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Quantitative ultrasound methods are widely investigated as a promising tool for tissue 
characterization. In this paper, a novel quantitative method is developed which can be used to 
assess scattering properties of tissues. The proposed method is based on analysis of 
oscillations of the backscattered echo power spectrum. It is shown that these oscillations of 
the power spectrum are connected with the distances between scatterers within the medium. 
Two techniques are proposed to assess the scatterer’s distribution. First, we show that the 
inverse Fourier transform of the backscattered echo power spectrum corresponds to a 
histogram of the distances between scatterers. Second, the Hilbert-Huang transform is used to 
directly extract the power spectrum oscillations. Both methods are examined by means of a 
numerical experiment. A cellular gas model of a biological medium is considered. Results are 
presented and discussed. Both methods can be used to evaluate the scatterer’s distribution by 
means of the power spectrum oscillations.  
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1. Introduction
Quantitative ultrasound (QUS) methods are now widely investigated as a promising tool 

for tissue characterization [1, 2], temperature monitoring [3] or breast lesion diagnosis [4]. In 
comparison to standard ultrasound imaging, based on reflectivity, QUS techniques assess 
different tissue properties. These methods can be used to create B-mode like parametric maps 
[5–9] A great number of QUS methods are spectral-based. The backscattered echo spectrum 
carries information about scattering properties within the investigated tissue. For instance, the 
spectrum of backscattered ultrasound can be used to calculate the attenuation [10], 
nonlinearity parameter [11] or assess tissue stiffness [12]. QUS methods are usually based on 
physical models of the medium; however, there are efforts to model the spectrum as a time-
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series, and extract useful features for tissue characterization [13,14]. While the spectrum of 
the ultrasonic pulse reflected from a single scatterer is similar to the spectrum of the 
transmitted pulse, the signal resulting from reflection on a cluster of scatterers is much more 
complex; the spectrum becomes less smooth, exhibiting strong variability reflecting local, 
specific, scattering conditions in the tissue.  
 In this paper, a novel spectral-based method for tissue characterization is described. Our 
method is based on analysis of the backscattered echo spectrum. It is proved that the spectrum 
variability can be used for tissue characterization. First, a model is derived to show that the 
spectrum variability is related to the scatterers’ distribution. For this purpose, the model of 
point scatterers is used. The backscattered echo power spectrum can be split into the spectrum 
of the emitted signal, and a part characterizing the medium. Next, the Hilbert-Huang 
transform (HHT) is applied to decompose the power spectrum into so-called “intrinsic mode 
functions” (IMF). It is depicted that IMFs caries information on the spectrum variability.  
 

2. Materials and methods 
In this study, a 1-D model of the medium, consisting of point scatterers will be 

considered. Let us express the scattering from a point target as: 
 

𝑓𝑓(𝑡𝑡) =  𝑤𝑤𝑤𝑤(𝑡𝑡 − 𝑡𝑡𝑖𝑖), (1) 
 
where w is the reflectivity of the point scatterer. It describes the physical properties of the 
scatterer, and the capacity to reflect the incident ultrasound pulse p(t). It must be stated that in 
our model the incident wave is not modified as it propagates through the medium. The time 
shift 𝑡𝑡𝑖𝑖 corresponds to the scatterer’s position by means of the relation 𝑡𝑡𝑖𝑖 =  2𝑧𝑧𝑖𝑖

𝑐𝑐
 , where 𝑧𝑧𝑖𝑖 is 

the propagation distance and c is the speed of sound (constant speed of sound c is assumed).  
Let us consider the medium consisting of J scatterers. The spectrum of backscattered 

echo from a collection of J scatterers can be expressed as a linear combination: 
  

𝐸𝐸(𝜔𝜔) = 𝑃𝑃(𝜔𝜔)𝐻𝐻(𝜔𝜔) = 𝑃𝑃(𝜔𝜔)�𝑤𝑤𝑗𝑗

𝐽𝐽

𝑗𝑗

𝑒𝑒−𝑖𝑖𝑖𝑖𝑡𝑡𝑗𝑗 , (2) 

where 𝑃𝑃(𝜔𝜔) is the Fourier transform of the emitted pulse, the sum 𝐻𝐻(𝜔𝜔) characterizes the 
medium, 𝑤𝑤𝑗𝑗 and 𝑡𝑡𝑗𝑗  are the reflectivity and time (spatial) shift of the j-th scatterer, respectively. 
Additionally, the power spectrum is given by: 
 

𝑄𝑄𝐸𝐸(𝜔𝜔) = 𝐸𝐸(𝜔𝜔)𝐸𝐸∗(𝜔𝜔) = |𝑃𝑃(𝜔𝜔)|2�𝑤𝑤𝑗𝑗

𝐽𝐽

𝑗𝑗

𝑒𝑒−𝑖𝑖𝑖𝑖𝑡𝑡𝑗𝑗�𝑤𝑤ℎ

𝐽𝐽

ℎ

𝑒𝑒𝑖𝑖𝑖𝑖𝑡𝑡ℎ =  

= |𝑃𝑃(𝜔𝜔)|2 ��𝑤𝑤𝑗𝑗2 + � 2𝑤𝑤𝑗𝑗𝑤𝑤ℎcos (𝜔𝜔(𝑡𝑡ℎ − 𝑡𝑡𝑗𝑗))
𝑗𝑗,ℎ:𝑗𝑗<ℎ𝑗𝑗

.�. (3) 

The power spectrum 𝑄𝑄𝐸𝐸(𝜔𝜔) is the Fourier transform of the autocorrelation function. 
According to the eq.(3), the power spectrum is a product of the emitted pulse power spectrum 
and an oscillatory part describing spectrum variability. The last part is connected with the 
distances between scatterers 𝑡𝑡ℎ − 𝑡𝑡𝑗𝑗  =  2(𝑧𝑧ℎ−𝑧𝑧𝑗𝑗)

𝑐𝑐
= 2𝑑𝑑ℎ,𝑗𝑗

𝑐𝑐
 in the medium.  
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In order to estimate the spatial distribution of distances 𝑞𝑞(𝑑𝑑) (histogram) between 
scatterers, the inverse Fourier transform of the oscillatory part in eq. (3) must be calculated: 

 

𝑞𝑞′(𝑡𝑡) = 𝐹𝐹−1 ��𝑤𝑤𝑗𝑗2 + � 2𝑤𝑤𝑗𝑗𝑤𝑤ℎcos (2
𝜔𝜔
𝑐𝑐
𝑑𝑑ℎ,𝑗𝑗)

𝑗𝑗,ℎ:𝑗𝑗<ℎ𝑗𝑗

� =  

 

= �𝑤𝑤𝑗𝑗2𝛿𝛿(0) + � 2𝑤𝑤𝑗𝑗𝑤𝑤ℎ𝛿𝛿(𝑡𝑡 −
2𝑑𝑑ℎ,𝑗𝑗

𝑐𝑐
)

𝑗𝑗,ℎ:𝑗𝑗<ℎ𝑗𝑗

=  

 
= 𝑞𝑞(𝑑𝑑) = �𝑤𝑤𝑗𝑗2𝛿𝛿(0) + � 𝑐𝑐𝑤𝑤𝑗𝑗𝑤𝑤ℎ𝛿𝛿(𝑑𝑑 − 𝑑𝑑ℎ,𝑗𝑗)

𝑗𝑗,ℎ:𝑗𝑗<ℎ𝑗𝑗

, (4) 

 
where 𝛿𝛿(∙) is the Dirac delta function and 𝑡𝑡 = 2𝑑𝑑

𝑐𝑐
. The above sum can be interpreted as a 

histogram of distances between scatterers with reflectivities 𝑤𝑤𝑗𝑗𝑤𝑤ℎ that measure the 
importance of a particular distance 𝑑𝑑ℎ𝑗𝑗. Generally, for J scatterers there will be J(J-1)/2 
possible distances. With equidistant scatterers, the shape of the histogram can be easily 
predicted. However, to model biological conditions, scatterers must be localized randomly. 
To accomplish this, a cellular automaton discrete model was utilized. The line of length L was 
divided into J equal bins (one for each scatterer) of length D=L/J. The position of the j-th 
scatterers was given by 𝑧𝑧𝑗𝑗 = 𝑧𝑧𝑜𝑜𝑗𝑗 + 𝜍𝜍𝑗𝑗, 𝑧𝑧𝑜𝑜𝑗𝑗 = (𝑗𝑗 − 1/2)𝐷𝐷 was the position of the j-th bin’s 
center. The random variable 𝜍𝜍𝑗𝑗 was used to provide a random position of the scatterer in the 
cell. In our study, 𝜍𝜍𝑗𝑗 was sampled from the uniform distribution on the interval �− 𝜒𝜒𝜒𝜒

2
, 𝜒𝜒𝜒𝜒

2
�, 

where 0 < 𝜒𝜒 < 1 is the level of chaotization, when scatterers are placed regularly 𝜒𝜒 = 0. 
 
 Equation (3) suggests that the oscillations of the power spectrum are related to the 
scatterer’s spatial distribution, and that these oscillations are modified by the power spectrum 
of the emitted pulse (multiplicative process). The band-width of the emitted pulse is crucial, 
since the use of a wide-band pulse would result in illegibility of the histogram in eq. (4). This 
raises the question of how to measure the oscillations efficiently, since the histogram may be 
biased. To address this issue and extract the oscillations, the HHT method was used [15]. The 
HHT algorithm allows you to decompose a signal into so-called IMF along with the trend. It 
works well for signals that are nonstationary and nonlinear. Each IMF carries information 
about the oscillations of the analyzed signal. In ultrasound imaging, usually Gaussian pulses 
(or similar) are used, which corresponds to spectrums that are Gaussian shaped. In our case, 
the HHT can be used to extract from eq. (4) the emitted pulse power spectrum (trend), and the 
oscillations as IMFs. To decompose the signal, the empirical mode decomposition (EMD) 
method is used: 

1. Identify all the local extremes in the signal. 
2. Connect all the local maxima to create the upper envelope 
3. Connect all the local minima to create the lower envelope 
4. Calculate the mean envelope 
5. Subtract the mean envelope from the signal to obtain the first IMF.  
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Next, the analyzed signal is replaced by the first IMF and the EMD is repeated. Some kind 
of interpolation must be used to calculate envelopes; and, in our study, linear interpolation 
was applied. Linear interpolation proved to be robust. What is more, it doesn’t generate 
artefacts, although it may be less suitable for the analysis of rapidly-changing signals. The 
HHT decomposition is linear, by summing of IMFs and trends it is possible to reconstruct the 
original signal.   

3. Results 

For the numerical simulation, L and J were set to 20 mm and 20, respectively. It 
corresponds to cells that are equidistant. In this case, regularly placed scatterers would be 
apart from each other by 1 mm. Additionally, reflectivities were sampled from the uniform 
distribution on the interval [−0.5, 0.5]. An exemplary realization is shown in the fig. 1.  

First, different levels of chaotization were set, and the power spectrum of the medium 
(eq.3) was calculated. Results are depicted in the fig. 2. Additionally, the histograms of 
distances (eq.4) are presented. Here, the emitted pulse power spectrum was not considered; 
instead, a quasi-Dirac delta function was used for calculations. For clarity, the reflectivities 
were set to 1.  

 

 

Fig. 1. Exemplary realization of the randomly allocated scatterers with different reflectivities. 

 

Fig. 2. Histogram of distances, and the power spectrum, for different levels of chaotization. 
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Next, the spectrum of emitted pulse was also considered. The center frequency was set to 
5 MHz. Fig. 3 illustrates the HHT method. The power spectrum of the backscattered echo 
𝑄𝑄(𝜔𝜔) and four extracted IMFs are presented, along with the histograms. Due to the linearity 
of the Fourier transform, it is possible to reconstruct the original power spectrum or 
histogram.  

 

Fig. 3. The power spectrum of the backscattered echo and its IMFs, along with the histograms of 
distances (eq.4). 

4. Discussion 

As can be observed in fig. 2, the histogram can be simply used to calculate unique 
distances between scatterers. For example, for 20 equidistant scatterers there will be 19 
distances of 1 mm. However, with the increased level of chaotization, the histogram becomes 
flatter, which corresponds to a larger number of unique distances between scatterers. What is 
important, therefore, when the chaotization level is low, the histogram is still able to perceive 
that the scatterers were placed in cells. This proves, that the derived method is sensitive to the 
coherent scattering which occurs when the scatterers are regularly distributed. However, in 
the case of backscattered echo, the power spectrum of the medium would be additionally 
multiplied by the spectrum of the emitted pulse. This multiplication in the frequency domain 
corresponds to a convolution which would blur the histogram, and make the exact calculation 
of distances impossible.  

On the other hand, the HHT method can be used to extract oscillations directly from the 
power spectrum, which is illustrated in the fig. 3. The original power spectrum is depicted in 
red (top left image), its shape corresponds to the emitted pulse power spectrum that was 
affected by strong oscillations. Clearly, the IMFs extract oscillations. What is more, each 
subsequent IMF refers to oscillations of lower frequency. According to eq. (3), lower 
oscillations are caused by larger distances between scatterers. With the HHT method it is 
possible to extract oscillations which correspond to different distances between scatterers. 
However, it is hard to indicate which distances are included in a particular IMF. This reveals a 
disadvantage of the HHT algorithm. On the other hand, IMFs can be further analyzed with the 
Fourier transform, or other methods, to extract features that characterize the scatterer’s 
distribution. For instance, each IMF caries unique information about distances of scatterers, 
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therefore its histogram (inverse Fourier transform) corresponds to these particular distances. 
After the HHT decomposition, it is possible to take the inverse Fourier transform of each IMF 
to obtain histograms as shown in the fig. 3. Due to linearity of the inverse Fourier transform, 
histograms can be summed up to reconstruct the original histogram. This proves that the HHT 
has the ability to decompose the histogram into parts which depend on different oscillations.  

5. Conclusions 

In this study, a novel QUS method was developed and examined by means of a numerical 
experiment. Point scatterers were randomly distributed, and different levels of chaotization 
were assumed.  Oscillations of the backscattered echo power spectrum are caused by the 
distribution of scatterers. As it was derived, the function 𝑞𝑞(𝑑𝑑) can be interpreted as a 
histogram of distances. When the emitted pulse is not considered, the histogram can be simply 
used to calculate unique distances between scatterers. The HHT method can be applied 
directly to extract oscillations from the power spectrum. Each IMF corresponds to oscillations 
that were caused by different distances between scatterers. We believe that our two methods, 
the histogram of distances and HHT decomposition, can be used for tissue characterization. 
However, the proposed methods require experimental validation to evaluate their quality, and 
comparison with other widely used QUS methods.  
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