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Abstract.  The results of experimental and numerical investigations concerning the 
influence of strain rate on mechanical properties of pure tantalum and VP159 high 
nitrogen austenitic steel are presented. Experiments were carried out using Split 
Hopkinson Pressure Bar (SHPB) and Direct Impact Compression Test (DICT) 
technique. The Perzyna elasto-viscoplasticity theory was applied to predict the 
dynamic compression yield strength of the tantalum at strain rates from 1.0x10-3 s−1 to   
0.5x106 s−1. In the case of the VP159 high nitrogen austenitic steel the experimental 
results were used to calibrate the Rusinek-Klepaczko  model. 
There are still no sufficient data on the flow stress at higher strain rates than 
1.0x105s−1, in particular for large strains. The experimental identification of material 
parameters required for constitutive modelling are not sufficiently reported. This paper 
is an attempt to supplement our knowledge in this area. 
The impact resistance of material in question is analysed numerically with use of 
ABAQUS/Explicit finite element program. The Huber-Mises-Hencky yield criterion and 
Perzyna viscoplasticity model with adiabatic conditions are used.  
 

1 INTRODUCTION 

In engineering practice the examples of high strain rate loading are high velocity impact, high velocity 
machining, and high energy rate forming. In order to predict and control behaviour of materials used 
under such extreme loading conditions, the mechanical deformation behaviour of materials should be 
known. It is well known that the mechanical behaviour of metal depends on the applied strain rate. The 
Split Hopkinson Pressure Bar (SHPB) or Kolsky apparatus is widely used for the study of mechanical 
behaviour of materials at high strain rates up to 1.0x103 s−1. SHPB apparatus works based on wave 
propagation theory in elastic bars. Some details regarding SHPB technique are presented in [1–5]. In 
order to reach higher strain rates than 1.0x103 s−1, Dharan and Hauser (1970) [6] introduced a 
modification of the SHPB concept by eliminating the incident bar. Thus, application of the direct impact 
of a striker onto a small disk or prismatic specimen supported by the transmitter bar enabled to reach 
strain rates up to 0.5x106 s−1. Such modification can be defined as the Direct Impact Compression Test 
(DICT) [7, 8]. 

Although a simplified theory of the DICT has been developed some time ago by Dharan and Hauser 
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[6] the some new points of view on the DICT measurement side have already been added by Klepaczko 
[9]. From the direct impact experiment, the following quantities are determined: the impact velocity V0, 

the transmitted elastic wave (t) and the specimen displacement ΔU =UA(t) - UB(t), where UA is the 
displacement of the striker/specimen interface and UB is the displacement of the specimen/transmitter 
bar interface. The average velocity of the specimen compression is V=VA-VB = dΔU(t)/dt. Having 

recorded all of those quantities, the specimen strain (t), the strain rate (t)ε , and the mean stress σ(t), 

all as a function of time, can be calculated by application of the DICT theory.  
In order to ensure a valid numerical simulation of the high-strain-rate effects a constitutive model 

describing the dynamic mechanical behaviour of materials at high strain rate, high temperature, and 
large plastic strain is needed. In literature, a large number of constitutive models have been proposed 
to describe the dynamic deformation behaviour of metals. The parameters used in constitutive rate 
dependent plasticity models are generally determined from experiment such as the SHPB test and 
Taylor impact test. Constitutive models can be sorted into two groups: physical and phenomenological. 
In description of the relation between the flow stress and plastic strain, the physical models consider 
associated mechanisms such as thermally activated dislocation movement. They are very useful to 
understand the mechanisms associated with the dynamic deformation. Among the many physically 
based constitutive models developed in 1960’s, the Perzyna (PP) model [10] has been one of the most 
widely utilized.  

Rusinek and Klepaczko [11] have proposed a model (RK) to cover wide ranges of strain rate and 
reflecting the temperature sensitivity on the flow stress. The RK model reasonably describes the yield 
stress and the strain-hardening behaviour of the materials deforming at a low and intermediate strain 
rates. It was used in this paper to describe the experimental data for steel. 

The PP mechanical threshold stress model was introduced with the idea that plastic deformation is 
controlled by the thermally activated interactions of dislocations with obstacles. In the PP model, in 
addition to the thermally activated interactions that have dominant effect in a low strain rate regime, the 
dislocation drag mechanism is introduced to cover high strain rates over 107 s−1. 

In this paper, we have applied the modification of the Perzyna model by replacing the Ludwik strain-

hardening-related term (A+Bn)  with Voce hardening law. It successfully describes the flow stress and 
direct impact test results of tantalum in wide range of strain rate and strain.  

2 EXPERIMENTAL DETAILS   

2.1 Materials 

Commercially pure tantalum and X4CrMnN16-12 (VP159) austenitic high-nitrogen steel were used 

in the present study. The tantalum had a grain size of about 85 m. Chemical composition of tantalum 
is as follows: 20.3–20.7% C; 31.9–33.9% Fe; 3.9–4.9% Mo; 6–8% Si; Pmax−0.05; Smax−0.05, while  
VP159 steel: 0.04% C; 0.30% Si; 16.5 % Cr; 12% Mn; 0.61 N and rest Fe.  

2.2 Details of testing parameters and equipment 

Compression tests were carried out on both materials at strain rates ranging from quasi-static to 
dynamic at room temperature 296 K. Strain rates of 10-3 s-1 to 100 s-1 and room temperature 296 K were 
achieved in a servo-hydraulic Instron testing machine, whereas strain rates of 103 s-1 and 0.5 x106 s-1 
were achieved using the SHPB and miniaturized DICT, respectively.  
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Figure 1: The schematic arrangement of the 
Direct Impact Compression Test. 

Figure 2: Scheme of the Split Hopkinson 
Pressure Bar used in the tests 
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The main details of the miniaturized DICT are shown in Fig. 1, whereas general view of the SHPB 
in Fig. 2. In the miniaturized DICT the decelerator tube is used in which a small output bar with miniature 
gages is inserted. The decelerator tube is mounted in supports slightly ahead of the output bar with 
possibility to change the distance between them and such configuration permits programming of 
different plastic deformations of specimens.  In the literature, the flow stress of commercially pure 
tantalum has been studied at strain rates ranging from quasi-static 1.0x 10-3 s-1 to dynamic 1.0x104 s-1, 
temperatures from –200 0C to 7000C (cf.  Nemat-Nasser and Isaacs [11], and strains up to 0.8-1.0, cf. 
Kim and Shin [12]). It has to be mentioned however, that still the number of experimental data on the 
flow stress at higher strain rates than 1.0x105 1/s and large range of strain is far from the requirements 
for optimal validation of constitutive models. 

3 CONSTITUTIVE RELATIONS   

Among many constitutive relations the most advanced are those that include strain hardening and 
also strain rate and temperature sensitivities of flow stress.  In the present work the Perzyna and 
Rusinek-Klepaczko are taken into account.  

3.1 The thermo-elasto-viscoplastic relations 

We propose to introduce some simplification of the constitutive model developed by Perzyna [13] 

by assuming that the internal state variable vector ),(= p  consists of two scalars and one tensor, 

where 
p  denotes the equivalent viscoplastic deformation and  is the microdamage second order 

tensor, with the physical interpretation that =):( 1/2  defines the volume fraction porosity. The 

equivalent inelastic deformation 
p  describes the dissipation effects generated by viscoplastic flow 

phenomena. 

The plastic potential function in the form ),,,(= 21 JJff  is postulated, where 1J , 2J  denote 

the first two invariants of the Kirchhoff stress tensor   and   is absolute temperature. The evolution 

equations are assumed as follows 

                                  = L,= Pd
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p
d  denotes the rate of inelastic deformation tensor, relT  denotes the relaxation time for mechanical 

disturbances, the isotropic work-hardening-softening function ), ,(ˆ=  P ,   is the empirical 

overstress function, the bracket    defines the ramp function, L denotes the Lie derivative and   

denotes the evolution function which has to be determined. 
This constitutive relation has been implemented into ABAQUS/Explicit using the stress integration 
scheme proposed by Perzyna [13]. The main idea in Perzyna constitutive relation is to accomplish in 
one model the description of behaviour of the material for the entire range of strain rates. To achieve 

this aim the empirical overstress function   has been introduced and the equivalent plastic strain rate 
has been postulated in the following form [13]  
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where Trel is the relaxation time for mechanical disturbances,  denotes the Macauley bracket and 

 Tp

y ,  is the static yield stress function. The static yield stress function depends on the plastic 

strain 
p  and temperature T. The empirical overstress function   may be determined basing on the 

available experimental results. 
By developing the expression showed above, it is possible to achieve an explicit definition for the 

equivalent Huber-Misses stress  . The tantalum material is modelled as elastic-viscoplastic with 

thermal softening. In the present paper the formulation used is described in the following way  
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where the exponential form of the overstress function  is assumed [13]. 
It is a multiplicative law which shows some similarities with the Johnson-Cook formulation [14]. In 

fact those terms corresponding to strain hardening (first bracket in Eq. 4) and temperature sensitivity 
(third bracket in Eq. 4) are defined in the same way. Thus, A is a material constant related to the quasi-
static yield stress, B is the modulus of strain hardening, n is the strain hardening exponent, m defines 

the temperature sensitivity and   is the modified temperature given by: 
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where T0 is the reference temperature and Tm is the melting temperature. 
Contrary to the JC formulation, in the case of Perzyna model [13] the strain rate sensitivity of the 

material (second bracket in Eq. 4) is defined taking into account the physical assumptions on rate 
dependent material behaviour. In such definition D is the strain rate sensitivity exponent, which is a 
material constant and it can be determined using experimental data. Moreover, it is assumed that the 

relaxation time  p

relT   controls the viscoplastic flow in the entire range of strain rate changes. In 

classical Perzyna model it is generally assumed as constant value. However, in real case it has to be a 

function of the rate of inelastic deformation 
p  and may be determined based on experimental data.  

The following constant values have been found obtaining the best possible fitting with experimental 
results for tantalum [8, 15], Table 1.  
 
 
 

A (MPa) B (MPa) C (-) Trel (s) 
0  (s-1)  D (-) T0 (K)   m (-)   Tm(K)  

156 256 5.0 4.545E-02 0.001  0.2 296 0.25    3150  

 
Table 1: Constants determined for tantalum for Perzyna model with Voce hardening law 

 
 
In the case of adiabatic conditions of deformation the constitutive relations considered are combined 
with the energy balance principle. Such relation allows for an approximation of the thermal softening of 
the material via the adiabatic heating 
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where   is the Taylor-Quinney coefficient,   is the material density and pC  is the specific heat at 

constant pressure. Transition from isothermal to adiabatic conditions is assumed at 
110  sp , in 

agreement with experimental observations and numerical estimations for steels [16, 17, 18]. 
For temperature sensitivity including adiabatic heating under dynamic compression, Eq. (4), the 

additional constants may be used (Table 1). 
Figure 4 shows comparison of the Perzyna model (solid lines) with the experimental flow stress data  

(symbols ◊) of pure tantalum with respect to logarithmic strain rate at 296 K and varying strains =0.02, 
0.1 and 0.3.  The hardening law Eq. (4) is specified for:  A = 29.8 MPa, B = 314.8 MPa, C = 6.90, D = 
0.0124, m = 0.25. There is an increase in dynamic yield strength of tantalum at high strain rate loading 
comparing with that one corresponding to the quasi-static test. In the range of the strain rates 
considered, the strength magnification factor is up to 3.0 for pure tantalum. A good correlation between 
the experimental data and the Perzyna overstress model predictions for strain rates up to 0.5x106 s-1 
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can by clearly observed. 
 

  

 
 

Figure 3: Dynamic stress-strain characteristics for 
tantalum. 

 
 

 
Figure 4: Comparison of the Perzyna model 

(solid lines) with the experimental data  
(symbols ◊) of pure tantalum with respect to 
logarithmic strain rate at 296 K and varying 

strains =0.02, 0.1 and 0.3.   
  

 

3.2 Rusinek-Klepaczko model 

The model proposed by Rusinek and Klepaczko (RK) [19] often presents a much more precise 
description of the mechanical properties variation of materials in question, particularly under dynamic 
loads, than others available in the contemporary papers. According to the RK model’s assumptions, the 

equivalent stress can be decomposed into: internal stress  , effective stress 
* , and viscous-drag 

stress d . The relation takes into account the thermal softening of a material caused by a change in the 

Young’s modulus variation and the dependencies between internal stress and strain, strain rate and 
temperature. The effective stress presented in the equation considers the coupled relationships between 
strain rate and temperature. The equation takes the following general form [19]: 
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where ),,( Tpp

  - overall flow stress, ),,( Tpp

 
  - internal stress component, ),(* Tp   - 

effective stress  component, ),( Tp

d    - drag stress  component, E(T) - temperature dependence of 

the Young’s modulus, E0 - Young’s modulus at T=0K, T – temperature, 
p  - strain rate, 

p - inelastic 

strain. 

The results of the RK model for the steel tested [17] are presented in Fig. 5. As it is seen, quite 

reasonable fit was achieved. 
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Figure 5: Comparison of the experimental data and results calculated using the RK model 
 

4 NUMERICAL CALCULATIONS  

The mechanical properties of the tantalum used in the simulation are as follows: Young’s modulus 
186 GPa, Poisson ratio – 0.34, bulk modules - 194 GPa, shear modules - 69.4 GPa, initial compression 
yield stress – 136 MPa, melting point (K) – 3269, and density – 16600 kg/m3. The material constants 
for striker and output bar Marval steel used in the calculation are as follows: Young’s modulus 206 GPa, 
Poisson ratio – 0.32, and density – 8000 kg/m3.  
The impact resistance of tantalum is analysed numerically using ABAQUS/Explicit finite element 
program. The numerical model contains four main parts: striker, specimen, deceleration tube and output 
bar. In numerical simulations the specimen is supported by a output bar and is impacted by a striker 
bar moving one with an imposed velocity. Bottom displacements of output bar and deceleration tube in 
the impact direction are fixed. Both bars in contact with specimen are chosen as an elastic bodies with 
finite friction. Penalty type of contact with friction coefficient for specimen/striker (Ta/steel) and for 
specimen/ output bar (steel/Ta) equal 0.05 are assumed. Simulation leads to plastic strain and strain 
rates in the range from 1.0 x10-3 s−1 to 0.5 x106 s−1. Linear theory of elasticity, the Huber-Mises-Hencky 
yield criterion, Perzyna viscoplasticity with adiabatic conditions are used. The equation of adiabatic heat 
conduction with internal sources applicable to dynamic plasticity is applied with Taylor–Quinney 

coefficient =0.8. The finite elements model consists: for the striker+bar+tube - 31800 nodes and 36850 
elements, and for the specimen - 1881 nodes and 1500 elements, Fig. 6. All elements are of the type 
C3D8R (ABAQUS). 
 

 

Figure 6: The mesh of the transmitted bar, specimen and striker 
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Strain rate distribution for specimen tested using DICT technique for t=1.0 and 4.1 s are presented in 
Figs 7 and 8, respectively. 

 

Figure 7: Strain rate distribution in specimen along compression axis for t=1s 

 

Figure 8: Strain rate distribution in specimen along compression axis for t=4.1s 

 4.1 Punching effect 

Phenomena related to the punching induce an error estimation concerning the macroscopic 
longitudinal strain imposed on the specimen. As it is shown in Fig. 9, during dynamic loading the bar is 
deformed elastically inducing a local displacement U2(r, t). As it was reported in [20], it is necessary to 
include this additional displacement in the definition of the real length change of the specimen. However, 
it is not possible to measure this punching displacement in a precise way with a known experimental 
setup measurement. In this section, the displacement induced by punching effect U2(r, t) is analyzed to 

estimate how it may disturb the macroscopic average strain  of the specimen using the displacement 
measurement of the DICT. The correction that takes the punching displacement U2(r, t) into account 
was reported in [20]. The correction proposed in [20] to define the specimen length change, is based 
on the estimation of the striker displacement U2 associated to the punching effect. The punching 

displacement U2(r, t) is generally not included in estimation of the average strain  of the specimen. This 
effect is mainly related to the geometry as the friction effect discussed previously but also to the yield 
stress. Higher the strength or yield stress of the material strengthens the punching effect. Using 
numerical simulations, the displacement related to the punching effect was computed. Simulations of 
the DICT was prepared for the different sizes of test specimens. It is clear from this analysis that, the 
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punching effect is larger for higher impact velocity. Therefore, the Young modulus measured in 
experiment Emeasured will be lower in comparison to the theoretical value Etheoretical. However, it is possible 
to improve the measurement to correct stiffness using the following formula for correction of the 
punching displacement: 
 

    
 

( ) = ( )  ( ) theoretical measured
corrected measured measured

theoretical measured

E E
t t t

E E
  

 
  

 
                        (9) 

 

 
 

Figure 9: Schematic description of the punching 
effect during dynamic compression using DICT 

Figure 10: The punching effect during dynamic 
compression using DICT with V0 =54.95 m/s 
results for tantalum. Elastic displacement U3 

distribution on striker front surface in time t=1.0 - 

4.1s. 
 
 

 
 

Figure 11: Contour plot of elastic displacement U3 distribution in volume of striker for t=4.1s in DICT 
with V0 =54.95 m/s, results for tantalum. 

 

The strain level corrected for an imposed stress intensity is changed. This effect is particularly important 
for brittle materials that fail at very small strain. In the case of ductile material the punching effect is of 
secondary importance since the failure strain level is larger than 10%. The results show that the 
measured Young’s modulus Emeasured using elastic wave theory underestimates the theoretical values. 
Therefore the modulus correction, using Eq. (9), shifts the measured results closer to the theoretical 
one Etheoretical. However, Eq. (9) is not valid for visco-elastic material and a correction must be used. 

In addition, the punching displacement is reported by the following curves for impact velocity 54.95 
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m/s . Several measurement points are used with r being the axis of the striker. The numerical result 
presented in Fig. 10 and Fig. 11 proofs that the punching effect does not change significantly the 
macroscopic strain level at low and high impact velocity. However, for brittle material as ceramics, this 

effect must be taken into account since the maximum strain level is close to =0.01. 

5 STRAIN RATE SENSITIVITY OF MATERIALS  

The final set of quasi-static and dynamic () curves for tantalum and steel is shown in Figs. 3 and 
5, respectively. The range of strain rate is nine decimal orders, that is from 10-4 s-1 to 2,2x105 s-1. All 
curves are in true coordinates and corrected to isothermal conditions. The effect of strain rate on the 
flow stress is shown in Figs. 12 and 13 for three levels of strain for tantalum and steel, respectively. The 

rate sensitivity  )log/(  for tantalum shows two ranges, at lower strains  46 MPa and   

260 MPa above the strain rate threshold 0001C s-1. Such result suggests existence of two thermally 

activated dislocation micro-mechanisms of plastic deformation in those two ranges of strain rate [21]. 
Similar result was obtained for steel, Fig.13. It can be seen that strain rate sensitivity for tantalum is 
much greater than for VP159 steel obtained. For both materials it changes around 5x103s-1. 

 

Figure 12: Rate sensitivity of the tantalum at three levels of true strain 

 

Figure 13: Rate sensitivity of the steel at three levels of true strain 
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6 CONCLUSIONS 

Dynamic hardening observed for tantalum is stronger than that for VP159 steel observed. In 
comparison to the quasi-static test for the tantalum and steel a significant increase of the yield strength 
was obtained at high strain rate investigations. The strength magnification factor was up to 3.0 in the 
range of the strain rates considered. Strain rate sensitivity for tantalum is much greater than for VP159 
steel obtained. For both materials it changes around 5x103 s-1 

A good correlation between the experimental data and the Perzyna overstress model predictions 
can by clearly observed for strain rates up to 0.5x106 s−1. 
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