
Abstract:

1. Introduction

In this article we present a navigation system of a mo-

bile robot based on parallel calculations. It is assumed

that the robot is equipped with a 3D laser range scanner.

The system is essentially based on a dual grid-object,

where labels are attached to detected objects (such maps

can be used in navigation based on semantic information).

We use a classical SMPA (Sense - Model - Plan - Act)

architecture for navigation, however, some steps conce-

rning object detection, planning and localization are

parallelized in order to speed up the entire process. The

CUDA (Compute Unified Device Architecture) technolo-

gy allows us to execute our algorithms on many proces-

sing units with use of a inexpensive graphics card which

makes it possible to apply the proposed navigation system

in a real time.

Keywords: navigation, neural network parallel computing.

As robots move away from laboratory and act in com-

plex real-world scenarios, both the control architectures

and perception must become more powerful. For exam-

ple, a service robot collaborating with a human needs to

classify three-dimensional objects, know their functiona-

lities and relationships between them. It also has to plan

a path, avoid collisions and calculate low level control.

All operations have to be done in a real time. The oldest

classical control architecture is called SMPA. In this ap-

proach the navigation system is decomposed into a series

of units (Fig. 1). It consists of following, repeated steps:

• Perception - the robot senses its environment

• Modeling - the map of the environment is built

• Planning - actions of the robot are planned

• Task execution - the robot performs the planned action

Fig. 1. A decomposition of a mobile robot control system.

This architecture is natural and easy to implement,

however, one has to take care about sensor fusion, world

modeling and path planning before executing an action.

Traditionally an algorithm is implemented as a serial

stream of instructions, and long time of reaction to envi-

ronmental changes can become an issue [1,2].

In 1986 Rodney Brooks introduced subsumption

architecture [3,4,5]. It consists of layered behaviors, with

simple interfaces between them - units can take the inputs

and/or outputs of other units. Each behavior has its own

control program that is capable to react to environmental

changes in real time. This architecture supports parallel

computation and avoids centralized control. When this

approach is used it is difficult to obtain smooth behavior of

the robot. The method fails in case of more complex tasks.

The hybrid architecture [6,7] integrates the advantages

of SMPA and subsumption and avoids the disadvantages.

The whole framework of the decision-making system is

based on the planning (SMPAarchitecture) and behavioral

models are applied in the dynamic situation. This third

approach is efficient but it can still fail when the robot acts

in complex real-world environment.

In our approach we propose to use hybrid architecture,

however, main modules: mapping, localization and colli-

sion-free path planning are divided into independent units

so that each processing element can execute its part of the

algorithm simultaneously with the other. Parallel pro-

gramming allows multiple processes to be executed con-

currently using separate threads. It can help reduce run-

times while still producing the same results as if it were

run in serial. There are some restrictions with using paral-

lelism and not every algorithm can be done in parallel.

Parallel computing [8] can by classified according the

level at which the hardware supports parallelism. We can

distinguish single multi-processor computers and clusters

and grids of computers.

Recently platforms using graphics processing units

(GPU) have become very popular. In our approach we

propose to use Cellular Neural Network implemented us-

ing CUDA technology. The article consists of the follo-

wing parts: in section 2 the cellular neural network para-

digm and the implementation of CNN using CUDA tech-

nology are presented. In section 3 the architecture of the

system is described. In section 4 the experimental results

are shown. The article finishes with the conclusions.

2. CNN Implementation using
CUDATechnology
Cellular Neural Network (CNN) also known as Non-

linear Neural Network was invented by Leon O. Chua and

Lin Young in 1990 [9]. CNN is an array of analog dynamic

A MOBILE ROBOT NAVIGATION WITH USE OF

CUDA PARALLEL ARCHITECTURE

Barbara Siemiątkowska, Jacek Szklarski, Michał Gnatowski, Adam Borkowski, Piotr Węclewski

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 5, N° 3 2011

Articles 79

Sensors

Perception

Modeling

Planning

Task execution

Motor Controls

Actuators

processors called cells. A standard CNN architecture con-

sists of an cells which are denoted (). A typical

example of CNN is presented in Fig. 2.

All CNNs are characterized by the fact that a cell’s sta-

te is a function of its input and output of its neighbors

only (and is discrete in the time domain). In other words:

(1)

where denotes states at time of neighborhood of

(exact definition of neighborhood depends on the parti-

cular implementation).

The structure of CNN is similar to a human retina and

the CNNs are also widely used in image processing. Using

graphics processing units is a natural way of CNN imple-

mentation.

The most popular architectures are CUDA (

) and Fire Stream. The former

is a system dedicated for NVidia cards while the latter for

ATI-AMD cards. It is worth to mention about a project of

OpenCL libraries which is developed by the above com-

panies and IBM (cluster computing technology) and

others. Merging the simplest technologies of parallel com-

puting emulations in operating systems (threads), com-

puting on multi-core computers, interfaces to operations

on graphic cards and computing the cluster systems give

versatile and scalable solution but is more demanding to

a programmer.

In our experiments we decided to use NVidia CUDA,

due to its popularity, wide range of useful tools, documen-

tation and examples.

While writing a sequential programme, a programmer

does not need to know the hardware he or she works with.

In applications where the key point lies on the short exe-

cution time, in particular implementing parallel compu-

ting, the structure and hardware often become important.

The graphic card GPU ()

consists of multiprocessors (SM - stream multiprocessors)

and a steering processor. Every SM device in each cycle

N M C i, j

Fig. 2. The CNN architecture.

x

N t

Compute

Unified Device Architecture

Graphics Processing Unit

�

i,j i,j

i,j

y

xt

processes threads grouped in so called “wraps”. The num-

ber of threads in each wrap (wrap size) is different in each

graphic card. SM may also be classified as a SIMT (

) due to computing by a num-

ber of threads at the same time. Graphic card is also equip-

ped with fast RAM named “Global”. Additionally every

SM has a local memory.

In computer games this technology is used in graphics

rendering, physics calculations like fire, smoke or water

diffusion. CUDA technology is not only used in graphical

applications, but also in computational biology, crypto-

graphy and others. An example of CUDA technology is

BOINIC which is a non-commercial system for grid com-

puting. It became useful as a platform of distributed appli-

cations in mathematics, medicine, molecular biology,

astrophysics and climatology.

CUDA provides simple access to GPGPU (

) and

allows us parallel computing on its own GPU’s. GPU’s

have numerous cores that operate in parallel to run time-

consuming graphics operations. They have much more

processing power than CPU’s.

The flowchart of CUDA program consists of follo-

wing stages:

• Blocks and threads are configurated

• Global memory is allocated

• The data is copied to the GPU

• The GPU kernel is called

Output data is copied back to the CPU. Fig. 3 presents

the GPU architecture.

Single

Instruction, Multiple Thread

General-Pur-

pose Computation on Graphics Processing Units

Fig. 3. GPU architecture (from NVidia.com).

Journal of Automation, Mobile Robotics & Intelligent Systems

Articles80

VOLUME 5, N° 3 2011

x f x Ni,j i,j
t t�1 t= (,),

Localization problem is solved using particles filter.

The probability density of the estimated robot position is

represented by a set of "particles", each encoding a single

possible state (pose) of the vehicle. The particles are itera-

tively propagated using control input (motion model). On

the basis of the measurement model a weight is attached to

each particle. The number of particles depends on the un-

certainty of odometry.

Tab. 1 presents the dependency between number of

particles and the accuracy of determining robot displace-

ment (the accuracy of odometry is assumed to be 10%).

The experiments were performed with the use of robot

Elektron1 in a real office environment.

particles the accuracy of displacement [%]

1000 7

10000 2

100000 1

1000000 0.2

For more than 1000000 particles the accuracy does not

change. Due to its natures the particles filter algorithm can

easily be parallelized.

The problem of object recognition is a much more

complicated task, and there are no general solutions.

Our approach to this subject is based on the idea that

the matrix can be represented as an RGB image which

possesses useful geometric information. Each row and

column of corresponds to certain and angles, so each

entry describes a point in a 3D (, ,) space (is the

distance to obstacles). The robot is at the center of this

coordinate system. Let is a vector defined by points

and . By taking the sum of the cross products:

(2)

one obtains the vector =[] which is (approxima-

tely) normal to the surface spanned on and its neigh-

bors. is normalized:

| |=1 (3)

|n | 1, |n | 1, |n | 1 (4)

The final image is constructed by assigning red/green/

blue (RGB) color values according to the components

of .

R=255*|n |

G=255*|n | (5)

B=255*|n |

Such images have interesting properties, which makes

them useful as an input to an object recognition algorithm

[12-14].

The process of converting matrix into the RGB ima-

ge can be efficiently solved via a typical SIMD (Single In-

struction Multiple Data) architecture. Therefore it is a per-

fect task which can be parallelized, so the time-cost can be

Tab. 1. Dependency between the accuracy of displacement

and the number of particles.

M

M

M R R

M

M M

n ,n ,n

M

x,y,z

M

� �

� �

� � �

i,j

k,l

i,j i k j l

x y z

i,j

x y z

x

y

z

+ , +

V

V

V

V

3. The SystemArchitecture
The architecture of the navigation system is presented

in Fig. 4. Gray units present time consuming processes

which we try to parallelize. In this section steps of the

algorithm are described.

The decision making system is essentially based on

observations of distance to the nearest obstacles. At the

present stage of the research, the mobile robot Elektron

[11] is equipped with a 2D laser range finder Sick LMS

200, which measures this distance in a 2D plane for 90°

90° with the resolution 0.5° (for = 0 the laser ray

points forward = 90° towards robot’s left, etc.). More-

over, the laser is mounted on a support which rotates

around the horizontal axis. Therefore, the range finder can

move up and down with the angle , and finally it provides

a matrix with numbers representing distance to an ob-

stacle. Such matrix can be depicted as a gray-scale image.

Fig. 6 presents the matrix obtained for point cloud

shown in Fig. 5.

The robot is also equipped with odometry which gives

information about robot's displacement.

The matrix is used for:

1) Localization

2) Constructing a map of the environment used for

navigation.

3) Recognition of objects of certain classes. The recogni-

zed objects can be placed onto the map of environment

enabling . Such navigation

makes it possible to give to the robot commands in

a human-understandable form, e.g., “find a nearest

wastebasket”.

3.1. Sensors

3.2. Processing

� �

� � �

� �

�

M

M

M

Fig. 4. The architecture of navigation system.

the semantic navigation

Journal of Automation, Mobile Robotics & Intelligent Systems

Articles 81

VOLUME 5, N° 3 2011

V N N N N N N N N= 10 01 01 0 1 0 1 0 1 0 1 10� � � � � � �
i i i i� � � �

significantly reduced. In particular, the relatively inexpen-

sive CUDAtechnology fits very well for that purpose.

The object recognition procedure is based on Haar-like

features and utilizes the concept of integral images. It is

very fast and even for sequential single-processor, takes

only short amount of time (approx. 0.1 s for typical para-

meters). However, for each Haar classifier only an object

of a class can be detected. Therefore, parallel

approach is necessary to achieve short times for large data-

bases of objects. Although at present we do not use any

parallel programs to achieve this goal, it will be done in the

future research.

single certain

Fig. 5. Point cloud.

Fig. 6. Matrix M, representing distance to obstacles in me-

ters, depicted as a gray-scale image.

Fig. 7. The RGB image constructed from M using the pro-

cedure described in text. The black rectangle denotes the

region which has been recognized as “base of an office

chair” by the Haar classifier.

3.3 Path planning

Having a map of the environment, together with some

detected objects, the robot must find its way. The path

planning algorithm is realized with use of CNNs. For our

CNN planning (described in details in, e.g., [14]), each

corresponds to a cell in the grid-based map. Then, after

initialization and the appropriate diffusion process, a stea-

dy state is achieved. The robot then, being at a place re-

presented by a cell , moves towards increasing gradient

of , and achieves its goal where maximum of have been

found. Due to its natures, such CNN, can easily be paral-

lelized, also with use of the CUDA technology. This algo-

rithm has following advantages: the time of collision-free

path planning is comparable to reactive behavior, the goal

can be given in natural language so we can ask the robot to

go to specify object for example a chair. We can also ask

the robot to go to the object far from other object or to

avoid some places. In comparison to well known potential

field method it does not suffer from local minima problem.

The main goal of the experiments was to compare

serial and parallel implementations of selected units. We

implemented the mobile robot localization method using

particle filters and the algorithm which computes normal

vector. The experiments were performed using Intel Cen-

trino (2x2.0GHz) processor (serial implementation) and

NVidia GeForce 9300MG (parallel implementation)

Fig. 8 presents a log-log plot of the overall execution

time for the CPU and GPU implementations for different

numbers of particles. The speedup factors (CPU_time /

GPU_time) increase with problem size. We can notice that

a speedup factor is greater than 1 if the number of particles

exceeds 10 .

x

x

x x

Fig. 8. Timing results (particles filter).

Fig. 9 Timing results (normal vector).

i,j

k,l

4. Experiments

4

Journal of Automation, Mobile Robotics & Intelligent Systems

Articles82

VOLUME 5, N° 3 2011

Fig. 9 presents the time of computing normal vectors

for 361 215 point clouds using GPU and CPU. The speed-

up factors (CPU_time / GPU_time) increase with problem

size. Speedup factor is greater than 1 if the array size ex-

ceeds 10 10.

Fig. 10 presents the pseudo-code of the algorithm im-

plemented using GPU.

Finally, we must stress that at the present stage of our

research, the slowest part is still the process of gathering

data about the distance to obstacles. However, in the next

stage we shall start experiments with hardware stereosco-

pic cameras giving such matrices at the rate of 20 FPS. In

this case, parallel calculations will lead to significant

performance improvement.

Fig. 9. A pseudo-code showing how to calculate the

matrix with normal vectors from the distance matrix .

The function NormVect is executed on GPU multiproces-

sors using nBlocks blocks, each running blockSize threads.

__global__ (Matrix<Point3D> in) {

index

col index % width(in)

row index / width(in)

out[col][row] (in[col][row]

in[col+1][row]) ×

(from in[col][row] to in[col][row-1]) +

(from in[col][row] to in[col][row+1]) ×

(from in[col][row] to in[col-1][row]) + ...

return out;

}

(Matrix , Vector , Vector) {

Matrix<Point3D> r;

for each element i,j in M:

r[i][j].x M[i][j] * sin [j] * cos [i]

r[i][j].y M[i][j] * sin [i]

r[i][j].z M[i][j] * cos [j] * sin [i]

return r

}

(Matrix M, Vector ,

Vector) {

Matrix<Point3D> cloud (, ,)

Device(cloud)

(Matrix<Vector> out)

blockSize 16;

N width(M) * height(M)

nBlocks N/blockSize + (N % block_size == 0 ? 0:1)

<<< nBlocks, blockSize >>>

result (out) }

�

�

�

�

�

�

� �

� � �

� �

� � �

�

�

� �

� � �

�

�

�

�

M

blockDim.x * blockIdx.x + threadIdx.x

/* calculate sum of cross products of vectors

from in[col][row] and its neighbors: */

from to

M

/* M[i][j] is the distance for

angles [i] and [j] */

M

Fig. 10. The Pseudo-code for calculating normal vectors

with use of CUDA.

NormVect

vector

vector

vector

vector

CalcPointCloud

CUDACalcNormalVectors

CalcPointCloud

copyToCUDA

allocateOnCUDADevice

NormVect

copyFromCUDADevice

5. Conclusions
In this article we presented a navigation system of

a mobile robot equipped with a 3D laser range finder. Con-

siderable amount of processing time can be saved by paral-

lelizing some stages of the navigation system. This is

accomplished by breaking problems into small indepen-

dent parts which are executed simultaneously. The main

goal of the experiments was to compare serial and parallel

implementations of selected units of navigation system.

The project is on an early stage of development but the

results presented in Fig. 8 and 9 are promising and show

that for the tested algorithms and typical data size, CUDA

allows us to perform the task significantly faster than on

a regular CPU. For example, as can be seen in Fig. 9,

a typical image (with size 300 x 200) based on normal vec-

tors is created in less than 0.001 s with use of CUDA, and

about 1s otherwise. This is a crucial difference for a system

working in real.

- Warsaw University of Tech-

nology, Department of Mechatronics, Institute of Funda-

mental Technological Research PAS, Warsaw, Poland.

E-mail bsiem@ippt.gov.pl

- Institute of Fundamental Technological

Research PAS, Warsaw, Poland.

E-mail jszklar@ippt.gov.pl

- Institute of Fundamental Techno-

logical Research PAS, Warsaw, Poland.

E-mail mignat@ippt.gov.pl

- Institute of Fundamental Technolo-

gical Research PAS, Warsaw, Poland.

E-mail abork@ippt.gov.pl

- Warsaw University of Technology,

Department of Mechatronics, Warsaw, Poland.

E-mail: piotr.weclewski@stud.mchtr.pw.edu.pl

* Corresponding author

AUTHORS

Barbara Siemi¹tkowska*

Jacek Szklarski

Micha³ Gnatowski

Adam Borkowski

Piotr Wêclewski

References

[1] J. Nilsson, “Artificial Intelligence: A New Synthesis”,

Machine Industry Press, 1999.

[2] G. Saridis. “Toward the realization of intelligent con-

trols”, . vol. 67, 1979, pp. 1115-

1133.

[3] R.A. Brooks, “A robust layered control system for a mo-

bile robot”, ,

vol. 2 no. 11, 1986, pp. 14-23.

[4] R.A. Brooks. New approaches to robotics”.

vol. 253, 1991, pp. 1227-1232.

[5] M.J. Mataric., “Integration of representation into goal-

driven behavior-based robots”,

, 8(3), 1992, pp. 304-312.

[6] K.H. Low, W.K. Leow, and M.H. Ang, Jr., “A hybrid

mobile robot architecture with integrated planning and

control”. In:

, 2002, pp. 219–226.

[7] N.J. Nilsson. “Teleo-reactive programs for agent con-

trol”, , vol. 1,

1994, pp. 139–158.

Proceedings of the IEEE

IEEE Journal of Robotics and Automation

Science,

IEEE Trans. on Robotics

and Automation

Proc. 1 International Joint Conference on

Autonomous Agents and MultiAgent Systems (AAMAS-

02)

Journal of Artificial Intelligence Research

“

st

Journal of Automation, Mobile Robotics & Intelligent Systems

Articles 83

VOLUME 5, N° 3 2011

Journal of Automation, Mobile Robotics & Intelligent Systems

Articles84

[8] S.H. Seyed,

, Springer, 2000.

[9] L. Chua, L. Young, Cellular Neural Network ,

, 1990, pp. 500-505.

[10] Harris, Mark,

.

http://developer.download.nvidia.com

[11] Chojecki. R, Olszewski M., A Mobile Robot for Labo-

ratory Purposes and Its Applications , no. 3, 2009,

55, pp. 190-193.

[12] B. Siemi¹tkowska, J. Szklarski, M. Gnatowski, A. Zy-

chewicz, Budowa hybrydowej semantyczno-rastrowej

reprezentacji otoczenia robota mobilnego na podstawie

wskazañ dalmierza laserowego 3D , , no. 3, 2010,

pp. 278-282. (in Polish)

[13] M. Gnatowski, B. Siemi¹tkowska, J. Szklarski, Extrac-

tion of semantic information from 3D laser range Fin-

der”, In:

, Springer, 2010, pp. 383-389.

[14] A. Borkowski, B. Siemi¹tkowska, J. Szklarski,

Towards Semantic Navigation In Mobile Robotics .

In: G. Engles, C. Lewerenz, W. Schafer, A. Schurr, B.

Westfechtel (Eds.):

, LNCS 5765, Springer.

“

“ ”

“

”

“

”,

“

”

“

“ ”

Parallel processing and parallel algo-

rithms: theory and computation

IEEE

Transaction on Circuit System

Optimizing Parallel Reduction in

CUDA , NVIDIA Developer Technology

PAK

PAK

18 Symposium on Robot Design, Dynamics,

and Control

Graph Transformations and Model

Driven Engi-neering - Essays Dedicated to Manfred

Nafle

”

th

VOLUME 5, N° 3 2011

