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Abstract

This work presents a new original formulation of the discrete element method based on the soft contact approach. The standard DEM
has been enhanced by introduction of the additional (global) deformation mode caused by the stresses in the particles induced by the
contact forces. Uniform stresses and strains are assumed for each particle. The stresses are calculated from the contact forces. The
strains are obtained using an inverse constitutive relationship. The strains allow us to obtain deformed particle shapes. The deformed
shapes (ellipses) are taken into account in contact detection and evaluation of the contact forces. The numerical example shows that a
particle deformation changes the particle interaction and the distribution of forces in the discrete element assembly.
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1. Introduction

The discrete element method (DEM) is a powerful tool
for predicting the behaviour of various particulate and non-
particulate materials such as soils, powders, rocks, concrete, or
ceramics [11, 9, 3, 10]. In the DEM, a material is represented
by a large assembly of particles (discrete elements) interacting
with one another by contact. Two different approaches to contact
treatment in the DEM can be identified, the so-called soft-contact
approach [2] and the hard-contact concept [4]. In the soft-contact
DEM formulation, the particles are treated as pseudo-rigid bod-
ies with deformation concentrated at the contact points. A small
overlap of the particles is allowed and it is considered as equiva-
lent to the particle deformation at the contact point.

The material properties in DEM cannot be prescribed directly
– they emerge from the collective response of the aggregate and
depend on the choice of the interparticle contact model as well
as the discrete element assembly characteristics [8]. Appropriate
representation of the macroscopic properties in the discrete el-
ement method is still a challenge and it is sometimes difficult
or impossible to obtain a required deformation behaviour [7].
Some limitations of the discrete element method are due to the
assumption of the rigidity of discrete elements. Their deformabil-
ity would allow to enrich modelling capabilities of the DEM. The
simplest way to introduce deformability in the discrete element
method is to discretize discrete elements with finite elements [6].
This approach is computationally very expensive and it cannot be
used for a large number of particles.

An alternative approach is by adding deformation modes to a
rigid motion of discrete elements [1, 12]. Until now this concept
has been applied to the discrete elements in the form of polygonal
prisms (in 2D) or polyhedra (in 3D). The present work presents
an original formulation of the discrete element method based on
the soft contact approach with deformable circular discs. The
developed numerical algorithm has been implemented in the au-
thor’s own discrete element program. Preliminary numerical re-
sults will be presented.

2. Formulation of the discrete element method with de-
formable discs

We shall consider a discrete element model consisting of co-
hesionless or cohesive cylindrical particles. The particles are as-
sumed to be uniformly deformed under the internal particle stress
induced by the contact forces. The idea of the new formulation
is shown in Fig. 1. A uniform stress is assumed in the particle.
The internal particle stress ¯bsigp is obtained as the average stress
derived from the contact forces using the following formula [5]:

σ̄p =
1

Vp

np c∑
c=1

1

2
(sc ⊗ Fc + Fc ⊗ sc) , (1)

where Vp is the particle volume, np c – number of elements being
in contact with the particle, sc – vector, connecting the particle
center with the contact point, Fc – contact force, and the symbol
⊗ denotes the outer (tensor) product. In case of a constrained
particle, except for contact forces we have also reaction forces.
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Figure 1: The idea of the deformable discrete element method
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Particle strains are calculated using an inverse constitutive re-
lationship

εp = D : σp (2)

where D is the elastic compliance tensor for the plane strain.
The circle under an uniform strain is deformed into an ellipse

with its principal axes aligned with the prinicipal strain direc-
tions. The normal contact force is determined as a linear func-
tion of the overlap of such ellipses. This overlap is considered
as equivalent to local deformation of the particles. Similarly, as
in the standard DEM the local damping is included in the normal
interaction. The tangential contact force is evaluated similarly as
in the standard DEM.

3. Numerical example

A uniaxial compression of a rectangular specimen discretized
with bonded discs as it is shown in Fig. 2 has been simulated us-
ing the standard and new DEM formulation.

Figure 2: Uniaxial compression of a rectangular specimen –
DEM model

a) b)
Figure 3: Simulation results obtained with the standard DEM for-
mulation – contours of displacements along: a) the y-axis, b) the
x-axis.

a) b)
Figure 4: Simulation results obtained with the new DEM formu-
lation – contours of displacements along: a) the y-axis, b) the
x-axis.

It has been assumed that the discrete model represents an
elastic solid material. Figure 3 shows the results obtained with

the standard DEM formulation in the form of the contours of dis-
placements along the y and x axes. It can be seen that all the
elements have zero x displacements. This means that the macro-
scopic effective Poisson’s ratio is zero in this model under the
loading along the y axis. Figure 4 shows the results obtained
with the new DEM formulation. One can notice non-zero dis-
placements in the x direction which implies a non-zero Poisson’s
ratio. This shows that the new formulation allows us to capture
the Poisson’s effect even in such configuration of discs. This con-
firms new capabilities of the proposed formulation with repsect to
the standard DEM.

The shape change of the particle a nonlocal contact model.
The contact interaction between two particles influences indi-
rectly (through the change of the shape of these particles) the
contact between these particle and the other particles. As a re-
sult, the non-local interactions enhances capabilities of the DEM
method.
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