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SURFACE TENSION MEASUREMENTS BY THE
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Abstraci—An optical method for the measurement of instantanecus values of surfacs tension has
been developed. This method depends upon the relationship of the frequency of an oscillating lquid
droplet to the surface tension of the fluid. The droplets used have radii of approx. 0.15 mm and are
obtained by the break up of a liquid jet. Experiments were performed with water and cthanol, The
results are in reasonable agreement with values obtained by the static ring method.

L INTRODUCTION

For most processes involving liquids with free surfaces, interfacial tension plays an impor-
tant role. Such processes include the disintegration of liquid jets, the generation of bubbles
or formation of emulsions, as well as Marangoni-type flows and the evaporation from
liquid surfaces. As surface tension depends not only on temperature but in many cases is
also very semsitive to impurities dissolved in the medium, one often needs to know its
nstantaneous value. The aim of the present paper is to report on the first non-intrusive
surface tension measurements, by which the motion of oscillating droplets is analyzed with
the help of a high speed imaging device.

2. DROFLET OSCILLATIONS

In the absence of external forces, an initially distorted liquid droplet finally reaches an
equilibrium spherical shape. This process is generally accompanied by a series of damped
oscillations. A particular oscillatory mode is completely described by the oscillation fre-
quency and the amplitude decay rate (as long as the oscillating system behaves linearly).
The oscillation frequency and the damping depend on the surface tension, the density and
viscosity of the fluid and the radius of the droplet. There are several more or less complicated
theoretical models describing this phenomenon. The question arises as to what are the
limiting experimental conditions for which the theoretical model will be applicable and
oscillaton analyses will provide sufficiently accurate surface tension results,

An appropriate mathematical analysis of oscillating droplets when both fluids are inviscid
may be found in Lamb's “Hydrodynamics™ (1932). For small amplitude oscillations he
obtained the following simple formula for the frequency of the nth mode of oscillation :

Q! = !‘,!_1— *(n+1)-(n+2)'n-a
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where o is the interfacial tension between the two phases, p, and P, are the densities of the

, (1)
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internal (d-oplet) and external phase, respectively, and R is the radius of the droplet at
equilibrium. As n = 0 and n = 1 describe no oscillations at all, the first mode of interest is
n = 2 (which corresponds to the oscillation of a spheroid). For n = 2 and in the case that
the density p, of the surrounding medium is negligible compared with the density of the
droplet medium, one obtains:

o

s = —- @

The analysis of droplet oscillations was extended' to include viscosity effects by Chan-
drasekhar (1959, 1961), Reid (1960) and Valentine er al, (1965). The general solution for
a viscous droplet oscillating in a viscous fluid was given by Miller & Scriven (1968) and
Prosperetti (1980a,b). From these calculations it follows that for sufficiently large droplets
of a low viscosity fluid, for example water droplets with diameters larger than 10 um
oscillating in a gas, the oscillation frequency deviates less than 1% from that one given by
equation (2). However, as a consequence of the liquid's viscosity, the oscillations are
damped so that the amplitude A, of the nth mode will decrease exponentially according to :

""t!l - "'IIIU‘ exp ( -I.llltn:lr [3']

where A, is the amplitude at the time ¢ = 0 and 1, the decay factor of the nth mode.

Generally, the amplitude decay factor t,, calculated by Prosperetti (1980a) for viscous
droplets oscillating in another viscous medium, is a complicated function of the oscillation
frequency, {2, and of the densities and viscosities of the external and internal fluids. For
viscous droplets dispersed in a vacuum or gas, however, Prosperetti’s result simplifies to
the following relation:

R r
T =, -@ntD)’ (4)
where v is the kinematic viscosity.

It follows, for example, that for water droplets of 0.1 mm radius the decay factor of the
second mode is 1, = 2+ 10~ * s and for the third mode 1, = 7.1+ 10~ * 5. The third mode is
damped almost three times faster than the second one. This means that during a few periods
at the end of an oscillatory motion, a droplet will generally oscillate in the second mode
which, due to its spheroidal shape, can be easily analyzed. Three characteristic features of
droplets oscillating in the 2nd mode in air, are displayed as a function of droplet radius for
three different liquids in Figs 1-3. These are: the oscillation frequency £, described by
equation (2) ; the normalized deviation, § = 1 —02/€),, of the Lamb’s oscillation frequency,
£};, from the more accurate values of {2 as given by Prosperetti (1980a) and Brosa (1988a),
respectively ; and the number of oscillations, N, during which the amplitude decreases to
1/e (= 0.37). The results of Prosperetti displayed in Figs 1-3 are drawn with help of his
asymptotic expression for a viscous droplet in a viscous medium (1980a, equation 54). In
this paper he defines a dimensionless viscosity, & = v+ (p/R* 0)"'?, values of which we also
put on the abscissa. According to his calculations, the viscous correction to the oscillation
frequency, £};, of the droplet is negligibly small if ¢ < 0.1 (compare with Figs 1-3). Brosa
(1988a) proposed a straightforward numerical solution of the equation of motion for a
viscous globe oscillating in a vacuum (a problem which was discussed earlier by Chan-
drasekhar, 1959 and Reid, 1960). Figures 1-3 show that for droplets with radii R = 0.1
mm, as we intend to use them in the experiment, this model gives deviations, 8, from Lamb’s
frequency well below 1%.

The dependence of N on the droplet radius (Figs 1-3) indicates the limits of the
observation method proposed. For a droplet where the amplitude decreases very fast
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Figs. 1-3. The sccond mode oscillation frequency, £,; the normalized deviation, § = | —(U/2,, of the Lamb's
frequency, £1;, from the “viscous™ frequency, {1, given by Brosa and Prosperetti; and the number, N, of
oscillations during which the amplitude of the 2nd mode decays to | fe—shown as a function of the droplet
Radius, R, and of the dimensionless parameter ¢. This figure shows water.

(N = 1), observation and evaluation of the oscillation frequency will become more com-
plicated than for high values of N. Very small droplets are expected to perform no oscil-
lations at all, as in this case an excited droplet will return aperiodically to its spherical
shape. A detailed study of these questions has been performed by Chandrasekhar (1961)
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Fig. 2. As Fig. 1, but for ethanol,
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Fig. 3. As Fig. 1, but for liquid iron,

and Reid (1960), who found that the critical radius for a water droplet below which this
aperiodic decay occurs is equal to 2.3+ 10~ % cm.

Up to now, we have discussed only linear oscillations. Recently, Brosa (1988b) com-
municated some first results on non-linear oscillations for the case of a non-viscous sphe-
roidal droplet. From his model we get a rough upper estimate for the maximum frequency
decrease for large amplitude oscillations. It follows that for a normalized oscillation ampli-
tude AR = 25% the frequency decrease is less than 5%. This means, then, that the influence
of the non-linearity on the measuring accuracy can be kept negligibly small, provided the
amplitudes are not too large. On the other hand, however, for large amplitude oscillations
non-linear effects, as described by Becker (1988), will become & dominating feature in drop
dynamies.

It should be mentioned that Prosperetti (1980b) has also obtained a solution to the initial
value problem giving theoretical predictions concerning the behaviour of oscillating droplets
in’the early transient period. His remarks on the time dependence of both the damping
factor, 7, and the oscillation frequency, {2, are very important for studies of the initial
oscillation behaviour of the droplet. However, asymptotic values of € and t, which he
obtains for large time, are equal those given by normal mode analysis. In other words, the
final cycles of droplet oscillations can be correctly described in terms of a periodic oscillator
motion.

From above considerations it can be concluded that the oscillation in air of low viscous
droplets of diameter larger than 10 um will be sufficiently accurately described by the simple
formula of Lamb (2), provided we limit our study to the last periods before the oscillations
cease,

3. EXPERIMENTAL

An overall view of the experimental set-up is displayed in Fig. 4. It consists essentially
of three devices: a drop generator; a high speed stroboscopic light source and imaging
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Fig. 4. Experimental set-up, (1) pressurized reservoir; (2) teflon filter; (3) drop generator; (4) piezo-driver:
(5) LED pulse driver; (6) LED; (7) microscope with CCD camera; (8) image processor and COMHILET.

unit ; an image processor connected to a computer. The droplets are generated by the break-
up of a laminar liquid jet. The liquid, supplied through teflon tubes and a teflon filter from
a pressurized tank, is discharged from a nozzle with a 0.1 mm diameter orifice. To reduce
contamination of the fluid all parts of the nozzle that may come into contact with the liquid
are made of stainless steel or copper. In order to control the disintegration process of the
Jet, artificial pressure disturbances are superimposed on the liquid in the antechamber of
the nozzle using a piezoceramic transducer (Fig. 5). By properly adjusting the oscillation
frequency of the piezoceramic driver to the eigenfrequency of the jet (the frequency of the
capillary instability) the jet can be caused to break up into a row of practically monodispersed
droplets. Due to the break up process, the droplets oscillate first in many modes and at
large amplitudes. After a short time the second mode, which has the largest decay time,
becomes totally dominant. Finally, after a few oscillations (see Figs 1-3), the droplets
return to their static form. If the jet separates symmetrically from the nozzle and there are
no external disturbances, the oscillating droplets preserve their symmetry axis parallel to
the nozzle axis. Aerodynamic forces acting on the droplets moving in a 245 OF Vapour may
cause additional shape deformation. In our experiments, however, the droplets move at
low velocities between | and 2 m s~ and have typical radii of 150 um so that their final

g :

Fig. 5. Scheme of the droplet generator. (1) fow inbet; (2) insulator: {3} electrode; (4) piezo-ceramic disk; ($)
stainless stecl membrane: (6) nozde.
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shape—within our measuring accuracy of = 0.5%—is spherical. This is due to the
additional internal pressure, generated by surface tension, which is much higher than the
external force variation acting on the droplet.

The oscillations of the droplets are observed through a microscope in bright field illumi-
nation, i.¢. the projections of the droplets appear as dark objects in the plane of observation.
It is therefore important that the axis of symmetry of the droplet lies within the plane of
observation. A pulsed Light Emitting Diode (LED), driven by a specially designed pulse
generator (Hiller er al., 1987), was used to illuminate the droplets. It allows light pulses to
be generated with a repetition frequency up to 2 MHz and pulse widths ranging from 0.05
up to 10 ps. For a droplet velocity of 2 m s~ and a 10-fold magnification of the objective
of the microscope, the maximum exposure time, based on the spatial resolution of the
camera used in our experiments, was limited to 1 us. The typical pulse width applied was
between 100 and 300 ns. A frame transfer charge coupled device (CCD) was used as a
camera. A particle crossing the field of view will be imaged typically 15-20 times onto the
sensor region of the CCD camera. The strobe illumination frequency was generally chosen
to be between 10 and 30 kHz. In most cases the multiple exposures were taken during the
integration time of the frame transfer sensor. The final frame, containing a series of
superimposed droplet images which cover, typically, one period of the oscillation, may then
be either directly printed on a video printer or stored (via an image processor) in a computer.
For simple objects such as the projections of droplets, one can easily extract the shape of
boundaries by computer aided image analysis. Using a special numerical fitting procedure,
ellipses are then matched to each of these boundaries. The droplet oscillation frequency is
evaluated by matching the lengths C of the principal axis of the previously evaluated ellipses
to the following function:

C(f) = R+ A sin(Q+1+¢), (6)

where A is the oscillation amplitude, which for the present evaluation, is assumed to be
constant, {1 the angular oscillation frequency and ¢ the phase angle.

A detailed description of this procedure has been given by Hiller & Kowalewski (1988).
If the axis of the oscillating spheroid coincides with the plane of observation, the volume
of the droplet calculated from its projection should be constant. This fact is used for
controlling and selecting proper image sequences.

Figures 6 and 7 show example photos of the droplets taken by our high speed imaging
device. In Fig. 6 a series of 5 successive exposure at interval times of 86 us is displayed. At
the moment when a new drop separates from the jet, its oscillation is generally made of
many modes. This is illustrated by the pronounced asymmetry of its shape with respect to
the flow direction and by the strong curvature of its boundary, The white spots inside the
contours of the droplets and the jet are images of the illuminating light source, as the liquid
used is transparent. Due to surface curvature, the jet and the droplets act like a collecting
lens. The shape of these spots depends on the local surface curvature and can give infor-
mation about the spatial form and symmetry of the droplets. If, for example, the white spot
is elongated into a straight line, the object has a cylindrical form. This is as one would
expect for the undisturbed jet immediately after leaving the nozzle. The successive exposures
on Fig. 6 were taken during the frame transfer process of the CCD camera. Such an
application of the camera is possible when one is interested in following the behaviour of
the jet in time and space. Figure 7 shows an example of a multiple exposure during the
integration time of the sensor. Due to the multiple exposure the dynamic range of the photo
is low and therefore it is not very impressive to the eye. Computer aided image processing,
however, provides sufficient distinctions between small grey level steps so that the shape of
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Fig. 6. !mﬂpnrlumﬁmmmnhmmm-ummum 200 ns,
mm-ulmmfwﬁmm\w- .6 kHz. Picture taken during the frame

a single droplet may be evaluated. Figure 8 shows as an example a sequence of 14 ellipses
evaluated from such a series of superimposed images.

4. RESULTS

Experiments have been performed with water and ethyl alcohol droplets in air at atmo-
spheric conditions. The water used was filtered tap water cleaned for a second time in an

1mm .

Fig. 7. Multiple exposare of an oscllating droplet during the integration period of the CCD sensor. Strobe
frequency 30 kHz.
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Fig. 8. Example of ellipses fitted fo the stored images of an oscillating water droplet (relates to the droplet
on Fig. 7).

osmotic filter. As an aleohol, 95% e¢thanol denatured with methylethyl-ketone was used.
For final evaluation, only those series of droplet images were used for which the axis of
symmetry of the droplets undoubtedly coincided with the plane of observation. From the
axes of the “best fitting ellipses™ (Fig. 8), the angular frequency, L1, of the 2nd mode of
oscillation and the volume of the particle were calculated. In Fig. 9 results of the present
experiment giving the dependence of the oscillation frequency on the particle radii are
shown on a logarithmic scale. Except for the point at {2 = 8.25, the individually measured
points for a given liquid can be connected quite well by a straight line as expected from
theory (equation 2). For the value £} = 8.25 the normalized oscillation amplitude 4/R was
about 32%, giving rise to an apparent frequency off-set. Table 1 summarizes the values of
the measured data pairs, together with the calculated values of surface tension. For com-
parison, the surface tension of both liquids used was measured by the standard ring method.
The relative error of a single optical surface tension measurement is 5% when compared
to the ring method value. The deviation of the mean value is well below 0.5%, however.
Probably due 1o the fact that the water used was processed by filtering, its surface tension
is about 3+ 107 N m~! lower than the standard value for pure water, This indicates how
sensitively the surface tension can depend on impurities,

B
f
Q o Waler
L
A
L
A"
o
% o
‘l-. L=
1w H‘--,E '\\
a
. o
\‘ "
b a by
% amlemn A
“\. %
k |
o ]

w
Equivalent drop radius [pm]

Fig. 9. Measured osallation frequency as a function of droplct radius.
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Table 1. Examples of measured values of surface tension

Rel Orse. Droplet Measured by
ampl. freq. radius Cale. ring method
AR 0 R a ]
No. Liguid ) [kHz] Ly W0 [Nm~] 107 [Nm-)
1 Ethanol 1.1 084 134 2.7
i 1.7 977 134 2245
3 1.6 9,82 138 25.35
4 4.0 9.33 141 24.20
5 14.6 780 158 2355
6 1.2 7.55 160 23,10
7 20.2 7.29 160 21.35
Mean value 2325 213
1 Water 23 13.34 145 6853
2 13.0 12,10 155 62,65
3 1.5 12,19 155 69,82
4 159 11.24 165 7107
5 17.5 10,80 171 T2.90
[ 15.3 10.45 172 T0.19
7 15.8 10.57 172 T0.95
B 11.B 899 187 65,80
9 7.2 A.60 229 65.07
10 El ) 825 183 52,34
Mean value 69,19 69.3

* This value, obtained for a large amplitude of oscillations, was not taken into account when
calculating the mean value,

5. CONCLUSION

Our results indicate that the oscillating droplet method can be developed into a powerful
tool for surface tension measurements. As it is a non-intrusive method it can be applied at
extreme temperatures, e.g. during spray formation for liquid metals or on subcooled or
superheated liquid droplets. Compared with static methods it gives instantaneous values
and can thus be especially valuable in all transient processes where the experimental
conditions are changing rapidly, i.e. in the formation of jets or droplets in the presence of
surface active substances or during the heating and cooling of surfaces. Alternatively,
as surface tension depends strongly on temperature, the method may offer the unique possibility
of measuring the surface temperature of droplets undergoing condensation or evaporation
processes. In such an application one would use the variation of surface tension with
temperature T which can be described for most liquids simply by the following formula
(Reid er al., 1977):

o= (l=T)*", (7

where T, = T/T, and T, is the critical temperature. The value # of the exponent varies
between 0.25 and 0.31. The dependence of ¢ on temperature is therefore nearly linear, with
a slope in the range of order of 0.15-107* N m~' K~'. A proper calibration of a(T)
for stationary conditions can also be obtained by the ring method. Then measuring the
instantaneous values of surface tension of an oscillating droplet, one can calculate from the
reciprocal relation T'() its surface temperature.
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