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In the paper, a usefulness of the Hilbert transform in a computer modelling of reverberant behaviour of rooms
is demonstrated for the enclosure consisting of two coupled subrooms. In numerical simulations a decay of the
sound pressure is computed and the Hilbert transform methodology is used to determine an envelope of this decay.
Calculation results have shown that, because of the mode localization, a distribution of absorbing material has a
great influence on decay times evaluated from changes in the pressure envelope. For example, when a difference
between the sound damping in subrooms is large, the localization effect is responsible for a creation of a nonlinear
decay of the sound pressure level characterized by rapid early and slow late sound decays.
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1. Introduction

The Hilbert transform has been recognized as very
important method for the signal analysis in different
branches of science and technology [1–3]. In a numerical
modelling of the sound decay in enclosures, the Hilbert
transform allows to construct the analytic signal and to
calculate the envelope of decaying acoustic signal. It is
of special importance for the evaluation of decay times
in coupled rooms which yield usually a nonlinear profile
of the pressure level decay [4–7]. However, an applica-
tion of the Hilbert transform in sound decay calculations
gives meaningful numerical data only for restrictive class
of enclosures [8]. The accurate results are obtained for
room systems with relatively small sound damping be-
cause in this case the product of exponentially decaying
signal and a harmonic signal (sine or cosine function)
satisfies approximately the Bedrosian identity [9].

The paper is organized as follows. In the first part the
most important properties of the Hilbert transform are
shortly discussed. Then, a utility of the Hilbert trans-
form is examined using sound decay simulations per-
formed for the enclosure consisting of two connected rect-
angular subrooms.

2. Hilbert transform and analytic signal
representation

In the time domain, the Hilbert transform H of a real-
-valued signal x(t), which is denoted by x̂(t), is a con-
volution between x(t) and the Hilbert transformer 1/πt,
thus it is defined as

H [x(t)] = x̂(t) = x(t) ∗ 1
πt

=
1
π

P
∫ ∞

−∞

x(τ)
t− τ

dτ , (1)

where P in the front of integral indicates the Cauchy
principal value. The Hilbert transform has been widely
used in physics, engineering and mathematics because it
is the basic mathematical tool for a direct examination
of instantaneous properties of signals. The real signal is
usually represented by the amplitude and the frequency
according to its physical attributes. The classical method
for a determination of signal characteristics is to add x̂(t)
as the imaginary part to x(t) to produce the so-called an-
alytic signal

z(t) = x(t) + j x̂(t) = A(t)e jψ(t), (2)

and then extract A(t) =
√

x2(t) + x̂2(t) and ψ(t) =
tan−1(x̂(t)/x(t)) as its instantaneous amplitude (enve-
lope, magnitude) and phase. The frequency ω(t) of the
analytic signal z(t) is defined as: ω(t) = dψu/dt, where
ψu(t) is the continuous, unwrapped phase, that is

ψu(t) = ψ(t) + Γ (t) , (3)

where Γ (t) is an integer multiple of π-valued function de-
signed to insure a continuous phase function. The Hilbert
transform has been found very useful for many types of
signals, especially for amplitude modulated ones, mod-
elled as a product of two functions. Under certain condi-
tions, the simple method for computing such a product
was found by Bedrosian [9]. If two functions, say x(t)
and y(t), represent signals with non-overlapping spectra
and the spectrum of x(t) is lower than that of y(t), then
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H[x(t)y(t)] = x(t)H[y(t)] , (4)

thus, to compute the Hilbert transform of the product
of a low-pass signal with a high-pass signal, only the
high-pass signal needs to be transformed. This result
is known in the literature as the Bedrosian theorem and
the formula (4) is called the Bedrosian identity.

3. Numerical simulation of reverberant
sound decay

In order to demonstrate a utility of the Hilbert trans-
form technique in a prediction of reverberant behaviour
of rooms, a numerical simulation of the sound decay was
carried out for a room system consisting of two coupled
rectangular subrooms (Fig. 1). The subrooms have the
height h of 3 m and their lengths and widths are the fol-
lowing: l1 = 4 m, l2 = 5.7 m, w1 = 5 m and w2 = 8 m.
The acoustic coupling between subrooms is realized by
the opening having the height h, the width w of 2 m and
the thickness d of 0.3 m. The room is excited by the har-
monic point source located in subroom B at the position:
x = 2 m, y = 5 m, z = 1 m.

Fig. 1. Irregularly shaped enclosure consisting of two
connected rectangular subrooms denoted by A and B.
Symbol indicates position of sound source.

In the case of rooms with a complex geometry the first
step towards determining the room response is a compu-
tation of the eigenfunctions Φm and the modal frequen-
cies ωm (m = 1, 2, 3, . . .). Since lightly damped rooms are
considered, the functions Φm can be well approximated
by eigenfunctions computed for rigid room walls [10].
Thus, one can write

Φm(r) = Ψκ(x, y)Θν(z) , (5)

where κ = 1, 2, 3, . . ., ν = 0, 1, 2, . . ., r = (x, y, z) is a
position vector, Θ0 = 1/

√
h, Θν =

√
2/h cos(πνz/h) for

ν > 0, and the eigenfunctions Ψκ are normalized over
a horizontal cross-section of the room. In this case, the
modal frequencies are given by

ωm =
√

ω2
κ + (πνc/h)2 , (6)

where ωκ is an eigenfrequency for the function Ψκ. Spa-
tial distributions of eigenfunctions Ψκ in (x, y) plane and
the frequencies ωκ were calculated with the aid of numeri-
cal implementation based on the forced oscillator method

with the finite difference algorithm [11]. Shapes of the
function Ψκ for certain modes are plotted in Fig. 2. These
data show that for some modes the acoustic energy is
distributed quite regularly inside the analysed room sys-
tem (Fig. 2b,d), however there are also such modes for
which the acoustic energy is concentrated within the one
of subrooms (Fig. 2a,c). The phenomenon of a modal
energy accumulation in some parts of enclosed spaces is
characteristic for coupled rooms and enclosures having an
irregular geometry, and it is called the mode localization.

Fig. 2. Shapes of eigenfunctions Ψκ for mode number
m: (a) 40, (b) 48, (c) 73, (d) 123.

In the numerical simulation it is assumed that walls
of subrooms A and B are covered by absorbing ma-
terials providing a relatively small sound damping and
the random-absorption coefficients αa and αb character-
ize damping properties of these materials. To ensure a
constant value of the Schroeder frequency [12] and to
examine the effect of absorbing material distribution on
the room response, values of coefficients αa and αb were
selected in such a way that the total absorption A in sub-
rooms remained constant, that is

A = α(Sa + Sb) = αaSa + αbSb = const , (7)

where α is the mean value of absorption coefficient and
Sa and Sb are surfaces of walls in subrooms A and B,
respectively. For the sake of model simplicity the wall
impedance Z was assumed to be purely real, i.e. the mass
and stiffness of the absorbing material are neglected.
This corresponds to the damping of a sound wave on the
wall with no phase change upon reflection. For a given
value of the absorption coefficient α, the wall impedances
on subrooms walls were found from the well-known re-
lationship between the random-absorption coefficient α
and the impedance ratio ξ [13]:

α =
8
ξ

[
1 +

1
1 + ξ

− 2
ξ

ln(1 + ξ)
]

, ξ = Z/ρc . (8)

Computations were performed for the coefficient α equal
to 0.09. It is easy to calculate that the Schroeder fre-
quency [12], corresponding to this value of α, is fs =
174.2 Hz. Below this frequency 150 eigenmodes were
found. For this set of modes a sound decay in an ob-
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servation point located in subroom A at the position:
x = 8 m, y = 2 m, z = 1.8 m, was simulated. The effect
of non-exponential sound decay was characterized by two
metrics: the early decay time (EDT) predicted from the
pressure level drop from 0 to −10 dB and late reverber-
ation time (LDT) estimated from a decrease in this level
from −50 to −60 dB.

Results of a numerical simulation, presented in Fig. 3,
were obtained for a material with the absorption coef-
ficient of 0.09 uniformly distributed on subrooms’ walls
and a source frequency of 128 Hz corresponding approx-
imately to the frequency of mode 73. The eigenfunction
Ψκ for mode 73 is shown in Fig. 2c, thus this mode is
strongly localized in subroom B. The data in Fig. 3
show a temporal decay of the normalized sound pressure
p/pmax and changes in the envelope LE of pressure level
in the time interval corresponding approximately to the
reverberation time. The pressure amplitude was deter-
mined with an application of the Hilbert transform. Due
to an influence of several modes on the room response,
the pressure amplitude begins to fluctuate in the initial
stage of sound decay and it corresponds to irregular vari-
ations in the envelope LE for the time t smaller than
one second. Despite these changes, a mean trend in a
decrease of the envelope LE , evaluated by the regression
method, is well reproduced by the fit curve corresponding
approximately to a straight line as indicated by the val-
ues of decay time in early and late stage of sound decay.

Fig. 3. (a) Normalized sound pressure p/pmax and (b)
envelope LE of pressure level versus time t for source
frequency of 128 Hz and absorption coefficients αa =
αb = 0.09. Solid smooth line denotes best-fit curve cal-
culated by polynomial regression.

A contribution of individual modes in the room re-
sponse depends on both the modal amplitude Am and
the modal reverberation time Tm. From Ref. [14] it re-
sults that the expression for Am can be written as

Am =
QmωmΦm(r)√

(ω2
m − r2

m) [(ω2
m − ω2)2 + 4r2

mω2]
, (9)

thus it depends not only on the source frequency ω but
also on the source location (through the parameter Qm),
the distribution of eigenfunction, the position of an obser-
vation point and the wall impedance (through the damp-
ing coefficient rm). The bar charts in Fig. 4 show depen-
dences of the normalized modal amplitude |Am|/Amax

and the modal reverberation time Tm on the mode num-

ber m for previously assumed: the source frequency and
values of the absorption coefficients αa and αb. The am-
plitude Amax corresponds to the maximum value of |Am|
in the considered set of eigenmodes. As is evident from
Fig. 4a, for the frequency of 128 Hz two neighbouring
modes (modes 72 and 73) are dominant in the room re-
sponse. Thus, the observed changes in the envelope LE

are due to the fact that the pressure amplitude begins
to oscillate with a frequency equal to the difference be-
tween frequencies of neighbouring modes (beating effect).
In turn, the data in Fig. 4b show that despite identical
values of the absorption coefficients αa and αb, the modal
reverberation time Tm assumes significantly different val-
ues. For modes 72 and 73 it equals 1.32 s and 2.16 s. It
results in a visible disagreement between evaluated de-
cay times (Fig. 3b) because in the initial stage of sound
decay the dominant mode with a smaller reverberation
time affects the room response.

Fig. 4. (a) Normalized modal amplitude |Am|/Amax

and (b) modal reverberation time Tm versus mode num-
ber m for source frequency of 128 Hz and absorption
coefficients αa = αb = 0.09.

Fig. 5. (a) Normalized sound pressure p/pmax and (b)
envelope LE of pressure level versus time t for source
frequency of 133 Hz and absorption coefficients αa =
0.185 and αb = 0.04. Solid smooth line denotes best-fit
curve calculated by polynomial regression.

In the second numerical example, the source frequency
was shifted to 133 Hz and the absorption coefficients αa

and αb were equal to 0.185 and 0.04, respectively. It
means that subroom A provides much more greater sound
damping than subroom B. Simulation data in Fig. 5a il-
lustrate temporal changes in the sound pressure in this
case and the interesting thing to note is that the sound
pressure rapidly decreases in the initial stage of reverber-
ation process. This results in the nonlinear decay of the
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Fig. 6. (a) Normalized modal amplitude |Am|/Amax

and (b) modal reverberation time Tm versus mode num-
ber m for source frequency of 133 Hz and absorption
coefficients αa = 0.185 and αb = 0.04.

pressure level because its envelope LE exhibits the “sag-
ging” appearance with the fast initial decay and the visi-
bly slower late decay (Fig. 5b). It is reflected in the decay
times estimated from a slope of best fitting curve because
the early decay time is found to be almost three times
smaller than the late decay time. An explanation of such
behaviour of the sound decay may be sought through
analysis of numerical data in Fig. 6. When the source
frequency is shifted to 133 Hz, two modes (modes 80
and 83) of slightly different amplitudes are recognised to
be dominant. However, modal reverberation times corre-
sponding to these modes are so small that they vanish in
the initial stage of decay. Therefore, in the late stage of
sound decay the mode 73 with a long modal reverbera-
tion time becomes predominant, resulting in the creation
of nonlinear profile of the decay curve.

4. Conclusions

A usefulness of the Hilbert transform in a computer
modelling of the reverberation phenomenon was exam-
ined using sound decay simulations performed for the
enclosure consisting of two connected rectangular sub-
rooms. In a theoretical model, the room response was
described in terms of its normal eigenmodes. Spatial dis-
tributions of modes and corresponding eigenfrequencies
were computed using a numerical procedure based on
the forced oscillator method. It was found that in the
analysed enclosure there are some modes for which the

acoustic energy is concentrated within the one of sub-
rooms. This phenomenon of modal energy accumulation
is characteristic for coupled rooms and is called the mode
localization.

Calculation results revealed that the Hilbert transform
is a useful tool for smoothing a profile of decaying pres-
sure level before an application of the regression method
for an estimation of decay times. As was shown, this is
very important for irregular sound decays occurring, for
example, for the decay deformed by fluctuations because
of two significant modes close in the frequency (beating
effect). Because of the mode localization a distribution of
the absorbing material has a great influence on the rever-
berant behaviour of coupled rooms. In the case of a large
difference between the sound damping inside subrooms,
this effect is responsible for a creation of a nonlinear de-
cay of the sound pressure level characterized by the rapid
early and slow late sound decays.
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