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Antibubbles are gas bubbles containing a liquid droplet core and, typically, a stabilising
outer shell. It has been hypothesised that acoustically driven antibubbles can be used for active
leakage detection from subsea production facilities. This paper treats the dynamics of spheri-
cally symmetric microscopic antibubbles, building on existing models of bubble dynamics. A
more complete understanding of microbubble dynamics demands that the effects of the trans-
lational dynamics is included into the Rayleigh-Plesset equation, which has been the primary
aim of this paper. Moreover, it is a goal of this paper to derive a theory that is not based on
ad-hoc parameters due to the presence of a shell, but rather on material properties. To achieve
a coupled set of differential equations describing the radial and translational dynamics of an
antibubble, in this paper Lagrangian formalism is used, where a Rayleigh-Plesset-like equation
allows for the shell to be modelled from first principles. Two shell models are adopted; one for
a Newtonian fluid shell, and the other for a Maxwell fluid shell. In addition, a zero-thickness
approximation of the encapsulation is presented for both models. The Newtonian fluid shell can
be considered as a special case of the Maxwell fluid shell. The equations have been linearised
and the natural and damped resonance frequencies have been presented for both shell models.
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1. Introduction
Recently, it has been proposed to locate offshore hydrocarbon production facilities below

the sea instead of at the surface [1]. The construction of subsea production facilities reduces op-
eration costs, and thereby allows for the production of hydrocarbons at greater depths. Several of
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the new production fields in the Northern Hemisphere are placed in Arctic climates. Therefore,
transportation processes at low temperatures are becoming of increasing importance. However,
under the extreme conditions in such regions, leakages in transportation pipelines may be hard
to detect [2].

Recently, a full overview of acoustic leakage detection methods was published [3]. Be-
cause of the similarity in acoustic response from bubbles and from other subsea phenomena, it
has been hypothesised that acoustically driven antibubbles can be used for active leakage de-
tection from subsea production facilities [4]. Antibubbles are gas bubbles containing a liquid
droplet core. Typically, antibubbles are encapsulated by a stabilising outer shell.

This paper treats the dynamics of spherically symmetric microscopic antibubbles, build-
ing on existing models of bubble dynamics. In recent years it has been suggested that a more
complete understanding of microbubble dynamics demands that the effects of the translational
dynamics is included into the Rayleigh-Plesset equation [5]. Moreover, it is a goal to derive a
theory that does not include any ad-hoc shell parameters, but is rather based on material prop-
erties, e.g., the shear viscosity and the shear modulus. This is of interest as ad-hoc parameters
describing the shell are not general, but depend on, inter alia, the bubble resting radius.

To achieve a coupled set of differential equations describing the radial and translational
dynamics of an antibubble, Lagrangian formalism is used, where a Rayleigh-Plesset-like equa-
tion allows for the shell to be modelled from first principles. Two shell models are adopted;
one for a Newtonian fluid shell and one for a Maxwell fluid shell. In addition, a zero-thickness
approximation of the encapsulation is presented for both models.

2. Theory
In Lagrangian formalism, a Lagrangian function L = T − U is defined, where L is the

Lagrangian function, T is the kinetic energy, and U is the potential energy. The Lagrangian
equation (1) is given by

d

dt

∂L

∂q̇i
− ∂L

∂qi
= −∂F

∂q̇i
, (1)

where F is the dissipative function which is expressed as a sum of the dissipating mechanisms
such as the shear viscosity of the water and the shear viscosity of the shell, qi is the generalised
coordinate system, and the overdot indicates the first time derivative. Let us consider an anti-
bubble as presented in Figure 1, where R1 and R2 are the instantaneous radii from the centre of
the bubble to the two interfaces of the shell, and Rd is the radius of the droplet core inside the
bubble. As the liquid droplet core can be considered incompressible, Rd is constant when the
bubble undergoes oscillations and translation. The shell and the surrounding liquid are assumed
incompressible, too. From these assumptions, L and F are found, and subsequently substituted
into (1).

2.1. Kinetic energy

The kinetic energy T of the dynamic antibubble system is given by

T =
1

2
mbẋ

2 + TL + TS , (2)

where TL is the kinetic energy of the liquid surrounding the antibubble and TS is the kinetic
energy of the shell, and mb = 4

3
πRd

3ρL +
4
3
π
(
R10

3 −Rd
3
)
ρg is the sum of the mass of the core
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Fig. 1. Schematic of a fluid (opaque grey) containing an antibubble consisting of a droplet core (grey) of
radius Rd, surrounded by a gas layer (white), and a thin shell (dark grey) of inner radius R1 and outer

radius R2. The antibubble is initially centred in the two respective coordinate systems used in this paper.

and the mass of the gas inside the bubble, in which ρL is the is the density of the liquid outside
and inside the antibubble, R10 is the initial inner radius, and ρg is the density of the gas layer
of the antibubble. The kinetic energy of an incompressible liquid is the following integral over
volume V [6]:

TL =
ρL
2

∫
V

|∇ϕ|2 dV , (3)

where ϕ is the velocity potential of the liquid surrounding the bubble. We introduce a spherical
coordinate system (r, θ, φ) that always has its origin in the centre of the antibubble. The centre
of the antibubble is allowed to move exlusively in x-direction. The boundary condition at the
surface r = R2 is

∂ϕ

∂r
= Ṙ2 + ẋ cos θ . (4)

The velocity potential, which must satisfy Laplace’s equation ∇2ϕ = 0, has the form

ϕ =
a

r
+
b cos θ

r2
. (5)

For the following functions a and b, (4) and (5) hold:

a(t) = −Ṙ1R1
2 , b(t) = − ẋR1

2

2
. (6)
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Substituting (4) into (3), the kinetic energy of the incompressible surrounding fluid is given by

TL = 2πρLR2
3

(
Ṙ 2

2 +
ẋ

6

)
. (7)

When assuming an incompressible fluid, the damping due to acoustic radiation from the oscil-
lating bubble cannot be accounted for. However, this problem can be overcome if we assume
a weakly compressible fluid, as elegantly demonstrated in [7]. Considering the kinetic energy
of the shell, the deformation of the shell is assumed negligible while the antibubble undergoes
oscillations and translation. In this case, the volume of the shell VS is constant, and the velocity
inside the shell vS = R1

2Ṙ1/r. The assumption of an incompressible shell means that

R2
3 −R1

3 = R20
3 −R10

3 , (8)

and
R1

2Ṙ1 = R2
2Ṙ2 , (9)

whereR20 is the initial outer resting radius. Thus, the kinetic energy of the incompressible shell
can be written as

TS =
1

2

∫
VS

ρS vS
2 dVS = 2πρSR1

3Ṙ 2
1

(
1− R1

R2

)
, (10)

where ρS is the density of the shell.

2.2. Potential energy

The potential energy U of the antibubble system is given by

U = Ug + Uσ + UX , (11)

where Ug is the potential energy of the gas inside the antibubble, Uσ is the potential energy
owing to surface tensions at the gas–shell and shell–liquid interface, and UX is the work done by
the external pressure on the outer surface of the shell. Let us consider a pressure change in the
surrounding fluid under adiabatic conditions. For an ideal gas, the potential energy of the gas
inside the antibubble is

Ug =
pgV

γ − 1
, (12)

where pg is the instantaneous pressure inside the antibubble, V = 4
3
π
(
R1

3 −Rd
3
)

is the instan-
taneous gas volume inside the antibubble, and γ is the polytropic exponent of the gas. Using
that pg/pg0 = (V0/V )γ , in which pg0 is the initial gas pressure inside the antibubble at rest and
V0 is the initial gas volume inside the antibubble at rest, the potential energy of the gas inside
the antibubble can be written as

Ug =
pg0Vg0
γ − 1

(
R10

3 −Rd
3

R1
3 −Rd

3

)(γ−1)

, (13)

where
pg0 = p0 +

2σ1
R10

, (14)
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where p0 is the ambient pressure and σ1 is the surface tension of the gas–shell interface. The
potential energy owing to surface tensions at the gas–shell and shell–liquid interface is given by

Uσ = 4πR1
2σ1 + 4πR2

2σ2 , (15)

where σ2 is the surface tension of the shell–liquid interface. The work done by the external
pressure on the outer surface of the shell is given by

UX =
4π

3
R2

3 (p0 + P ) , (16)

where P (x, t) is the driving pressure function.

2.3. Dissipative function

Energy is dissipated as the antibubble oscillates and translates in the surrounding fluid.
The total dissipation is given by

F = FL + FS =

∫
VL

fL dV +

∫
VS

fS dV , (17)

where FL and FS are the dissipative functions of the viscous fluid and the shell, respectively, fL
and fS are the respective density functions of the dissipative functions, and VL is the volume of
the fluid outside the bubble. For the surrounding fluid, fL is given by [8]

fL = ηL

(
vij −

1

3
δij vkk

)2
+

1

2
ζL vkk

2 , (18)

where ηL is the shear viscosity of the fluid, ζL is the bulk viscosity of the liquid, δij is the
Kronecker delta, and vij is the rate-of-strain tensor of the surrounding fluid, which is given
by [5]

vij =
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
, (19)

where vi,j,k is the liquid velocity. Assuming an incompressible surrounding fluid, vkk = ~∇·~v =
0. Hence, (18) is simplified to

fL = ηL (vij)
2 , (20)

where vij is given by [5]

(vij)
2 =

6R2
4Ṙ 2

2

r6
+

9R2
6ẋ2

8r8
+

9R2
2Ṙ2ẋ

r4

(
R2

r
− R2

3

r3

)
cos θ

+
ẋ2

8

(
27R2

2

r4
− 54R2

4

r6
+

18R2
6

r8

)
cos2 θ . (21)

Substitution of (25) into (20) and subsequent integration over VL, yields the dissipative function
for the liquid

FL = 8πηLR2Ṙ2
2
+ 3πηLR2 ẋ

2 . (22)
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Finally, the dissipation function FS for the viscous shell is the missing piece of the puzzle. For
fS we have [5, 8]

fS = ηS(vij)
2 = ηS

[(
∂vS
∂r

)2
+

2v2S
r2

]
, (23)

where vS = R2
1Ṙ1/r

2 is the radial velocity in the shell. Now, integrating (23) over VS results in

FS = 8πηS
(
R20

3 −R10
3
) R1Ṙ

2
1

R2
3 . (24)

2.4. General Rayleigh-Plesset equation for a fluid shell

The expressions derived in the sections above for the respective kinetic energies, potential
energies and the dissipative functions, or more specifically the translational kinetic energy of the
antibubble (2), the kinetic energy of incompressible surrounding fluid (7), the kinetic energy of
the shell (10), the potential energy of the gas (13), the potential energy of the surface-free energy
(15), the potential energy from the work done on the antibubble by the external pressure on the
outer surface of the bubble (16), the dissipative function for the liquid (22), and the dissipative
function for the shell (24) are now combined to express L and F , respectively. Substituting the
resulting expressions into (1), where R1 and x are the generalised coordinates, whilst (8) and
(9) are used to express R2 in terms of R1, a set of coupled second order differential equations is
obtained that describe the radial and translational dynamics of an antibubble with a fluid shell
of finite shell thickness.

Studying the equations above, it can be recognized that modelling the shell as a fluid is not
a complex operation to achieve. For a fluid shell, the dissipative function FS for the shell is left
undefined. It can now be shown that a set of equations, which are general, governing the radial
and translation dynamics of an antibubble with a fluid shell can be obtained, albeit with some
skill and cunning, eventually resulting in an equation set consisting of a Rayleigh-Plesset-like
equation, and a translational equation:

R1R̈1

[
1 +

(
ρL − ρS
ρS

)
R1

R2

]
+ Ṙ 2

1

[
3

2
+

(
ρL − ρS
ρS

)(
4R2

3 −R1
3

2R2
3

)
R1

R2

]
=
ρL
ρS

ẋ2

4
+

1

ρS

[
pg0

(
R10

3 −Rd
3

R1
3 −Rd

3

)γ
− 2σ1
R1

− 2σ2
R2

− p0 − P (x, t) (25)

−4ηL
R1

2

R2
3 Ṙ1 + S

]
,

and
mbẍ+

2π

3
ρL

d

dt

(
R2

3ẋ
)
= −4π

3
R2

3 ∂

∂x
P (x, t) + Fd , (26)

whereFd is the drag force, and S describes the radial stress in the shell, which can be represented
by

S = 3

∫ R2

R1

τ
(S)
rr (r, t)

r
dr , (27)

where τ (S)rr is the radial tension function of the shell.
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The rheological law suitable for the shell of a particular antibubble can now be applied.
For a Newtonian fluid shell, the radial stress in the shell is given by

S = −4ηS
Ṙ1

(
R20

3 −R10
3
)

R1R2
3 . (28)

For a Maxwell fluid shell, the radial stress in the shell is given by

S = −4ηS
D
(
R20

3 −R10
3
)

R1
3R2

3 , (29)

where D(t) = −λḊ(t) +R1
2Ṙ1, in which λ is the relaxation time.

2.5. Zero-thickness approximation

For antibubbles with a thin shell, i.e.,RS ≡ (R2 −R1)� R1, we can model the dynamics
in first order without considering the correction for a finite shell. This can be done without a
tangible loss of numerical accuracy. We may take the unrestrained radius equal to R0, ρS ⇒ ρL,
R2 ⇒ R1, and σ = σ1 + σ2. Both the Newtonian and Maxwell shell models can now be
represented with their respective zero-thickness approximation.

For a Newtonian fluid shell, the zero-thickness approximation is

RR̈ +
3

2
Ṙ2 =

ẋ

4
+

1

ρL

[
pg0

(
R0

3 −Rd
3

R3 −Rd
3

)γ
− 2σ

R
− p0 − P (x, t) − 4ηL

Ṙ

R

−12ηSRS
Ṙ

R2

]
, (30)

whereas, for a Maxwell fluid shell, the zero-thickness approximation is

RR̈ +
3

2
Ṙ2 =

ẋ

4
+

1

ρL

[
pg0

(
R0

3 −Rd
3

R3 −Rd
3

)γ
− 2σ

R
− p0 − P (x, t) − 4ηL

Ṙ

R

−12ηSRSD
Ṙ

R4

]
. (31)

2.6. Linear analysis for an encapsulated antibubble

By linearisation of the respective models derived in the previous sections, we seek to un-
derstand underlying the mechanisms of oscillation. In this section, we illustrate the linearised
versions’ explicit expressions for the individual damping mechanisms, the linear natural reso-
nance frequency, the second-order natural resonance frequency, and the damped linear resonance
frequency for a finite thickness Maxwell shell. The damped linear resonance frequency is pre-
sented both with and without damping from reradiation.

For a small excursion |x| of an antibubble where |x| � R10, an analytical solution exists of
the Rayleigh-Plesset-like equation (25), incorporating the radial stress of a Maxwell fluid shell
(29). The small amplitude solution must satisfy

R1 = R10 + x(t) (32)
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and
R2 = R20 +

R10
2

R20
2x(t) . (33)

The coupling to the translational dynamics is also disregarded.
Now, the linearised version of D(t) can be expressed as

Ḋ +
1

λ
D =

R10
2

λ
ẋ (34)

Taking P (t) = Pa exp(iωt), in which Pa is the pressure amplitude, a solution of (34) has the
form

D(t) = ax+ bẋ . (35)

When substituting (35) into (34), the constants a and b are found:

a =
λ ω2R10

2

1 + (λ ω)2
, b =

R10
2

1 + (λ ω)2
. (36)

After substitution of (32) and (34) into (25), the resulting linearised equation can be written as:

ẍ+ δM ẋ+
(
ωM
0

)2
x = − P (t)

α ρS R10

, (37)

where δM is the sum of the respective damping terms δM = δL + δMS , in which δL represents the
damping from the viscous surrounding fluid and δMS represents the damping from the Maxwell
fluid shell, ωM

0 is the linear resonance frequency, and α is a coefficient related to the density
difference between the shell and the surrounding liquid

α = 1−
(
1− ρL

ρS

)
R10

R20

. (38)

The damping from the surrounding fluid can be expressed as

δL =
4 ηL R10

α ρS R20
3 , (39)

whereas the damping from the Maxwell fluid shell can be expressed as

δMS =
4 ηS

(
R20

3 −R10
3
)

α ρS R10
2 R20

3 [1 + (λ ω)2]
. (40)

The linear resonance frequency is given by(
ωM
0

)2
= ω0

2 + λ ω2 δMS , (41)

where ω0 is the linear natural resonance frequency of an antibubble with a fluid shell:

ω0
2 =

1

α ρS R10
2

pg0 3γ

1−
(
Rd

R0

)3 − 2σ1
R10

− 2σ2R10
3

R20
4

 . (42)
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From (41), it can be observed that the linear resonance frequency is dependent on ω, which
is slightly unconventional [9]. However, it is not of major concern, because a damped system res-
onates with the linear damped resonance frequency when excited. To assess the linear damped,
i.e., the “real”, resonance frequency of (37), one studies a solution of the equation given by

x(t) = Aei(ωt+ψ) , (43)

in which the phase ψ between the radial excursion and the acoustic excitation is

ψ = arctan

[
ω δM

ω2 − (ωM
0 )

2

]
, (44)

and the amplitude A is

A =
Pa Q

α ρS R10 ω0
2
, (45)

in which the Q-value of the antibubble Q(ω) is

Q(ω) =
ω0

2√[
ω2 − (ωM

0 )
2
]2
+ ω2δM

2

. (46)

The maximum value of (46) is the linear damped resonance frequency, which can be com-
puted numerically.

From the linear resonance frequency for a Maxwell fluid shell, we can find the resonance
frequency for a Newtonian fluid shell ωN

0 . Let us take λ = 0, δN = δM, in which δN is the
total damping for an antibubble with a Newtonian fluid shell. Knowing that the linear damped
resonance frequency for a Newtonian fluid shell must satisfy

(
ωN
0

)2
= ω0

2 − δN
2/4, it can be

rewritten as

(
ωN
0

)2
=

1

αρSR10
2

 3γpg0

1−
(
Rd

R0

)3 − 2σ1
R10

− 2σ2R10
3

R20
4 − 4ηL

2R10
4

αρSR20
6 −

4ηS
2
(
R20

3 −R10
3
)2

αρSR10
2R20

6

 . (47)

3. Example
An example of two radius–time curves of an oscillating antibubble is shown in Figure 2.

The curves are numerical solutions of (30), computed with the ode45 algorithm of Matlab R©

(The MathWorks, Inc., Natick, MA, USA). Droplet core sizes were chosen 40% and 80% or the
resting radius, respectively.
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Fig. 2. Radius–time curves of an antibubble with a Newtonian shell.

The instantaneous radius has been normalised by the initial resting radius, and the time
has been normalised by the period of the excitation pulse. An ambient pressure of p0 = 30 atm,
representing subsea conditions, was chosen. Other relevant parameters used were Pa = 2MPa,
R0 = 100µm, RS = 2 nm, γ = 1.4, ηL = 0.001Pa s, ηS = 50Pa s, ρL = 1054 kg m−3,
σ = 0.072N m−1, and ω = 2π rad×200 kHz. Also, the coupling with (26) has been neglected
here.

At the given excitation frequency, the antibubble excursions are clearly higher for the an-
tibubble with the larger core. Especially, the asymmetric oscillation is worth noticing.

4. Conclusion
Using Lagrangian formalism, equations describing the spatio–temporal dynamics of an-

tibubbles with a fluid shell have been derived, specifically for a Newtonian fluid shell and a
Maxwell fluid shell. For both shell models, finite thickness shells and their zero-thickness ap-
proximations have been presented. The Newtonian fluid shell can be considered a special case
of the Maxwell fluid shell. The equations have been linearised and the natural and damped
resonance frequencies have been presented for both shell models.
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