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Abstract 

 

This contribution deals with the inverse problem of indirect identification of moving loads. The identification is performed based on 

the recorded response of the loaded structure and its numerical model. A specific feature of such problems is a very large number of 

the degrees of freedom (DOFs) that can be excited and a limited number of available sensors. As a result, unless the solution space is 

significantly limited, the identification problem is underdetermined: it has an infinite number of exact, observationally indistinguishable 

solutions. We propose an approach based on the assumption of sparsity of the excitation, which can be expressed in the form of 

a requirement of a bounded l1 norm of the solution. As long as the loads are sparse, the approach allows them to be freely moving, 

without the usual assumption of a constant velocity. We test the approach in a numerical example with 10% rms measurement noise 

and describe an experimental setup that is being prepared to perform experimental verification. 
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1. Introduction 

The two main problems in the area of structural health 

monitoring (SHM) are monitoring for damages and indirect 

identification of loads. In general terms, these problems 

correspond respectively to the inverse problems of the first type 

(system identification) and the second type (input identification). 

This contribution is devoted to indirect identification of 

moving loads based on the recorded responses of the loaded 

structure. Such a problem has been intensively studied and there 

is a number of extensive reviews, see, e.g., [1,2]. The problem is 

important in assessment of pavements and bridges, in traffic 

monitoring and control, as well as a prerequisite for structural 

control [3-5]. A specific feature of such problems is a very large 

number of the degrees of freedom (DOFs) that can be excited by 

the load and a limited number of sensors available to measure the 

response. As a result, unless the solution space is significantly 

limited, the identification problem is underposed: it has an 

infinite number of exact solutions. In most of the published 

research the solution space is limited by the assumption of a 

single vehicle that moves at a constant velocity. Such approaches 

have led to very good results; however, they significantly restrict 

the generality of the load being identified and exclude, e.g., freely 

moving loads and multiple loads. 

We propose an approach based on the assumption of sparsity 

of the excitation, which is well-tailored to practice: even if there 

are multiple loads, at each time instance only a very limited 

number of structural DOFs is usually excited. Such an approach 

fits into the recent research stream on compressed sensing [6], 

which includes SHM-related application areas such as damage 

identification [7] or identification of impact load position [8]. To 

our best knowledge, the concept has not been applied for 

identification of moving loads. The assumption of sparsity is 

usually expressed as a requirement of a bounded l1 norm of the 

solution [9]. As long as the loads are sparse, the approach allows 

them to be identified even if they are freely moving or multiple, 

that is without the usual assumption of a constant velocity. 

2. Load identification 

2.1. The direct problem 

The structure is modelled by means of the finite element (FE) 

method and is assumed to satisfy the equation of motion in its 

standard form with zero initial conditions: 

𝑴�̈� + 𝑪�̇� + 𝑲𝒙 = 𝒇, 𝒙(0) = 𝟎, �̇�(0) = 𝟎, (1) 

where M, C and K are the structural mass, damping and stiffness 

matrices, and f represents the excitation of the freely moving 

load(s). Since the model is linear, responses of linear sensors 

(such as strain gauges) can be stated in the convolution form, 

𝝐(𝑡) = ∫ �̅�(𝑡 − 𝜏)𝒇(𝜏)d𝜏
𝑡

0
, (2) 

where the matrix B collects the structural impulse response 

functions. After time discretization, Eqn (2) takes the form 

𝝐 = 𝑩𝒇, (3) 

where the vectors 𝝐 and f collect all the responses and excitations 

in all time instances, and B is a block Toeplitz matrix that 

represents the discretized form of the convolution operator. 

2.2. The inverse problem 

A discrete set of points that can be visited by the moving load 

is selected. The set needs to be dense enough to represent the load 

trajectory. Let vector p collect force excitations in all these points 

and in all time instances, and let N be the allocation matrix which 

allocates the points to structural DOFs. Notice that the number of 

points might be smaller than the number of structural DOFs and 

that the points need not be aligned with specific DOFs (they are 

allocated to the DOFs of the involved FE using its shape 

functions). As a result, Eqn (3) takes the form  

𝝐 ≈ 𝑩𝑵𝒑, (4) 

that is the vector f is approximated by assuming that the load 

interacts with the structure only in the selected points, 𝒇 ≈ 𝑵𝒑. 

In general, load identification is equivalent to solution of Eqn (4). 
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2.3. Assumption of sparsity and the l1 norm minimization 

In practical cases the length of the excitation vector p is much 

larger than the length of the measurement vector 𝝐, so that there 

are infinitely many solutions. To obtain a unique solution, an 

additional knowledge about the load has to be used to constrain 

the solution space. Usually, a single load is assumed with known 

trajectory and velocity. Here, we propose an assumption of 

sparsity, which can be expressed through the l1 norm as the task 

of minimization of the following weighted objective function [9]: 

𝑭(𝒑) = ‖𝝐 − 𝑩𝑵𝒑‖𝟐 + 𝛼‖𝒑‖1, (4) 

where the coefficient 𝛼 weights the importance of sparsity. 

3. Numerical example 

The measuring section of the experimental stand, see Figs. 2 

and 3, is modelled as a 2D FE beam. The material, geometric and 

excitation parameters are tuned to represent the experimental 

setup. The beam is divided into 21 finite elements. The moving 

load is assumed to excite the beam vertically in 15 equally spaced 

points. The strain measurements in the four points of the beam 

(Fig. 3) are simulated numerically and contaminated with a 10% 

rms uncorrelated Gaussian noise. The number of unknowns in 

Eqn (4) is thus equal to 15nt, and they have to be identified based 

on only 4nt measurements (nt is the number of the time steps).  

Figure 1 presents an exemplary result obtained by means of 

the L1packv2 [10] and Wolfram Mathematica. Two moving mass 

loads are simulated. Their actual trajectories are marked by the 

orange and green curves, while the identification result is shown 

in the form of the density plots. A good qualitative agreement is 

evident. More results will be shown during the conference, 

including those based on the experimental measurements. 

 

Figure 1: Numerical example, identification of two moving loads 

4. Experimental stand 

An experimental stand is built to measure strains in chosen 

points of a simply supported beam loaded by a moving mass. The 

beam has the form of a steel plate (0.55m x 0.03m x .0015m) with 

a fixed support on the beginning and a rolling support on the end. 

The beam with supports is installed on thick wall steel profiles, 

see Fig. 2. The moving mass is simulated by a steel roller. The 

roller has a groove on its diameter to provide a better guidance 

when travelling along the beam. The moving mass is accelerated 

on a inclined plane with an adjustable angle, which allows to get 

various speeds of the moving mass.  

The structural response to the moving mass is measured in 

four points across the beam by strain gauges, see Fig. 3. A half-

bridge is used and the gauges are installed on the top and bottom 

surface of the beam. Additionally, two optoelectronics sensors 

are installed in order to record the speed of the traveling mass. 

 

Figure 2: Front view of the experimental stand 

 

Figure 3: Schematic draft of the experimental stand. Four points 

with strain gauges are marked 

5. Conclusions 

This contribution proposes a method for identification of 

freely moving multiple loads based on the assumption of sparsity. 

Experimental results will be shown during the conference. 
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