ ω  is the frequency-dependent den-
sity given by 
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1i = − , 0J  and 1J  are the cylindrical Bessel functions of the zeroth and the first order, respectively, and 
λ  is the dimensionless parameter related to the thickness of the viscous boundary layer at a pore wall and given 

by ( )1 2
1amλ ω ν=  where a  is the radius of the circular cylindrical pore, 1m  is a boundary condition pa-

rameter allowing for non-rigidity of the pore frame, and ν  is the kinematic viscosity of the fluid.  
The frequency-dependent compressibility of the fluid within a pore of arbitrary (but constant) cross section is 

given by; 
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where γ  is the specific heat ratio of the fluid, PrN  is the Prandtl number, and fc  is the equilibrium sound 
velocity of the fluid.  

When the analysis, based on the sound propagation through a single circular cylindrical pore, is extended to a 
bulk non-rigid porous medium, the complex propagation constants of the fast and slow waves are given, respec-
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where sk  is the propagation constant of the pore frame given by s sk cω=  where sc  is the pore frame ve-
locity, ck  is the propagation constant of the fluid in the pore given by ( ) ( )c c ck Cω ω ρ ω= , sk  is the wave 
number of a hypothetical fluid with an extremely low wave velocity, and 2m  is a phase velocity fitting pa-
rameter. 

The phase velocities and attenuation coefficients of the fast and slow waves can be obtained from the real and 
imaginary part of the complex propagation constant of the fast and slow waves respectively.  

4. The Schoenberg Model 
The Schoenberg model considers periodically alternating parallel solid-fluid layers, assuming that the viscous 
skin depth is much less than the fluid layer thickness when the fluid layer is ideal. Schoenberg has expressed 
acoustic wave propagation in terms of slowness vector given by ( )1 2 3, ,s s s s= . The components of the slow-
ness vector parallel to the layers, 1s , and normal to the layers, 3s , are related by; 
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where fV  is the sound speed of the fluid, sV  is the compressional speed of the solid, ρ  is given by 

( )1f sρ φρ φ ρ= + − , plV  is the plate velocity given by; 
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where shV  is the shear speed of the solid. 

The phase velocity can be found from the inverse of the magnitude of the vector, ( )( )1 21 2 2
1 31s s s− = +  and 

the propagation angle with respect to the layering ( )( )1
3 1tan s sθ −= . Schoenberg’s theory predicts two com-  

pressional waves equivalent to the acoustic waves propagating through the solid frame and fluid being in-phase 
and out-of-phase respectively. Inertial coupling varies with propagation angle relative to the stratification. For 
propagation parallel to the layers, inertial coupling is zero, and waves may propagate in the fluid and solid inde-
pendently [19]. 

5. The Anisotropic Biot-Hughes Model 
The Anisotropic Biot model incorporates viscous effects and anisotropic effects into the Biot model in a simple 
and straightforward manner [20], assuming that the degree of inertial coupling within Schoenberg’s layers are 
equivalent to that occurring in an arbitrary anisotropic porous medium as described by the Biot’s theory. An an-
gle dependent tortuosity was introduced to describe a layered structure in the Biot’s theory, from which the an-
gle dependant tortuosity may be obtained by equating the compressional phase velocity in terms of α  from the 
Biot’s theory [Equation (1)], with that from Schoenberg’s model in terms of propagation angle, θ , [Equations 
(18) and (19)]. Shear in the solid is neglected. 

( 0bK N= =  and 2 0PR Q− = ). The tortuosity was found from 
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The angle-dependent tortuosity given by Equation (20) should be substituted for α∞  to predict wave proper-
ties that change with orientation. Hughes et al. have observed a significant discrepancy, for predictions of the 
dependence of the fast wave speed on angle, between the Stratified Biot model and Schoenberg’s theory, dis-
agreeing by almost 50% at 0˚. They have also stated that the Stratified Biot model gives poorer agreement with 
slow wave data than the Schoenberg model, both quantitatively and in the curvature of its angular variation. 

6. The Anisotropic Biot-Attenborough Model 
Aygün et al. [37] have combined the heuristic form of angle-dependent elasticity suggested by Lee et al. [36] in 
Biot-Allard theory with a heuristic angle and porosity dependent tortuosity function based on data obtained at 
audio frequencies with air-filled (human) bone replicas by Attenborough et al. [29]. The heuristic form for po-
rosity and angle dependent tortuosity may be written: 

( )211 1 cosr kα θ
φ∞

 
= − − + 

 
                              (21) 

where r  and k  can be considered adjustable.  
The assumed angle dependence function is chosen arbitrarily but is simple and consistent with the expected 

variation in fast wave speed with angle. A range of possible values of r  and k  have been found by compar-
ing predictions of Equation (21) for 0θ =   and 90˚ respectively with values deduced from air-filled replica 
bones (Attenborough et al. [29]) of known porosity. Values of r  and k  are found by solving the resulting 
simultaneous equations. The value of r  is predicted to have important influence on the fast wave speed varia-
tion with porosity perpendicular to the dominant structural orientation and on the slow wave speed variation 
with porosity parallel to the dominant structural orientation. 

Aygün et al. [38] have reported measurements of ultrasonic transmission made through water-saturated bone 
replicas at 100 kHz and 1 MHz. The resulting data are compared with predictions of a modified Biot-Allard 
model with anisotropic angle-and-porosity dependent tortuosity, and angle-dependent elasticity. Transmitted 
signals for water saturated stereolithograpical bone replicas have been predicted by modified anisotropic Biot- 
Allard model, which neglects scattering, and the results have been compared to measurements made in a water 
filled tank at 100 kHz and 1 MHz. The wavelengths of the slow and fast wave in water-saturated STL bone rep-
licas at 100 kHz are 15 mm and 30 mm, respectively. These wavelengths are comparable with the dimensions of 
microstructural elements of STL bone replicas. According to Williams [43], the pore sizes in cancellous bone 
vary between 0.5 and 1 mm, so typical trabeculae widths in the replicas vary between 6.5 and 13 mm. Remarka-
bly, scattering seems not to cause significant discrepancies between predictions and data at 100 kHz (which 
would be equivalent to 1.3 MHz in real bone), perhaps as a consequence of the fact that the samples behave as 
low pass filters. Scattering should be more important at 1 MHz (equivalent to 13 MHz in real bone) where the 
fast and slow wavelengths are 3 mm and 1.5 mm respectively. So the agreement between predictions and data is 
rather surprising. These data and predictions support further use of Biot-based theories and of STL replicas for 
studying ultrasonic transmission through bone. 

Aygün et al. [39] have investigated further ultrasonic wave transmission in water-saturated bone replicas at 1 
MHz as a function of angle. The predictions of the anisotropic Biot-Allard model allowing for angle-dependent 
elasticity and angle-and-porosity dependent tortuosity have been compared with measurements of pulses cen-
tered on 1 MHz transmitted through water saturated stereo-lithographical (STL) bone replicas which are thirteen 
times larger than the original bone samples at normal and oblique angles. The predictions and data are in rea-
sonable agreement despite the expected role of scattering. 

7. Discussion 
Although Schoenberg’s theory predicts two compressional waves equivalent to the wave of the first kind and the 
wave of the second kind of Biot’s theory, it does not predict the shear wave of the Biot’s theory. Schoenberg’s 
theory does not consider the fluid viscosity, and thermal effects, and consequently, it is not possible to use 
Schoenberg’s theory to predict wave attenuation or to make comparisons with the absorption predicted by Biot 
theory. The anisotropic behaviour of acoustic wave propagation in cancellous bone using the Schoenberg theory 
has been investigated, Hughes et al. [19] stating that the inclusion of viscosity in the Biot’s theory gives no sig-
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nificant advantage in respect of agreement with experimental findings, and that the omission of the viscosity in 
Schoenberg’s model prevents it from accounting for viscous absorption and confines its application to Biot’s 
“high” frequency region (Hughes et al. [20]).  

Both the velocity and attenuation of sound as predicted by the Biot theory are dependent on frequency, the 
elastic properties of the constituent materials, porosity, permeability, tortuosity, and effective stress. The original 
Biot formulation introduced a frequency-independent pore shape parameter. In a subsequent refinement, the 
frequency-dependent viscous effects due to relative motion of fluid and solid in the porous medium are pre-
dicted to depend on a viscous characteristic length (Johnson et al. [42]). This is dominated by the smallest pore 
cross sections and is difficult to measure. When the saturating fluid is air rather than a liquid, thermal effects 
become important and a further modification of the Biot theory is necessary since the original formulation does 
not include them. Such a modification, which has been used mainly when modelling the acoustical properties of 
air-filled porous materials, used in building acoustics and engineering acoustics, introduces a thermal character-
istic length (Allard [44]). Twice the inverse of thermal characteristic length represents the pore surface area per 
unit volume. In materials that are not affected by water saturation, this can be measured by a water suction 
method (Leclaire et al. [45]). For many materials the thermal characteristic length is approximately twice the 
viscous characteristic length. The inclusion of the thermal characteristic length is relevant to comparison of pre-
dictions with high frequency data obtained from air-saturated bone replicas. During acoustic excitation (e.g. 
from a loudspeaker) of an air-filled porous solid most of the acoustic energy travels in the pores and the acous-
tical properties are described well by assuming that the solid frame is rigid. On the other hand intimate me-
chanical contact between a transducer and a porous elastic medium excites waves predominantly in the solid 
frame. Fellah et al. [26] have presented an analytical model of the reflection and transmission coefficient of a 
slab of cancellous bone with an elastic frame based on the Biot theory modified by Johnson et al. [42] to de-
scribe the viscous interaction between fluid and structure. By comparing predictions with laboratory data on ul-
trasonic pulse transmission through water-filled samples of human cancellous bone, Fellah et al. [26] have con-
cluded that the modified Biot theory using Johnson et al. [42] model is suitable for describing the propagation of 
ultrasonic wave in cancellous bone. A significant attraction of the Biot theory is that it includes structurally de-
pendent parameters including permeability and tortuosity as well as the elastic constants of the porous frame and 
frame material (Allard [44]). An important limitation of the Biot theory is that it requires that the acoustic 
wavelengths to be large compared with the microstructural features (such pores and trabeculae in cancellous 
bone). Another difficulty with the Biot theory is that it requires knowledge of many parameters, some of which 
are hard to determine.  

The inherent anisotropy of cancellous bone means that the acoustical properties vary with transmission direc-
tion. Tortuosities deduced from audio-frequency measurements in air-filled bone replicas, assuming rigid-po- 
rous behaviour, have shown a strong anisotropy [25]. To predict fast wave transmission it is necessary to allow 
for elastic anisotropy also. The trabeculae in cancellous bone suggest transverse anisotropy: an idealized version 
of which, for example, is parallel plates (Hughes et al. [19]). A method of including the effects of anisotropy in 
the Biot theory (Hughes et al. 2007) introduces an angle dependent tortuosity, based on the parallel plate ideali-
zation of the microstructure, and a heuristic angle dependent Young’s modulus. However the approach of 
Hughes et al. [20] did not yield particularly good predictions of the angle dependence of fast wave speeds.  

Lee et al. [36] have stated that the MBA model predicts a slightly negative dispersion of phase velocity line-
arly with frequency and the nonlinear relationships of attenuation and BUA with porosity. The experimental re-
sults presented by Lee et al. [36] are in good agreement with the theoretical results estimated with the MBA 
model. 

The anisotropic pore structure and elasticity of cancellous bone cause wave speeds and attenuation in can-
cellous bone to vary with angle. Aygün et al. [37] have extended previous work on the influence of anisotropic 
pore structure and elasticity in cancellous bone by developing an anisotropic Biot-Allard model allowing for an-
gle-dependent elasticity, and angle-and-porosity dependent tortuosity. The extreme angle dependence of tortuos-
ity corresponding to the parallel plate microstructure used by Hughes et al. [20] has been replaced by angle-and- 
porosity dependent tortuosity values based on data for slow wave transmission through air-filled stereolithogra-
phy (STL) bone replicas Aygün et al. [38]. It has been suggested that the anisotropic Biot-Allard model could be 
used to give further insight into the factors that have the most important influence on the angle dependency of 
wave speeds and attenuation in cancellous bone. Nevertheless the applicability of Biot-based theories to ultra-
sonic propagation in bone remains in question given the expected role of scattering which is neglected in the 
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these theories. 
Predictions of a modified anisotropic Biot-Allard theory by Aygün et al. [39] have been compared with mea-

surements of pulses centered on 1 MHz transmitted through water saturated stereo-lithographical (STL) bone 
replicas which are thirteen times larger than the original bone samples at normal and oblique angles. The predic-
tions and data are in reasonable agreement despite the expected role of scattering. 

The likely ranges of validity for Biot modelling approaches can be discussed in terms of the ratio ( )l Lε =  
of a characteristic inhomogeneity size ( )l  and the reduced sound wavelength 2πL λ=  ( )λ . Scattering is 
likely to be significant for values of ε  greater than 1 whereas Biot theory was derived for values of ε  that are 
significantly less than 1. At 1 MHz the fast and slow wavelengths are 3 mm and 1.5 mm respectively. For the 
fast waves the values of the ratios, ε , in FRA and CAB replicas are 0.1257 and 0.3142 respectively, and for the 
slow waves the values are 0.2513 and 0.6283. These indicate clearly that scattering should be significant so the 
agreement between Biot-based predictions and data at 1 MHz is rather surprising. 

8. Conclusions and Further Work 
Several models being used for acoustic wave propagation in cancellous bone have been presented and reviewed. 
Of these, the various forms of Biot theory have shown some promise. That by Fellah et al. [26], has been found 
to give excellent agreement with data obtained from transmitting ultrasonic pulses through water-filled samples 
of human cancellous bone. Using another version of Biot theory, Lee et al. [36] have observed that the phase 
velocity is approximately non-dispersive and the attenuation coefficient linearly increases with frequency. Lee et 
al. [34] also state that the experimental results are in good agreement with the theoretical results estimated with 
the MBA model which predicts a slightly negative linear dispersion of phase velocity with frequency and the 
nonlinear relationships of attenuation and BUA with porosity. On the other hand, Haiat et al. [46] have stated 
that scattering effects are responsible for the negative values of dispersion whereas the frequency dependence of 
the attenuation coefficient in bone marrow and/or in the trabecular is shown to induce an increase in the disper-
sion. The existence of the trabeculae in cancellous bone means that it has transverse anisotropy. The inherent 
anisotropy of cancellous bone means that the acoustical properties vary with transmission direction [29]. To 
predict fast wave transmission it is necessary to allow for elastic anisotropy also. Although Hughes et al. [20] 
have presented a method of including the effects of anisotropy in Biot theory introducing an angle dependent 
tortuosity, based on the parallel plate idealization of the microstructure, and a heuristic angle dependent Young’s 
modulus, their approach does not yield particularly good predictions of the angle dependence of fast wave 
speeds and another effect of the structural anisotropy will be variation of permeability with direction.  

Aygün et al. [38] have stated that the use of stereolithograpical bone replicas made from resin has the poten-
tial to enable systematic investigations of the influences of perforation and thinning in cancellous bone on the 
acoustical and mechanical properties of the bone structure. Waves transmitted through STL bone replicas with 
higher porosity values have higher amplitudes. Osteoporotic bones will have higher porosity values due to bone 
loss, so greater energy will be transmitted through them in comparison with normal bone.  

Another consequence of using replica bones which are 13 times the actual size of the bone microstructure is 
that scattering should become important at lower frequencies than that in measurements with real bone samples. 

The predictions of the anisotropic Biot-Allard model allowing for angle-dependent elasticity and angle-and- 
porosity dependent tortuosity have been compared with measurements made in a fluid (water) filled tank at 1 
MHz by Aygün et al. [39]. It is found that predictions of the variation of transmitted waveforms with angle 
through two types of bone replica are in reasonable agreement with data despite the fact that scattering is not in-
cluded in the theory.  

A Finite Element Models (FEM), preferably an anisotropic Biot-based model modified by Aygün et al., 
[38]-[40], for cancellous bone should be developed. This would enable modelling of complete bone structures 
which would be more appropriate to the context of clinical monitoring. Such models of the acoustical properties 
of complex arrangements of anisotropic porous and elastic media are used increasingly in engineering studies, 
for example those related to the acoustical design of vehicle interiors [47]-[50]. 

Boutin [14] has discussed a general multiple-scale approach that allows for scattering and visco-thermal ef-
fects in a rigid-porous medium and has considered a specific application to a parallel plate medium. However, 
the development of model capable of covering both viscous and scattering regimes and applicable to an aniso-
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tropic poroelastic medium remains a formidable challenge. 
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