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Abstract

Purpose – This paper sets out to present developments of a numerical model of squeeze casting process.

Design/methodology/approach – The entire process is modelled using the finite element method.
The mould filling, associated thermal and thermomechanical equations are discretized using the
Galerkin method. The front in the filling analysis is followed using volume of fluid method and the
advection equation is discretized using the Taylor Galerkin method. The coupling between mould
filling and the thermal problem is achieved by solving the thermal equation explicitly at the end of each
time step of the Navier Stokes and advection equations, which allows one to consider the actual position
of the front of the filling material. The thermomechanical problem is defined as elasto-visco-plastic
described in a Lagrangian frame and is solved in the staggered mode. A parallel version of the
thermomechanical program is presented. A microstructural solidification model is applied.

Findings – During mould filling a quasi-static Arbitrary Lagrangian Eulerian (ALE) is applied and
the resulting temperatures distribution is used as the initial condition for the cooling phase. During
mould filling the applied pressure can be used as a control for steering the distribution of the solidified
fractions.

Practical implications – The presented model can be used in engineering practice. The industrial
examples are shown.

Originality/value – The quasi-static ALE approach was found to be applicable to model the
industrial SQC processes. It was found that the staggered scheme of the solution of the
thermomechanical problem could parallelize using a multifrontal parallel solver.
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Paper type Research paper

1. Introduction
The paper deals with the presentation of developments of a squeeze casting model
which has been developed, Lewis et al. (2006). The problem consists of two stages,
namely, a mould filling simulation and thermal stresses analysis. Both stages include
solidification. The flow problem is solved using the Galerkin method. The free surface
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tracking problem is solved using a pseudo-concentration function method. The
corresponding advection equation is discretized using a Taylor-Galerkin method.
To solve the thermal problem the enthalpy method is applied. The thermomechanical
problem is coupled and solved using a staggered scheme. The systems of linear
equations appearing at each time step are solved using a parallel solver. An application
of a microstructural solidification model is presented. Finally, the model is illustrated
by solutions of a few industrial examples.

A general overview of squeeze casting processes with their classification is given by
Ghomashi and Vikhrov (2000). A specific application of coupled thermomechanical
problem to description of casting processes is given in the early work by Williams et al.
(1979). A description of thermomechanical problems is shown by Sluzalec (1992),
Vaz and Owen (1996) and Kleiber (1993). The solutions of flow problems are presented
by Taylor and Hughes (1981), Zienkiewicz et al. (2005) and Donea and Huerta (2003).
A model of mould filling using mixed Lagrangian-Eulerian technique is elaborated
by Lewis et al. (1997). Methods of solving thermal problems including phase
transformation are described by Lewis et al. (1996, 2004) and Celentano (2002).
An interesting work about solution of a thermal problem using parallel techniques is
presented by Masters et al. (1997).

2. Theoretical description
2.1 Thermal problem
Let us consider the heat transfer equation of the form:

7ðk7TÞ þ q ¼ rcp
›T

›t
on V ð1Þ

where k is the thermal conductivity, 7T is the temperature gradient, q is the heat
source, r is the mass density and cp is the heat capacity. The equation is solved over the
body V and fulfills the following Dirichlet and Neumann boundary conditions,
respectively:

S1ðT Þ ¼ T 2 Tw ¼ 0 on ›V1

S2ðT Þ ¼ k
›T

›n

� �
þ hðT 2 TwÞ on ›V2

ð2Þ

where Tw is the temperature of the wall, h is the interfacial heat transfer coefficient and
›T=›n
� �

is the heat flux normal to the boundary. The boundary conditions are valid
on the relevant boundaries ›V1 and ›V2, respectively. Assuming the approximation of
the temperature field:

T ¼ NTq ð3Þ

where N is the shape functions matrix and Tq is the vector of the nodal temperatures,
then, performing the Galerkin method we obtain the discretized form of equations (1)
and (2):

KTþ C _T ¼ _F ð4Þ

where K, C are the conductivity and heat capacity matrices, respectively, and F is the
thermal loading vector. These are defined as follows:
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Kij ¼

Z
V

7Nik7NjdVþ

Z
›V3

NihNjdð›VÞ2

Z
›V1

Nik
›Nj

›n
dð›VÞ;

Cij ¼

Z
V

NicprNjdV;

Fi ¼

Z
V

NiqdVþ

Z
›V3

NihTwdð›VÞ

ð5Þ

Equation can be solved using either implicit or explicit time marching schemes. In our
case an implicit scheme has been chosen.

In the case of phase transformation, due to the existence of a strong discontinuity in
the dependence of heat capacity with respect to time, the enthalpy method is applied,
Morgan et al. (1978), McAdie et al. (1995), Celentano and Perez (1996) and Lewis et al.
(2004). The main idea of the enthalpy method is the involvement of a new variable
(enthalpy). This allows us to regularize the sharp change in heat capacity due to the
release of latent heat during the phase transformation and leads to a faster
convergence. The enthalpy formulation of equation (4) is given as follows:

KTN þ
dH

dT
_TN ¼ F ð6Þ

The definitions of the enthalpy variable for pure metals and alloys are given by
equation (7) as follows:

H ¼

R Tm

0 cdT; T # TmR Tm

0 cdT þ ð1 2 f sÞDhf T ¼ TmR Tend

0 cdT þ Dhf; T . Tm

8>>>><
>>>>:

H ¼

R Tsol

0 cdT; T # TsolR T liq

0 cdT þ ð1 2 f sÞDhf; Tsol # T # T liqR Tend

0 cdT þ Dhf; T . T liq

8>>>><
>>>>:

ð7Þ

where Tm is the metal melting temperature, Tsol, Tliq are the temperatures of the solid
and liquid phases, respectively, fs is the amount of solid fraction (volume), Dhf is the
latent heat and Tend is the temperature at the end of the process.

The following averaging formula, Morgan et al. (1978) was used for the estimation
of the enthalpy variable:

ðrcpÞ ø
ð›H=›xÞ2 þ ð›H=›yÞ2 þ ð›H=›zÞ2

ð›T=›xÞ2 þ ð›T=›yÞ2 þ ð›T=›zÞ2

� �1=2

ð8Þ

The same formula was also used in the case of the mould filling and thermal stresses
analyses. The thermal equation is integrated explicitly in the case of mould filling analysis
while implicit scheme has been chosen for the case of the thermal stresses analysis.
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2.2 Mechanical problem
The mechanical problem is initially treated as elasto-viscoplastic in nature with the
assumption of large displacements, Zienkiewicz and Taylor (2005), Bathe (1996) and
Kleiber (1989). Further, we will include the finite strains effect. The total potential
energy is of the form:

P ¼

Z
Vo

1

2
tþDt

o S · tþDt
oEdVo 2

Z
Vo

tþDtftþDtudVo 2

Z
›Vt

s

tþDtttþDtud ›Vt
s

� �
ð9Þ

where S and E are the II Piola-Kirchhof stress tensor and the Green Lagrange strains, f,
t and u ¼ {u,v,w} are the body forces, boundary tractions and displacements. All the
quantities are determined at time t þ Dt in the initial configuration, “o”. By taking the
variation of equation (9) we obtain the virtual work equation of the form:

dP ¼

Z
Vo

tþDt
o S · dtþDt

oEdVo 2

Z
Vo

tþDtfd tþDtudVo 2

Z
›Vo

s

tþDttd tþDtud ›Vo
s

� �
ð10Þ

Exploiting the following relations, Malvern (1969) and Crisfield (1997):

tþDt
o S ¼

r

ro

tþDt
t S;

tþDt
oE ¼

r

ro

tþDt
t E; rdVt ¼ rodV

o ð11Þ

we obtain the above virtual equation:Z
Vt

tþDt
t S · dtþDt

t EdVt ¼

Z
Vt

tþDttd tþDtudVt þ

Z
›Vt

s

tþDttd tþDtud ›Vt
s

� �
ð12Þ

Now, the goal becomes one of obtaining the final form of the virtual work equation before
discretization. To achieve this the following incremental decomposition is employed:

tþDt
t E ¼ t

tEþ DE;

tþDt
t S ¼ t

tSþ DS;

tþDtu ¼t uþ Du;

tþDtf ¼t fþ DS;

tþDtt ¼t tþ Dt

ð13Þ

along with the following relations for stress increments (ttt is the Cauchy stress tensor):
t
tS ¼ t

tt;

tþDt
t S ¼ t

ttþ DS;

DE ¼ Deþ Dh;

De ¼ �ADu;

Dh ¼
1

2
��AðDu0ÞDu0

ð14Þ

and also the following strain increment decomposition into its linear and nonlinear parts
where Du0 is the vector of the displacement increment derivatives w.r.t. Cartesian
coordinates and �A, ��A are the linear and non-linear operators as follows:
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A ¼

›
›x

0 0

0 ›
›y

0

0 0 ›
›z

›
›y

›
›x

0

›
›z

0 ›
›x

0 ›
›z

›
›y

2
666666666666664

3
777777777777775

��A ¼

Du,x 0 0 Dv,x 0 0 Dw,x 0 0

0 Du,y 0 0 Dv,y 0 0 Dw,y 0

0 0 Du,z 0 0 Dv,z 0 0 Dw,z

Du,y Du,x 0 Dv,y Dv,x 0 Dw,y Dw,x 0

0 Du,z Du,y 0 Dv,z Dv,y 0 Dw,z Dw,y

Du,z 0 Du,x Dv,z 0 Dv,x Dw,z 0 Dw,x

2
66666666666664

3
77777777777775

ð15Þ

Substituting the relations, equations (13-15), into the virtual work equation, equation (12)
we arrive at:Z

Vt

t
tt · dhþ DS · dDe
� �

dVt ¼

Z
Vt

tþDtfd tþDtudVt þ

Z
›Vt

s

tþDttd tþDtud ›Vt
s

� �
2

Z
Vt

t
tt · dDedVt

ð16Þ

Equation (16) must be solved iteratively, however, for brevity we assume that the
equation is fulfilled precisely at time t, as a result we obtain the following incremental
form of the virtual work equation:Z

Vt

t
tt · dhþ DS · dDe
� �

dVt ¼

Z
Vt
DfdDudVt

þ

Z
›Vt

s

DtdDud ›Vt
s

� � ð17Þ

Employing the finite element approximation:

Du ¼ NDq; Du0 ¼ B0
LDq ð18Þ

where N is the set of shape functions, Dq is the increment of nodal displacements and
considering the following set of equalities:

t
tt

Tdh ¼ t
tt

Tdð ��AÞDu0 ¼ dðDu0ÞTt
t �t

TDu0 ¼ dðDqÞT t
t �tB

0
L ð19Þ
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where t
t �t is the Cauchy stress matrix:

t
t �t ¼

t
t _t

t
t _t

t
t _t

2
6664

3
7775 t

t _t ¼

t
tsxx

t
ttxy

t
ttxz

t
tsyy tyz

t
tszz

2
664

3
775 ð20Þ

we obtain the following discretized form of the virtual work equation:

Vt

Z
B0T

L
t
t �tB

0
LdVt

0
B@

1
CADqþ

Vt

Z
BT

L DSdVt ¼

Vt

Z
NTDfdVt þ

›Vt
s

Z
NTDtd ›Vt

s

� �
ð21Þ

where B0
L is the large displacements operator, BL is the linear operator, tt �t is the Cauchy

stress matrix,N is the shape functions matrix,Dq is the displacements increment vector,
Df is the body forces increment vector and Dt is the tractions external load increment
vector.

2.3 Finite strains formulation
2.3.1 Kinematics. The kinematics of the finite strains has been well described, for
example, by Peric et al. (1992), Crisfield (1997) and Bathe (1996). The material
derivative of a displacement is of the form:

v ¼
›x

›t
ð22Þ

When denoting the initial configuration as X and the current configuration as x the
deformation gradient definition takes the form:

F ¼
›x

›X
ð23Þ

The gradient of the material derivative relates the deformation gradient and the
gradient of the material derivative:

L ¼
›v

›x
¼

›v

›X

›X

›x
¼ _FF21 ð24Þ

The gradient of the material derivative can be decomposed into D which is the rate of
deformation tensor and W which is the spin rate:

L ¼ DþW ð25Þ

The deformation gradient and the spin are defined as follows:

D ¼
1

2
Lþ LT
� �

; W ¼
1

2
L2 LT
� �

ð26Þ

Now, we will use the decomposition of the gradient F ¼ VR ¼ RU (V and U are the
left and right stretch tensors, R is the rotation tensor):
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L ¼ _RRT þ R _UU21RT ð27Þ

The following relations are valid:

_F ¼ R _Uþ _RU; F21 ¼ ðRUÞ21 ¼ U21R21 ¼ U21RT ð28Þ

The unrotated deformation strain rate is the symmetric part of the second part in L:

d ¼ ð _UU21 þ U21 _UÞ ð29Þ

Exploiting the orthogonality condition:

RRT ¼ 1; ð _RTRÞ ¼ 0; RT _Rþ _RTR ¼ 0 ð30Þ

the unrotated deformation rate takes the form:

d ¼ RTDR ð31Þ

The analogous relation to the above one is also valid for the Cauchy stresses (because
of the conjugacy):

su ¼ RTsR ð32Þ

where su and s are the unrotated Cauchy stress and the true Cauchy stress,
respectively.

Now, we will use the multiplicative gradient decomposition into its elastic and
plastic parts (Figure 1):

F ¼ FeFp ð33Þ

The decomposed gradient can be substituted into the deformation rate definition,
equation (24) and with the assumption of small elastic strains we arrive at the
approximate relation:

L < Le þ Lp ð34Þ

which also leads to the approximate relation for the elastic and plastic deformation
rates (additiveness of the elastic and plastic deformation rates):

_D < _De þ _Dp ð35Þ

Now, we may transform the deformation rate (equation (35)) to the unrotated
configuration exploiting the relation, equation (31) using the rotation matrix:

Figure 1.
Gradient decomposition

F

X x

X
Fe

Fp
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d ¼ RTðDe þDpÞR ð36Þ

which gives the elastic and plastic deformation rates additiveness in the unrotated
configuration:

d ¼ de þ dp ð37Þ

The relation above and the relation for Cauchy stresses allows us to integrate the
constitutive relations in the unrotated configuration as for small strains.

2.3.2 Stress updating procedure. To integrate the constitutive relations we exploit
the relations given above using the integration for the unrotated configuration and the
midpoint rule (Crank-Nicholson). The algorithm arises from relations (35) and (32).
The outline of the integration scheme is given below:

(1) Compute deformation gradients:

Fi
tþDt ¼

› Xþ ui
nþ1

� �
›X

; Fi
tþDt=2 ¼

› Xþ ui
tþDt=2

� �
›X

ð38Þ

(2) Compute polar decompositions:

Fi
tþDt ¼ Ri

tþDtU
i
tþDt; Fi

tþDt=2 ¼ Ri
tþDt=2U

i
tþDt=2 ð39Þ

(3) Compute deformation increment over the step:

D1i ¼ Bi
tþDt=2 ui

tþDt 2 un

� �
ð40Þ

(4) Now, we take the elements of the strain increment D1 i and obtain the DD i and
perform rotation of the increment of spatial deformation to the unrotated
configuration:

Ddi ¼ RiT
tþDt=2DD

iRi
tþDt=2 ð41Þ

(5) Then, we perform integration of the small strains constitutive model using
backward Euler integration rule (predictor-corrector):

suði Þ
tþDt ¼ suði Þ

tþDtðst;at;Dd
iÞ ð42Þ

Where the stresses depend on the history, this is reflected by the stresses at time
t and internal parameters at.

(6) Transform the stresses to the true Cauchy stresses at t þ Dt:

stþDt ¼ RtþDts
u
tþDtR

T
tþDt ð43Þ

The integration in the unrotated configuration is performed using a consistent
tangent formulation, Simo and Taylor (1985).

2.4 Microstructural solidification model
During the entire forming process a part of the solidification takes place. In order
to describe the process more accurately a microstructure-based solidification model
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has been employed. The model stems from the assumptions given by Celentano and
Perez (1996). The basic assumptions are as follows: the sum of the solid and liquid
fractions is equal one, the solid fraction consists of dendritic and eutectic fractions:

f l þ f s ¼ 1; f s ¼ f d þ f e ð44Þ

Further assumptions are connected with the fact of the existence of interdendritic and
intergranular eutectic fractions, the internal fraction consists of its dendritic and
eutectic portions:

f s ¼ f d
gf i þ f e

g; f i ¼ f d
i þ f e

i ð45Þ

The last assumptions lead to the final formulae for the dendritic and eutectic fractions
(a spherical growth is assumed):

f d ¼ f d
gf

d
i ; f e ¼ f d

gf
e
i þ f e

g; f e
g ¼

4

3
PNdR

3
d; f e

i ¼
4

3
PN eR

3
e ð46Þ

Nd, N, Ne are the grain densities and Rd, Re are the grain radii. The grain densities and
grains sizes are governed by nucleation and growth evolution laws. The rate of growth
of the dendritic and eutectic nuclei is given below. This depends on the undercooling
and a Gaussian distribution of the nuclei is assumed:

_Nðd;eÞ ¼ Nmaxðd;eÞ
1

2P
exp 2

DT 2 DTN ðd;eÞ

2DTsðd;eÞ

� �
2 _T
� �

; DT ðd;eÞ ¼ T ðd;eÞ 2 T ð47Þ

The rate of the dendritic and eutectic grain radii is established based on experimental
dependence:

_Rðd;eÞ ¼ f Rðd;eÞ ð48Þ

Finally, the internal dendritic fraction depends on the melting temperature and k0 is the
partition coefficient:

f d
i ¼ 1 2

Tm 2 T

Tm 2 T l

� � 1
k 021

ð49Þ

Two numerical examples concerning the mould filling and thermal stress development
are provided.

2.5 Mould filling problem
The flow of material is assumed to be Newtonian and incompressible, Taylor and
Hughes (1981), Ravindran and Lewis (1998) and Lewis and Ravindran (2000).
The governing Navier Stokes equations are of the form:

r
›u

›t
þ ðu ·7Þu

� �
¼ 7 ·m 7uþ ð7uÞT

	 

2 7pþ rg ð50Þ

The mass conservation equation gives the incompressibility condition:

7 ·u ¼ 0 ð51Þ
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where u is the velocity vector, p is pressure, m is the dynamic viscosity and g is the
gravitational acceleration vector. Performing the Galerkin procedure with a quadratic
approximation for velocities u ¼ SiNun and linear approximation for pressures
p ¼ SjN

0p the discretized form of equations (50) and (51) is obtained:

M 0

0 0

" #
unþ12un

Dt

0

" #
þ

Ku Q

QT 0

" #
unþ1

p

" #
¼

fu

0

" #
ð52Þ

where M is the mass matrix, K is the velocity stiffness matrix and Q is the divergence
matrix. The r.h.s of equation (52) also contains external loading for the squeezed
casting process.

To track the free surface the volume of fluid method is applied. Free surface
tracking is governed by the first order advection equation:

›F

›t
þ ðu ·7ÞF ¼ 0 ð53Þ

where F is the pseudo-concentration function varying from 21 to 1, F , 0 indicates
the empty region, F . 0 indicates the fluid region, F ¼ 0 locates the free surface.
The equation (53) is discretized with the Taylor-Galerkin method. An implicit time
integration algorithm is used to solve the equation (52) and when considering the
equation (53) an explicit integration scheme is used.

2.6 Thermal and mechanical contact
In our case the interfacial heat transfer coefficient is used for establishing the interface
thermal properties of the layer between the mould and the cast part. The inclusion of
this effect is critical in solidification processes because of the pressure and airgap
effects. The interfacial heat transfer coefficient depends on the air conductivity kair,
thermal properties of the interfacing materials and the magnitude of the gap ( g).
The formula given by Lewis and Ransing (1998) and Ransing et al. (1999) is adopted:

h ¼
kair

g þ ðkair=hoÞ
ð54Þ

The value of ho, an initial heat transfer coefficient should be taken from experiment and
reflects the influence of the type of interface materials where coatings may be applied.
Additionally, from a numerical point of view, this allows us to regularize the dependence
of the resulting interfacial coefficient on the gap magnitude. The dependence is also a
source of coupling between the thermal and mechanical equations.

The basic assumption is that the whole cast part is in perfect contact with the mould
at the beginning of the thermal stress analysis. The assumption is justified by the fact
that the thermal stress analysis starts after the commencement of solidification.
Because of the assumption concerning small deformations we may consider the
so-called “node to node” approach in determining the contact characteristics. A penalty
formulation is used which is briefly described. Considering the potential energy of an
augmented mechanical system where, except for the standard stiffness matrix (linear
or nonlinear) K and forces F, there exists a system of constraints represented by
the stiffnesses l. The constraints act between the contacting bodies. On calculating
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the potential energy of the system, and then minimizing the energy, we arrive at an
augmented system of equations taking into account the contact interactions:

P ¼
1

2
qTKq2 qTFþ

1

2
gTlg; K0q ¼ F0 ð55Þ

The term g represents a vector of the penetration of contacting nodes into the contact
surface and K0 and F0 are the augmented stiffness matrix and equivalent force vector,
respectively. In the case of non-existence of the contact the distance between the nodes
is calculated and in consequence the value is transferred to the thermal module where
the interfacial heat transfer coefficient is calculated. The penalty number is an input
data. In our implementation a possibility of keeping an assumed stiffness is kept even
in the absence of contact between the nodes under consideration.

2.7 Coupling strategy, thermomechanical problem
Recalling the state equations of the thermal and mechanical problem in their
discretized and abbreviated forms:

KTn þ C _Tn ¼ FT

Ke2vp þKg

� �
Dq ¼ DQ

ð56Þ

we may apply a staggered solution scheme, Felippa and Park (1980). The solution is
obtained by sequential execution of the two modules (i.e. thermal and mechanical)
(Figure 2).

The thermal problem is transient and nonlinear while the mechanical one is static
and also nonlinear. The sources of nonlinearity in the static problem are the nonlinear
and temperature dependent constitutive relations, nonlinear geometry and the contact
relations. The sources of nonlinearity in the thermal problem are the temperature
dependence of the conductivity and the heat capacity and the dependence of the
interfacial heat transfer coefficient on the gap (equation (55)).

3. Parallel processing
We present the parallel application in the case of thermomechanical coupled problem
(Postek et al., 2005). Generally, the programming techniques for parallel models are

Figure 2.
Staggered scheme,
thermomechanical

problem

T T T

M M M

. . . e.t.c

t t + ∆t t + 2∆t

Note: Reproduced from the only available original
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generally categorized by how memory is used and these can be divided into two
categories:

(1) the“sharedmemory”model inwhicheachprocessoraccessesasharedmemoryspace;and

(2) the “message passing model” in which each processor communicates with other
processor by sending and receiving messages.

The message passing programming method is implemented on most parallel clusters by
applying, e.g. the Message Passing Interface (Forum, MPI, 1994) library (1994).
Computational tasks can reside on the same physical machine as well as across an
arbitrary number of machines. The tasks exchange data through communications by
sending and receiving messages. Data transfer usually requires that cooperative
operations be performed by each processor. For example, a “send” operation must have a
matching “receive” operation. The parallel implementation of the sequential code uses the
message passing programming and is based on a domain decomposition. The sequential
code is presented first then the parallel implementation, using the multifrontal parallel
solver (MUMPS), Amestoy et al. (2000, 2001) working with MPI, is described.

3.1 Sequential code
The sequential code is written in Fortran 90 and contains two main modules:

(1) the mechanical module (denoted M) which solves the mechanical problem by
using the Newton-Raphson method; and

(2) the thermal module (denoted T) which solves the thermal problem by using the
Crank-Nicholson integration rule.

The two modules are both independently solved with a certain number of iterations.
Data are transferred between these two modules at time step t þ Dt. Algorithm (1)
points out the main tasks of the sequential code.

Algorithm 1. Main tasks of the sequential code (staggered solution scheme):
1: t ¼ 0
2: repeat
3: {Thermal module}
4: repeat
5: Build the stiffness matrix and the right-hand side vector for the thermal

module
6: Crank Nicholson scheme
7: Solve the linear system
8: until converged
9: {Mechanical module}

10: repeat
11: Build the stiffness matrix and the right-hand side vector for the mechanical

module
12: Newton-Raphson scheme
13: Solve the linear system
14: until converged
15: Exchange data between the modules
16: t þ Dt
17: until t < total time
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3.2 Parallel code using the MUMPS software
Following the above-staggered scheme a consistent parallelization algorithm is
applied. The above-mentioned MUMPS solver takes as input parameters the linear
systems and the number N of processors. It builds a partition with the METIS
software, Karypis and Kumar (1997), of the linear system on each processor and solves
it in parallel. The solver is also called in a staggered mode on using different partitions
for the thermal and mechanical modules. Algorithm (2) describes the main tasks of the
parallel code.

Algorithm 2. Main tasks of the parallel code (staggered solution scheme):
1: t ¼ 0
2: repeat
3: {Thermal module}
4: repeat
5: Build the stiffness matrix and the right-hand side vector for the thermal

module
6: Crank-Nicholson scheme
7: Solve the linear system in parallel on N processors by using MUMPS
8: until converged
9: {Mechanical module}

10: repeat
11: Build the stiffness matrix and the right-hand side vector for the mechanical

module
12: Newton-Raphson scheme
13: Solve the linear system in parallel on N processors by using MUMPS
14: until converged
15: Exchange data between the two modules
16: t þ Dt
17: until t < total time

4. Numerical examples
4.1 Mould filling, valve
The numerical example concerns filling of a valve with aluminium alloy LM25. During
the filling process solidification of the material is observed. The initial temperature
of the cast is 6508C and initial temperature of the mould is 1508C. The ambient
temperature is 208C. The interfacial heat transfer coefficient is 6,000 W/m28C.
The material density is 2,520 kg/m3. The wall friction angle is 1358. The filling time is
10 s. The mould is made of steel H13. The cast and mould are discretized with 10,422
nodes and 4,917 elements. The discretization is shown in Figure 3. The microstructural
data are shown in Figure 4(a)-(d), namely the dependences of heat capacity and
conductivity on temperature and radius rates of the dendritic and eutectic grains.
A qualitative difference is seen between Figures 5 to 10 where the temperatures
distributions and the distributions of the dendritic and eutectic fractions are presented.
This happened due to a much faster filling of the mould when the pressure
was applied. The percentage of filling versus time dependency is shown in Figure 11.
When the pressure is applied the filling time is 2.3 s while in the case of free filling the
time is approximately 10 s.
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Figure 3.
Microstructural data (a, b,
c, d): eutectic and dendritic
radius rates with respect
to undercooling, heat
capacity and conductivity
vs temperature
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4.2 Coupling the mould filling and thermal stress analyses
In this case we follow the general assumptions that the process is sequential, which
implies that the thermal stress analysis is performed after filling the mould with
metal and reaching the final position of the punch. The latter implies that the final
shape has been achieved. In this process the temperature field obtained at the end of
the mould filling process represents the initial condition for the thermal stress
transient analysis.

An example of an industrial squeeze forming process is described herein. Figures 12
and 13 show the coolant channel system of the punch and die. The problem is actually
considered as axisymmetric, and the part being formed is a wheel. The material

Figure 3
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Figure 4.
Valve, finite element mesh
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properties are the same as presented in the previous examples. The diameter of the
wheel is 0.5 m, the diameter of the die-punch-ring system is 0.9 m, the height of
the punch is 0.23 m and the thickness of the part is 0.015 m. The initial temperatures
of the particular parts of the system were as follows: cast 6508 die and ring 2808 and
punch 3008. The enthalpy curves standing for the data are shown in Figure 14.

The sequence of the punch positions and the corresponding advancement of filling
of the cavity by means of the distribution of the pseudo-concentration function is
shown in Figures 15-20.

The maximum punch travel is 49 mm. The temperature distribution, after
completion of the filling process, is shown in Figure 21. The next figure, Figure 22,
shows the temperature distribution after 16 s of the cooling phase.

Figure 5.
Valve, free solidification,
temperature distribution
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The corresponding solidification pattern is shown in Figure 23 and the von Mises
stress distribution is shown in Figure 24. The highest von Mises stress, 325 MPa, is in
the punch close to the top of the cast part.

4.3 Parallel processing
4.3.1 Cylinder. The cooling process is calculated over a total time of 10 s. The diameter
of the mould is 0.084 m, the diameter of the casting is 0.034 m, the height of the casting
is 0.075 m and the height of the mould is 0.095 m, respectively. The following thermal
boundary and initial conditions were assumed: a constant temperature of 208C on the
outer surface of the mould, 2008C on the top of the casting, 7008C being the initial

Figure 7.
Valve, free solidification,
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distribution
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Figure 8.
Valve, squeezed casting,
temperature distribution
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temperature of the casting and 2008C the initial temperature of the mould, respectively.
The mould is fixed rigidly to the foundation. The die is made of steel H13 with the
properties: Young modulus 0.25 £ 1012 N/m2, Poisson’s ratio 0.3, density 7,721 kg/m3,
yield stress 0.55 £ 1010 N/m2, thermal exp. coeff. 0.12 £ 1025 and the material
properties of the casting (aluminium alloy, LM25): Young modulus 0.71 £ 1011 N/m2,
Poisson’s ratio 0.3, density 2,520 kg/m3, yield stress 0.15 £ 109 N/m2, fluidity
parameter 0.1 £ 1022, thermal exp. coeff. 0.21 £ 1024, contraction 0.3 £ 10212,
Tliq ¼ 6128C, Tsol ¼ 5328C. The enthalpy curves are shown in Figure 14.

The mesh (9,140 elements and 10,024 nodes), temperature, solidification ratio and
Mises stress distributions at a time of 5 s are shown in Figures 25-28, respectively.

Figure 9.
Valve, squeezed casting,
dendritic fraction
distribution close to the
end of the solidification
process
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Figure 10.
Valve, squeezed casting,
eutectic fraction
distribution close to the
end of the solidification
process
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Figure 11.
Valve, dependence of the
filling percentage versus

time
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The program has been successfully tested on a range of 2-16 CPUs. The timing results,
depending on the number of CPUs, are shown in Table I.

The master CPU uses more time then the rest of the CPU’s since it prepares the
stiffness matrices, right-hand sides of both problems and also takes part in the solution
of the system of equations. The triangularization times for the thermal and mechanical

Figure 13.
Wheel, die, coolant
channel system Note: Reproduced from the only available original
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Figure 15.
Punch-die-cast system,

position of the punch
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Figure 16.
Punch-die-cast system,

position of the punch
210 mm
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Figure 18.
Punch-die-cast system,
position of the punch,
240 mm
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Figure 17.
Punch-die-cast system,
position of the punch,
235 mm
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Figure 19.
Punch-die-cast system,
position of the punch,

245 mm
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Figure 20.
Punch-die-cast system,
position of the punch,

249 mm
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problems are also different as the mechanical problem has three times the number of
unknowns than the thermal problem.

The total times used by the master and slave processors, depending on their
number, are given in Table I. An almost linear dependency of the total times used by
the processors is demonstrated. The triangularization times are also given in Table I.

The acceleration factors and efficacies of the master and slave processors,
depending on their number, are given in Table II.

The factors are referred to a base number of 2 CPU’s.
On considering the thermomechanical problems it appears that the mean efficiency

of the slave processor is higher than the master one. Indeed, the master processor

Figure 21.
Temperature distribution
after completing of the
filling phase
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Figure 22.
Temperature distribution
at 16 s of the cooling phase

Max = 621
Min = 32.1

x

y

z

567
514
460
407
353
300
246
193
139
85.6

Note: Reproduced from the only available original

HFF
18,3/4

348



builds at each time step the stiffness matrix and the right-hand side vector for the
thermal and mechanical modules. Also, the MUMPS software constructs at each time
step a partition into N subdomains.

4.3.2 Aluminium part. This system consists of die with coolant channels, cylindrical
cast and punch. The cylindrical cast has an opening. The geometry and the
discretization are shown in Figure 29 (overall view) and in Figure 30 (cross-section).
The physical properties are defined as in the example presented above. The system
consists of 37,437 nodes and 33,920 elements.

The cooling process is followed for 5 s with 50 equal time steps and was solved
using 16 CPUs. The solution required 13,271 s on the master CPU and 5,973 s of the
remaining CPU’s.

Figure 23.
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distribution, 16 s of the
cooling
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Figure 24.
Von Mises stress

distribution, 16 s of the
cooling
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Figure 26.
Cylinder, temperature
distribution, 5 s of the
process
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Figure 25.
Cylinder, finite element
mesh
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Figure 28.
Cylinder, solidification
ratio, 5 s of the process
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Figure 27.
Cylinder, solidification
ratio, 5 s of the process
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The distribution of temperatures is shown in Figure 30 and the distribution of the
Mises stress is shown in Figure 31. We may notice that during the initial phase of
the process the Mises stress are the highest in on the boundary between the cast
and the die.

5. Final remarks
This paper presented a mathematical and computational framework of the squeeze
forming process. We believe that further research, except for the usual refining of the
present techniques, for example taking into account the effect of development of
the thermal stresses during the filling phase, should be directed towards an analysis

No. of
CPUs

Master
CPU

Slave
CPU

Triangularization time,
thermal

Triangularization time,
mechanical

2 8,294 6,797 0.8552 30.2115
4 6,193 4,682 0.5884 19.1354
8 3,084 1,898 0.2766 7.9217

16 2,296 2,296 0.1876 3.7895

Table I.
Timing of the problem
(seconds)

Figure 29.
Die-punch-cast setup
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Master CPU Master CPU Slave CPU Slave CPU
No. of CPUs Acceleration Efficacy Acceleration Efficacy

2 1.0 1.0 1.0 1.0
4 1.34 0.67 1.45 0.73
8 2.69 0.67 3.58 0.90

16 3.61 0.45 6.15 0.77

Table II.
Acceleration and efficacy
of the master CPU and
slave CPUs
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of the influence of geometrical defects (voids) in the parts, “artificial” inclusions,
e.g. concentrations of eutectic or dendritic fractions, “hot spots” analysis, etc.
This should lead to an evaluation of the reliability of the process. The reliability of the
process is understood not only in its heuristic connotation but also as mathematically
posed design constraints problem, i.e. reliability analysis.

Figure 30.
Temperature distribution

after 5 s of the process
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