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The main aim of this paper is to investigate the influence of internal restrictions on
the form of the energy-based limit condition. Some restrictions may be imposed in
the elastic as well as in the limit states. Spectral decomposition of symmetric linear
operators in a space with two different scalar products is applied. An algorithm for
accounting for the considered restrictions in the limit condition is proposed.
It was shown that as long as the energy scalar product is defined properly in the
elastic range, the limit condition having the energy-based interpretation can be found.
Examining the material with such an internal structure that there are stresses which
do not cause any strain, the space with passive stresses and locked strains has to be
introduced. The limit condition in this case has two parts, one connected with active
part of stresses which has energy-based interpretation and the second one connected
with passive stresses. The algorithm how to introduce this part of stresses to the limit
condition has been proposed. As examples, the energy-based form of the Schmid law
for single slip is derived and fiber-reinforced materials are analyzed.

1. Introduction

The limit condition bounds in our paper the regime of applicability and validity
of Hooke‘s law (the regime of linear elasticity)

(1.1)
σ = S · ǫ ⇔ σij = Sijklǫkl,

ǫ = C · σ ⇔ ǫkl = Cklmnσmn,

where σ and ǫ are the stress tensor and the small strain tensor (the symmetric
part of the displacement gradient) while the fourth-order tensors S and C are
the stiffness and the compliance tensor, respectively. They are connected by the
relation

(1.2) S ◦ C = C ◦ S = Is ⇔ SijklCklmn = CijklSklmn =
1

2
(δimδjn + δinδjm).

The elastic energy density φ is then given by

(1.3) φ(σ) =
1

2
σ · ǫ(σ) =

1

2
σ · C · σ =

1

2
Cijklσijσkl

that in the presented elasticity theory is equal to the internal energy density.
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Reaching the limit state by the material in the considered point may be
connected with different physical or engineering interpretations. It may be the
passage from linear to nonlinear elasticity, appearing of the irreversible deforma-
tions (plasticity), appearing of viscosity, damage or other structural changes in
the material. From engineering point of view this notion may be interpreted as
a limit of functional quality of the designed part of structure usually connected
with some prescribed value of strains or displacements. In this case the material
may remain linearly elastic but the strains are too large to use the workpiece or
part of structure properly or safely.

The most widely used limit condition, especially for metals, is the quadratic
Huber–Mises criterion proposed as a yield condition for isotropic materials. Hu-
ber and earlier Maxwell1) gave it the energy-based interpretation basing on the
concept of the critical distortion energy. In view of this criterion, the spherical
part of stress is safe for the material and the material is insensitive to the sign of
the stress state (particularly, the critical value of stress is the same for tension
and compression).

Anisotropy is a feature of crystals, although a majority of modern materials
such as composites and nanomaterials usually exhibit anisotropic properties.
Also, metal that is initially isotropic can become anisotropic due to deformation-
induced texture.

Most of the proposed yield conditions for anisotropic materials fall into two
categories. On the one hand there are generalizations of the maximum shear
stress condition (the Coulomb-Tresca type condition for isotropic materials),
while on the other hand there are the various generalizations of the quadratic
condition for isotropic materials by means of n-th degree equations depending
on stress tensor components [3, 9]. Ussually, for n = 2 or n = 1 they reduce
to the Mises condition and for n → ∞ they generalize for anisotropic case the
Coulomb–Tresca criterion (for some review of this aspect look at [10] or [2]).
These extensions were introduced in order to better describe the experimental
results reported for example in [7].

The direct extension of the approach proposed by Huber for isotropic solids is
based on the assumption that only a part of the density of elastic energy φ (1.3)
is responsible for reaching the limit state. In the case of anisotropic materials,
there is no physical reason to consider the spherical state as a state playing a
decisive role in the formulation of the strength measure. The spherical part of the
stress tensor may thus enter the limit condition. Rychlewski [19], generalizing
the Mises condition for anisotropic materials, assumed that the safe part of stress
tensor may be different for different types of anisotropy. Hence he considered the
limit condition as follows:

1)The historical background the reader can find in [21].
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(1.4) σ · H · σ ≤ 1.

Rychlewski considered two quadratic forms

(1.5) σ · C · σ, σ · H · σ

first of which is positive definite and the second one is positive semidefinite.
He proved that any stress measure of the form (1.4) has uniquely determined
energy-based interpretation. The formulation and proof of the above theorem
was based on the concepts of the spectral decomposition of the fourth order
tensor [18, 22, 6] and the energy scalar product (see Appendix).

Burzyński [5] assumed, that the spherical part of stress is the proper state
for all types of symmetry. It means, that he considered only the voluminally
isotropic materials imposing additional restrictions on the compliance tensor C.
Influence of Burzyński’s restrictions on the form of the spectral decomposition
of C was discussed in [13].

Certain attempts of formulating limit conditions of the form based on the
spectral decomposition of H for some classes of anisotropy were made in [15]
and [16]. Assuming that tensors C and H are coaxial (they have the same eigen-
subspaces), the limit conditions for cubic and transversally isotropic materials
were proposed. The limit condition (1.4) in the case when tensors C and H are
coaxial has an energy-based interpretation, because the proper states of H are
the proper states of C. Another way to formulate the energy-based limit con-
dition basing on the spectral theorem was proposed in [4] and [1]. There, the
limit state is reached when the prescribed value of energy is attained separately
for each eigen-subspace. In [1] also the so-called complementary Kelvin modes
(proper states) were introduced in order to describe the difference in tension and
compression stress states.

In general case the limit condition depends on the tensors C and H, which
can be independent. This fact allows to consider different types of symmetry
in elastic and limit states. However, when some form of coupling of elastic and
plastic properties is assumed, e.g. coaxiality of these tensors, the solution of the
problem becomes much simplified.

Rychlewski’s approach was illustrated in [11] for transversally isotropic ma-
terials described by the quadratic Hill condition in the limit state and in [12]
for cubic symmetry in the elastic range and orthotropic symmetry in the limit
state. In both papers the energy-based conditions were proposed.

In the next section we shortly recall the energy-based formulation of the
quadratic limit condition after [19] in order to introduce the needed notations.
The energy-based interpretation of the limit criterion depends on the form of
the compliance tensor C by the definition of the energy scalar product. As long
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as this tensor is positive definite, this new scalar product is defined properly and
Rychlewski’s approach may be applied. However, some modification is needed
in the case when passive stresses described in [13] are present. This problem
is discussed and a solution is proposed in Sec. 3. In that section also the safe
stresses and their influence on the energy-based form of the limit condition are
considered. Finally, in Sec. 4 the proposed approach to accounting for the in-
ternal restrictions in the elastic and limit states is illustrated by the derived
energy-based form of the Schmid law for single slip activation in crystals and the
examples of fiber-reinforced materials.

Energy-based interpretation of the limit condition becomes more attractive
nowadays due to the development of the methods of calculating material con-
stants by means of ab-initio calculations [14]. Energy is the quantity that can
be transferable through the material scales so the results of quantum mechan-
ics calculations are used to find out elastic constants describing the Hooke’s law
from the classical continuum mechanics [23]. The material parameters describing
energy-based limit conditions can be in the same way obtained from the ab-initio
calculations [8].

2. The limit condition of the Mises type

Let us consider a linearly elastic material, described by the compliance tensor
C and the limit tensor H. In a general case the tensors C and H are mutually
independent. However, some coupling of elastic properties with the limit ones is
usually observed due to the influence of the internal structure of the material
(fibres, crystallographic lattice) on its properties in the elastic and limit states.

Using the theorem on spectral decomposition for three fourth-order tensors:
S, C and H with the standard scalar product (see Appendix) we obtain the
following spectral forms of these tensors:

S = λ1P1 + λ2P2 + ...+ λrPr, r ≤ 6,(2.1)

C =
1

λ1
P1 +

1

λ2
P2 + ...+

1

λr
Pr,(2.2)

H =
1

χ2
1

R1 +
1

χ2
2

R2 + ...+
1

χ2
ν

Rν , ν ≤ 6,(2.3)

where λk are called the stiffness moduli (or the Kelvin moduli) and χl are called
the limit moduli. Coupling of elastic and limit properties may be observed by
the fact that as a result of material symmetry, at least some of the orthogonal
projectors Pk and Rl are the same for all three tensors, so one may say that C

(at the same time S) and H are partially coaxial.



Energy-based limit criteria for anisotropic ... 137

In [19] using the spectral theorem based on the energy scalar product for the
tensor S ◦ H ◦ S it was shown that for every limit condition of the Mises type,
the energy-based form may be found. The proved theorem says that for each
linearly elastic material, described by the positive definite compliance tensor C

(all λk > 0) and the limit tensor H, there is exactly one energy orthogonal
decomposition of the stress space T s

2

(2.4) T s
2 = H1 ⊕H2 ⊕ ...⊕Hκ, κ ≤ 6

where Hi

·
⊥ Hj , and only one sequence of energy limits of elasticity h1 < h2 <

... < hκ such that

(2.5) σ · H · σ =
1

h1
φ(σ1) + ...+

1

hκ

φ(σκ)

and

(2.6)
1

2
σ · C · σ = φ(σ) = φ(σ1) + ...+ φ(σκ),

where

(2.7) σ = σ1 + ...+ σκ, σk = Hk • σ ∈ Hk

and symbol • denotes the energy scalar product. It means that the Mises limit
criterion (1.4) bounds the weighted sum of stored elastic energies corresponding
to uniquely defined, energy-orthogonal parts of stress.

The limit condition (1.4) in the case when tensors C and H are totally
coaxial (r = ν, Pi = Ri, i = 1, . . . , r) has a straightforward energy-based
interpretation, because the proper states of H are then the proper states of C

and

σ · H · σ =
k∑

i=1

λi

χ2
i

σi · C · σi =
k∑

i=1

2
λi

χ2
i

φ(σi) =
k∑

i=1

1

hi
φ(σi),(2.8)

where hi =
χ2

i

2λi
(no summation) and σi = Pi · σ = Ri · σ.

The decomposition of the space T s
2 (2.4) in this case is not only energy orthogonal

but also orthogonal in the standard sense. This kind of decomposition Rychlewski
called the main energy orthogonal decomposition. The method of finding out an
energy-based form of the limit condition (1.4) in the case of non-coaxiality of H

and C was presented in [19] and [11].
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3. Influence of internal restrictions on the form of limit criterions

Material symmetry is described in the elastic region by tensors C or S and in
the limit state by tensor H. Assuming their form, we introduce some restrictions
on the way in which the material is deformed. For instance, a body of cubic
symmetry will react only by changing its volume due to hydrostatic pressure
while orthotropic body will react also by changing its shape.

Additional restrictions, apart from material symmetry, which are caused by
material internal structure, can be also introduced. The restrictions of the type
of strong fibers or other reinforcements that impose bounds on the admissible
deformation modes, are called internal restrictions or internal constraints. They
usually concern the possible deformation modes and are imposed on the strain
tensor, for example, lack of reaction to hydrostatic pressure or incompressibility.

Some additional restrictions may be imposed in the elastic as well as in
the limit states. The energy-based limit condition (2.5) proposed by Rychlewski
depends on the form of the compliance tensor C and on the form of the limit
tensor H. It means that any restrictions imposed on them change the form of
the limit condition (2.5). Particularly, the restrictions that introduce the passive
stress space cause that C is not any more positive definite for all σ ∈ T s

2 . The
approach presented in the previous section must be in this case modified.

The main aim of this paper is to investigate the influence of internal restric-
tions on the form of energy-based limit conditions.

3.1. Internal restrictions in the elastic region

The influence of some classes of internal restrictions imposed on deformation
modes and on properties of linearly elastic anisotropic materials was discussed in
[13]. Using the concept of eigen-states, Kelvin moduli and spectral decomposition
of the compliance tensor C, it was proved that the considered types of restrictions
can make material symmetry higher or lower, because they have influence on the
value of the Kelvin moduli and on the form of orthogonal projectors.

The energy-based limit condition depends on the form of the compliance
tensor C by the definition of the energy scalar product (Appendix, (A.1)). As
long as this scalar product is defined properly in the elastic range, the limit
condition having the energy interpretation can be found. The scalar product is
defined properly if all axioms are satisfied.

Let us examine a material with such an internal structure that it hinders
some modes of strains so strongly that one may regard them as negligibly small.
When

(3.1) σp 6= 0, but ǫp = 0,



Energy-based limit criteria for anisotropic ... 139

the stress σp is called passive or reactive because it does not cause any strain
C · σp = ǫp = 0. The set of all passive stresses is the kernel of the operator C

(3.2) σp ∈ KerC.

Each strain ǫ that is admissible in the material under consideration, is orthogonal
to this kernel,

ǫ = ǫa ⊥ KerC.

The space Pp ≡ KerC is called the space of passive (reactive) stresses and
locked strains [21]. The space of the second order symmetric tensors T s

2 can be
orthogonally decomposed into two subspaces

(3.3) T s
2 = Pp ⊕ Pa,

where the space Pa will be the space of admissible strains and active stresses.
Hooke‘s law (1.1) connects admissible strain with active stress

(3.4) ǫa = Ca · σa, σa = Sa · ǫa,

where Ca is an invertible operator that maps Pa onto itself

(3.5) Ca = C on Pa.

The energy scalar product is now defined only on the subspace Pa

σ1 • σ2 ≡ σ1 · Ca · σ2, for σ1,σ2 ∈ Pa

due to the fact that Pp = KerC consists of all proper states corresponding to the
compliance modulus 1/λp → 0 [13]. Pipkin [17] examined in detail a particular
case of the above restrictions when dim Pp = 1,dimPa = 5. The constraints
then have the form

(3.6) ǫ · ω = 0,

where for ω = 1 incompressibility is described, for ω = k ⊗ k, fiber inextensi-
bility is investigated (see also [24]).

In this paper our interest is focussed on the problem how the passive stress
σp ∈ Pp may be introduced to the limit condition.

From the relation (3.3), because

(3.7) Is = Pa + Pp

it is concluded that
∧

σ∈T s
2

Is · σ = σ = Pa · σ + Pp · σ = σa + σp,

σa ∈ Pa, σp ∈ Pp,
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where Pa and Pp are orthogonal projectors which map the space T s
2 onto sub-

spaces Pa and Pp, respectively. Both parts of σ satisfy the following conditions:

(3.8) σa · σp = 0, σa · C · σp = 0,

since they belong to two different proper subspaces and the constraint C ·σp = 0

is satisfied.
The limit condition (1.4) now may be written in the form

(3.9) σ · H · σ = (σa + σp) · H · (σa + σp)

= σa · H · σa + σp · H · σp + 2σa · H · σp ≤ 1

or

(3.10) σ · H · σ = σa · (Pa ◦ H ◦ Pa) · σa + σp · Pp · (H · σp)

+ 2σa · Pa · (H · σp) ≤ 1.

Using tensors Ca, Sa (Ca◦ Sa = Sa ◦ Ca = Pa) we may write that

(3.11) σa · H · σa = σa · (Ca ◦ Sa ◦ H ◦ Sa ◦ Ca) · σa

= σa • (Sa ◦ H ◦ Sa) • σa =
1

h1
φ(σ1) + ...+

1

hκ

φ(σκ),

κ ≤ dimPa

where

σa = σ1 + ...+ σκ, σK = HK • σa ∈ HK ,

Sa = H1 + ...+ Hκ.

The last two expressions of the limit condition (3.10) depend only on the
spectral decomposition of H (2.3). We have then

(3.12) H · σp =

(
1

χ2
1

R1 +
1

χ2
2

R2 + ...+
1

χ2
ν

Rν

)
· σp

=
1

χ2
1

σ
1
p +

1

χ2
2

σ
2
p + ...+

1

χ2
ν

σ
ν
p ,

where

(3.13)
σp = σ

1
p + ...+ σ

ν
p , σ

i
p = Ri · σp ∈ Ri

Is = R1 + ...+ Rν = Pa + Pp.
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Let us introduce the following notation:

(3.14)
Pp · (Ri · σp) = Pp · σi

p = σ
i
pp ∈ Pp, for i = 1, 2..., ν,

Pa · (Ri · σp) = Pa · σi
p = σ

i
pa ∈ Pa, for i = 1, 2..., ν.

Now Eq. (3.12) may be presented in the form

(3.15) H · σp = (Is ◦ H) · σp = [(Pp + Pa) ◦ H] · σp

= [(Pp + Pa)] ·
(

1

χ2
1

R1 +
1

χ2
2

R2 + ...+
1

χ2
ν

Rν

)
· σp

=

(
1

χ2
1

σ
1
pp + ...+

1

χ2
ν

σ
ν
pp

)
+

(
1

χ2
1

σ
1
pa + ...+

1

χ2
ν

σ
ν
pa

)
.

Since the subspaces Pa and Pp are orthogonal, the following equalities are ful-
filled:

σp · H · σp =

(
1

χ2
1

σ
1
pp + ...+

1

χ2
ν

σ
ν
pp

)
· σp

=
1

χ2
1

σ
1
pp · σp + ...+

1

χ2
ν

σ
ν
pp · σp,

(3.16)
σa · H · σp =

(
1

χ2
1

σ
1
pa + ...+

1

χ2
ν

σ
l
pa

)
· σa

=
1

χ2
1

σ
1
pa · σa + ....+

1

χ2
ν

σ
ν
pa · σa.

From the relation

(3.17) Ri · σp = σ
i
p = σ

i
pp + σ

i
pa

it is implied that if σ
i
pp = 0 (σi

p ∈ Pa), then

(3.18) σ
i
p · σi

p = (Ri · σp) · (Ri · σp)

= σp · (Ri ◦ Ri) · σp = σp · Ri · σp = σp · σi
pa = 0.

It means that σ
i
p = 0.

Finally, the limit condition (3.10) takes the form

(3.19) σ · H · σ =
1

h1
φ(σ1) + ....+

1

hκ

φ(σκ)

+
1

χ2
1

σ
1
pp · σp + ...+

1

χ2
ν

σ
ν
pp · σp +

2

χ2
1

σ
1
pa · σa + ....+

2

χ2
ν

σ
ν
pa · σa ≤ 1.
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Some particular cases can be considered.
a) Let us assume that the subspace Pp is the proper space of H corresponding

to the proper value 1/χp

(3.20) H · σp =
1

χ2
p

σp ,

then

σp · H · σp =
1

χ2
p

σp · σp, σa · H · σp =
1

χ2
p

σa · σp = 0.

The limit condition (3.19) in this case takes the form

(3.21) σ · H · σ =
1

h1
φ(σ1) + ...+

1

hν
φ(σν) +

1

χ2
p

σp · σp ≤ 1,

where

σ = σa + σp = σ1 + ...+ σν + σp,

2φ(σK) = σK · Ca · σK., K = 1, 2.....ν.

The last part of the condition (3.21) has the form of the Saint–Venant limit
condition for rigid-perfectly plastic material.

When additionally, the space Pp is the space of safe stresses then in (3.20)

(3.22) H · σp = H · 0 ⇒ 1

χ2
p

→ 0.

In this case the limit condition (3.21) is as follows:

(3.23) σ · H · σ = σa · H · σa =
1

h1
φ(σ1) + ...+

1

hκ

φ(σκ) ≤ 1.

b) Now we assume that the active part of stress σa is the proper state of the
limit tensor H

(3.24) H · σa =
1

χa
σa.

It means that

σp · H · σa =
1

χa
σp · σa = 0

and from (3.19) we obtain the limit condition in the form

(3.25)
1

h1
φ(σ1) + ...+

1

hκ

φ(σκ) +
1

χ2
1

σ
1
p · σ1

p + ...+
1

χ2
ν

σ
ν
p · σν

p ≤ 1.
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3.2. Internal restrictions in the limit state

The energy-based limit condition (2.5) derived by Rychlewski depends on the
form of the stiffness tensor C as well as the limit tensor H. Let us assume that
the energy scalar product is defined properly for the whole space T s

2 (Pp = {0}),
then the limit condition has the form (2.5).

The assumption that the space Hk is safe for the material is equivalent to

1

hk
→ 0,

what means that a proper stress state σk ∈ Hk is never able to cause reaching
the limit state by the material.

Another type of restrictions is described by relation

(3.26) σ
0 · H · σ0 = 0

what means that there exists a prescribed state of stress σ
0, not necessarily

energy proper state, safe for the material.
Now the algorithm that optimizes the influence of restriction (3.26) on the

limit properties of the material for calculating the moduli hk and energy orthogo-
nal subspaces Hk has to be proposed. We may write that

(3.27) σ
0 = σ

0
1 + ..+ σ

0
κ
, where σ

0
k = Hk • σ

0

and the condition (3.26) is equivalent to

(3.28) σ
0 · H · σ0 =

1

h1
φ(σ0

1) + ...+
1

hκ

φ(σ0
κ
) = 0.

Trivial solution of Eq. (3.28) is obtained by assuming that all moduli fulfill the
condition

1

hk
→ 0, (k = 1, 2, ......,κ).

It means that the whole space T s
2 is the safe space. However, the condition

1

hk
φ(σ0

k) = 0

may be fulfilled in two ways:

(3.29)
1

hk
→ 0 or φ(σ0

k) = 0.

The form of σ
0 and the type of considered symmetry of the material may

cause that σ
0 is not projected onto some subspaces Hm. It means that there are

such projectors Hm that

(3.30) σ
0
m = Hm • σ

0 = 0 =⇒ φ(σ0
m) = 0

and no restrictions are imposed on hm.
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When projectors Hk give projections of σ
0 onto the whole subspaces Hk then

the subspaces Hk sum up and become one subspace of safe stress states. This
situation is always observed when subspaces Hk are one-dimensional.

If subspaces Hk have dimensions higher than one then there may exist such
m that

σ
0
m = Hm • σ

0 = H0
m • σ

0 ∈ H0
m ⊂ Hm,(3.31)

where

Hm = H0
m + H

·

⊥
m and Hm = H0

m ⊕H
·

⊥
m.

In this case the subspace Hm is split into two subspaces H0
m and H

·

⊥
m with two

different moduli
1

h0
m

→ 0 and
1

h
·

⊥
m

=
1

hm
.

The space H0
m is the safe space. Such a consideration may be applied for all

projectors with property (3.31). All subspaces of the form H0
µ sum up and con-

stitute one subspace of safe stress states. The constraints of the form (3.26) can
make material symmetry higher by reducing the number of moduli hk and can
also make material symmetry lower by subdivision of some subspaces.

3.3. Internal restriction in the elastic and limit state

In the general case some additional restrictions may be imposed in the elastic
region as well as in the limit state. In Sec. 3.1, assuming that some state of stress
is passive, the limit condition was presented in the form (3.19). Let us now assume
additionally that the prescribed stress σ0 is safe for the material

(3.32) σ
0 · H · σ0 = 0 and σ

0 = σ
0
p + σ

0
a.

By means of (3.19) the condition (3.32) is then equivalent to

(3.33) σ
0 · H · σ0 =

1

h1
φ(σ0

1) + ...+
1

hκ

φ(σ0
κ
)

+
1

χ2
1

(σ0
pp)

1 · σ0
p + ...+

1

χ2
ν

(σ0
pp)

ν · σ0
p

+
2

χ2
1

(σ0
pa)

1 · σa + ....+
2

χ2
ν

(σ0
pa)

ν · σa = 0.

Trivial solution of the above equation is obtained when all moduli

1

hk
→ 0 and

1

χm
→ 0.
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A particular case is considered when we assume that

(3.34) σ
0 = σ

0
a, σ

0
p = 0;

then the following condition has to be satisfied

(3.35) σ
0 · H · σ0 = σ

0
a · H · σ0

a =
1

h1
φ(σ0

1) + ...+
1

hκ

φ(σ0
κ
) = 0

and no restrictions are imposed on moduli χm. The restrictions imposed on
moduli hk are obtained following the algorithm proposed in Sec. 3.2. In the case
when

(3.36) σ
0 = σ

0
p, σ

0
a = 0,

the equation

σ
0 · H · σ0 = σ

0
p · H · σ0

p =
1

χ2
1

(σ0
pp)

1 · σ0
p + ...+

1

χ2
ν

(σ0
pp)

ν · σ0
p = 0

has to be solved. No restrictions are imposed on moduli hk. The restrictions
imposed on moduli χm may be obtained by applying the algorithm proposed in
[13]. They depend on the projections

Ri · σ0
p.

The influence of internal restrictions on the form of the energy-based limit con-
dition will be discussed on the examples of some types of material symmetry.

4. Examples

To illustrate the proposed approach let us consider the material of cubic
symmetry in the elastic regime. In the first example the energy-based form of
the Schmid law [10] for single slip initiations is derived. Two remaining examples
concern the material modified in the elastic regime by the internal restriction
imposing that the material is inextensible in some prescribed direction k. Then,
restrictions take the following form

(4.1) C · (k ⊗ k) = 0.

This kind of restrictions may be applied to describe the composites reinforced by
thin fibers that are so stiff that extensions in the fiber direction can be negligible.
They are discussed in the paper [13] (Sec. 4.3) for a more general case in which by
putting a = b = 0 condition (4.1) is obtained. We are considering the following
two special cases for k:

a) k ⊗ k = e1 ⊗ e1;

b) k ⊗ k =
1

3
(e1 + e2 + e3)⊗ (e1 + e2 + e3), where ei are along the edges of

a cubic cell.
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4.1. Energy-based form of the Schmid law

Let us consider a single crystal in which plastic yielding is caused by slip on
a single slip system defined by the unit normal n to the slip plane and the unit
vector m along slip direction (m ·n = 0). According to the classical Schmid law,
the plastic yielding on the slip system is initiated when the resolved shear stress
τ reaches the critical value τc that is

(4.2) τ = |m · σ · n| = τc.

It is easy to show that Eq. (4.2) may be rewritten in the form of the Mises-type
yield condition

(4.3) σ · H · σ = σ ·
(

1

2τ2
c

π ⊗ π

)
· σ = 1,

where π is the pure shear

π =
1√
2
(m ⊗ n + n ⊗ m).

One may note that condition (4.3) is the yield condition for the material with
internal restrictions in the limit state. All stress states for which σ · π = 0 are
safe in view of this criterion and constitute a five-dimensional subspace of stress
space.

Now, we will derive the energy-based form of (4.3) for the material of cubic
symmetry in the elastic regime. Since for such a material the subspace PI is one-
dimensional, PII is two-dimensional and PIII three-dimensional (for definition
of subspaces look at [13]) let us introduce the following energy-orthonormal basis
{ηK} such that2)

η1 =

√
λI

3
1, η2 =

√
λII

PII · π
‖PII · π‖ , η4 =

√
λIII

PIII · π
‖PIII · π‖

and η3 ∈ PII , η5,η6 ∈ PIII . Let us notice that this basis is also orthogonal in a
standard sense. In this basis the tensor S ◦ H ◦ S has the form

S ◦ H ◦ S =
1

2τ2
c

[
λII‖PII · π‖2η2 ⊗ η2 + λIII‖PIII · π‖2η4 ⊗ η4

+
√
λIIλII‖PII · π‖‖PIII · π‖(η2 ⊗ η4 + η4 ⊗ η2)

]
.

2)‖α‖ =
√

α · α.
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Applying the spectral theorem (A.3) we obtain the following energy-orthogonal
decomposition of the above tensor:

(4.4) S ◦ H ◦ S =
1

2h∗
H∗ =

1

2h∗
χ∗ ⊗ χ∗,

where

(4.5)
1

h∗
=

1

τ2
c

(
λII‖PII · π‖2 + λIII‖PIII · π‖2

)

and

(4.6) χ∗ =

√
λII‖PII · π‖η2 +

√
λIII‖PIII · π‖η4

λII‖PII · π‖2 + λIII‖PIII · π‖2

The remaining energy eigenvalues 1/2h→ 0 and correspond to the five-dimensional
space H⊥ of safe stresses defined by the projector

H⊥ = S − H∗.

In view of the Rychlewski theorem, the energy-based form of (4.3) is as follows:

(4.7) |m · σ · n| = τc ⇐⇒ 1

h∗
φ(σ∗) = 1, where σ

∗ = H∗ • σ.

When a single crystal that yields by multi-slip is considered, similarly to [4],
the single energy-based yield condition will be replaced by the set of criterions

(4.8)
1

h∗r
φ(σ∗

r) = 1, r = 1, ...,M,

where M is the number of the slip systems.

4.2. Fibers along the edge e1

In the considered case the spectral decomposition of the compliance tensor
C is as follows:

(4.9)
C = Ca =

1

λII
P⊥

II +
1

λIII
PIII ,

S = Sa = λIIP
⊥
II + λIIIPIII ,

where

(4.10)
Pp = PI + P∗

II ,

Pa = P⊥
II + PIII
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project the space of stresses onto the subspace of the passive stresses and onto
the subspace of active stresses. Let us remind after [13] that

(4.11)

PI =
1

3
1 ⊗ 1,

P∗
II =

3

2

(
k ⊗ k − 1

3
1

)
⊗
(
k ⊗ k − 1

3
1

)
,

P⊥
II = PII − P∗

II = K − 1

3
1 ⊗ 1 − P∗

II ,

PIII = Is − K.

In this case the following decomposition of the stress space is helpful

(4.12) σ = (σI + σ
∗
II) + (σ⊥

II + σIII) = σp + σa.

Due to the considered restriction the material becomes less symmetric and now
is tetragonal.

Let us assume that the material has cubic symmetry in the limit state. It
means that

(4.13) H =
1

χ2
1

PI +
1

χ2
2

PII +
1

χ2
3

PIII .

The part of the limit condition (3.19) connected with the active part of stress
(4.12) may be presented in the form

(4.14) σa · H · σa = σa • (Sa ◦ H ◦ Sa) • σa,

where

(4.15) Sa ◦ H ◦ Sa =
λ2

II

χ2
2

P⊥
II +

λ2
III

χ2
3

PIII .

The solutions of the appropriate characteristic equation (see Appendix (A.3))
are as follows:

(4.16) 2h⊥II =
χ2

2

λII
, 2hIII =

χ2
3

λIII

and the corresponding energy orthogonal projectors have the form

(4.17)
H⊥

II =χ(II) ⊗ χ(II) = λIIP
⊥
II ,

HIII =Sa − H⊥
II = λIIIPIII .
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In view of the Rychlewski theorem (3.11) for active part of stress we have that

σa · H · σa =
1

h⊥II

φ(σ⊥
II) +

1

hIII
φ(σIII),

where

σ
⊥
II = H⊥

II • σa = P⊥
II · σ, σIII = HIII • σa = PIII · σ.

The second part of the limit condition (3.19) is connected with the passive
part of stress

H · σp = H · (σI + σ
∗
II) =

1

χ2
1

σI +
1

χ2
2

σ
∗
II

and has the following form:

σp · H · σp + 2σa · H · σp =
1

χ2
1

σI · σI +
1

χ2
2

σ
∗
II · σ∗

II + 2 · 0

=
1

χ2
1

σI · σI +
1

χ2
2

σ
∗
II · σ∗

II .

Finally the limit condition takes the form

(4.18) σ · H · σ =
1

h⊥II

φ(σ⊥
II) +

1

hIII
φ(σIII) +

1

χ2
1

σI · σI +
1

χ2
2

σ
∗
II · σ∗

II ≤ 1.

Some internal restrictions may be imposed in the limit state. Let us assume
that the hydrostatic pressure is the safe state of stress. In such a case the con-
dition (3.26) is as follows:

(4.19) σ0 · H · σ0 = p21 · H · 1 = 0.

Introducing it to Eq. (4.18) it is obtained

(4.20)
1

χ2
1

1 · 1 =
3

χ2
1

= 0 =⇒ 1

χ2
1

→ 0

and the modified yield condition (4.18) takes the form

(4.21) σ · H · σ =
1

h⊥II

φ(σ⊥
II) +

1

hIII
φ(σIII) +

1

χ2
2

σ
∗
II · σ∗

II ≤ 1.
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4.3. Fibers along the diagonal of cubic cell

In the considered case the spectral decomposition of the compliance tensor
C is as follows:

(4.22)
C = Ca =

1

λII
PII +

1

λIII
P⊥

III ,

S = Sa = λIIPII + λIIIP
⊥
III ,

where

(4.23) Pp = PI + P∗
III , Pa = PII + P⊥

III

project the space of stresses onto the subspace of the passive stresses and onto
the subspace of active stresses. Let us remind after [13] that

(4.24)

PI =
1

3
1 ⊗ 1,

P∗
III =

3

2

(
k ⊗ k − 1

3
1

)
⊗
(
k ⊗ k − 1

3
1

)
,

PII = K − 1

3
1 ⊗ 1,

P⊥
III = Is − K − P∗

III .

In this case the following decomposition of the stress space is helpful:

(4.25) σ = (σI + σ
∗
III) + (σII + σ

⊥
III) = σp + σa.

Due to the considered restriction the material becomes less symmetric and now
is trigonal.

Let us assume that the material has cubic symmetry in the limit state. It
means that the limit tensor H has the form (4.13).

The part of the limit condition connected with the active part of stress is
given by (4.14), where

(4.26) Sa ◦ H ◦ Sa =
λ2

II

χ2
2

PII +
λ2

III

χ2
3

P⊥
III .

The solutions of appropriate characteristic equation are as follows:

(4.27) 2hII =
χ2

2

λII
, 2h⊥III =

χ2
3

λIII
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and the corresponding energy orthogonal projectors have the form

(4.28)
HII = λIIPII ,

H⊥
III = Sa − HII = λIIIP

⊥
III .

Therefore, in view of the Rychlewski theorem we have that

σa · H · σa =
1

hII
φ(σII) +

1

h⊥III

φ(σ⊥
III),

where

σII = HII • σa = PII · σ,

σ
⊥
III = H⊥

III • σa = P⊥
III · σ.

The second part of the limit condition is connected with the passive part of
stress

H · σp = H · (σI + σ
∗
III) =

1

χ2
1

σI +
1

χ2
3

σ
∗
III

and has the following form:

σp · H · σp + 2σa · H · σp =
1

χ2
1

σI · σI +
1

χ2
3

σ
∗
III · σ∗

III + 2 · 0

=
1

χ2
1

σI · σI +
1

χ2
3

σ
∗
III · σ∗

III .

Finally, the limit condition takes the form

(4.29) σ ·H ·σ =
1

hII
φ(σII) +

1

h⊥III

φ(σ⊥
III) +

1

χ2
1

σI ·σI +
1

χ2
3

σ
∗
III ·σ∗

III ≤ 1.

If the hydrostatic pressure is the safe state of stress like in the previous
example, the conditions (4.19) and (4.20) are obtained and the modified yield
condition takes the form

(4.30) σ · H · σ =
1

hII
φ(σII) +

1

h⊥III

φ(σ⊥
III) +

1

χ2
3

σ
∗
III · σ∗

III ≤ 1.

The above examples show how the energy-based form of the limit condition
depends on the elastic properties of the material. Comparing the forms of the
limit conditions (4.18) and (4.29) for the material with the same limit tensor H

of cubic symmetry but with the different stiffness tensor C due to different form
of internal restriction in the elastic regime, one may notice that different parts
of the limit conditions in these two cases have the interpretation connected with
the internal energy density. The sequence of taking into account the restrictions
imposed in the limit state is arbitrary.
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Appendix A. Spectral theorem for the Euclidean space
with an energy scalar product

Let us call the fourth-order tensor L having all internal symmetries of the
stiffness tensor (Lijkl = Ljikl = Lijlk = Lklij) the Hooke tensor [19] and denote
a set of such a tensors by L.

Let us consider a scalar product • satisfying the appropriate axioms defined
as follows

(A.1) α • β ≡ α · A · β = αijAijklβkl, A ∈ L,

where A is positive definite and fixed. This scalar product is called the energy
scalar product. The energy orthogonality of two states α and β means that

(A.2) α • β = 0 ⇔ α⊥̇β.

The six-dimensional Euclidean space T s
2 with the energy scalar product obeys

the general spectral theorem. Applying it we introduce the energy proper value
1/2h being always real number and the energy proper state χ for the symmetric
linear operator L ∈ L satisfying the equation

(A.3) L • χ =
1

2h
χ.

The symmetric linear operator L is acting according to the formula

(A.4) L • α = L · (A · α) = (L ◦ A) · α.

Assuming in (A.4) that L = A−1 it is easy to verify that the tensor A−1 is the
identity operator for space T s

2 with the energy scalar product.
For the scalar product (A.1), the so-called basic identity has the following

form

(A.5) L = (L • ηK) ⊗ ηK = (L • ηI) ⊗ ηI + ...+ (L • ηV I) ⊗ ηV I ,

where tensors ηK form the energy orthogonal basis in T s
2 that is ηK •ηL = δKL.

If as such an energy orthogonal basis ηK the energy proper tensors χK (A.3)
are taken, then the spectral decomposition of the operator L is obtained

(A.6) L =
1

2h1
χI ⊗ χI + ...+

1

2h6
χV I ⊗ χV I .
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For multiple eigenvalues hK , the unique form od the spectral decomposition is
as follows:

(A.7) L =
1

2h1
HI + ...+

1

2hκ

Hκ, κ ≤ 6.

The fourth-order tensors HK are called the energy-orthogonal projectors

(A.8) HK • α = αK ∈ HK

and constitute spectral decomposition of the identity operator A−1

(A.9) A−1 = HI + HII + ...+ Hκ.

Equation (A.9) implies that

(A.10) α = A−1 •α = HI •α+HII •α+ ...+Hκ •α = αI +αII + ...+ακ.

The subspaces HK constitute the energy orthogonal decomposition of the
space T s

2

(A.11) T s
2 = HI ⊕HII ⊕ ...⊕Hκ, HK⊥̇HL if L 6= K.

Let us remark that the standard scalar product called the geometrical scalar
product also falls into the definition (A.1) with A = Is = A−1. For the purpose
of this work, the energy scalar product introduced in [19] will be used. In this
case A = C and A−1 = S and clear mechanical interpretation of (A.2) may be
given. Two stresses α and β are energy orthogonal if one of them does not work
on the strain caused by the other. If in (A.1) we have α = β then the square of
energy norm is obtained that in this case is equal to the double elastic energy
density accumulated due to the action of α.
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