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a b s t r a c t

Ultrasound imaging is widely used for breast lesion differentiation. In this paper we propose

a neural transfer learning method for breast lesion classification in ultrasound. As reported

in several papers, the content and the style of a particular image can be separated with a

convolutional neural network. The style, coded by the Gram matrix, can be used to perform

neural transfer of artistic style. In this paper we extract the neural style representations of

malignant and benign breast lesions using the VGG19 neural network. Next, the Fisher

discriminant analysis is used to separate those neural style representations and perform

classification. The proposed approach achieves good classification performance (AUC of

0.847). Our method is compared with another transfer learning technique based on extract-

ing pooling layer features (AUC of 0.826). Moreover, we apply the Fisher discriminant

analysis to differentiate breast lesions using ultrasound images (AUC of 0.758). Additionally,

we extract the eigenimages related to malignant and benign breast lesions and show that

these eigenimages present features commonly associated with lesion type, such as contour

attributes or shadowing. The proposed techniques may be useful for the researchers

interested in ultrasound breast lesion characterization.

© 2018 Nalecz Institute of Biocybernetics and Biomedical Engineering of the Polish

Academy of Sciences. Published by Elsevier B.V. All rights reserved.
1. Introduction
Breast cancer is one of the most common causes of death for
women in the western world [1]. Ultrasound imaging plays
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an important role in breast lesion detection and diagnosis.
This imaging modality is safe, low cost, widely available and
can discriminate breast lesions with high accuracy. However,
ultrasound imaging is highly operator dependent. Diagnosis of
breast lesions by ultrasound imaging requires experienced
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radiologist who know how to operate ultrasound scanner and
possess deep knowledge of characteristic image features
related to lesion type [2]. This requirement results in high
inter-observer variation rate among the radiologists. More-
over, low specificity of examination results in high number of
unnecessary performed biopsies. To support the radiologists,
computer-aided diagnosis (CADx) systems have been used to
help differentiate benign and malignant breast lesions [3].

There are various approaches to breast lesion CADx system
development [4,5]. Usually the features are extractedmanually
from ultrasound images and then the classification is
performed with machine learning methods. In this case, the
performance of a CADx system relies mainly on well-chosen
handcrafted features developed by researchers. Those fea-
tures are usually divided into texture and morphological
features [4]. In the review paper [5] a large number of
handcrafted features were evaluated for classifying breast
lesions in ultrasound. The study demonstrated that the
morphological features are the best for breast lesion classifi-
cation. The aim of these features is to quantify shape and
contour attributes of breast lesions [6–8]. Usually more regular
and well-defined contours are expected in the case of benign
lesions [9].

Nowadays, with the rise of the deep learning (DL) methods,
CADx systems with automatic feature extraction have been
proposed for classification of medical images [10,11]. These
systems commonly use convolutional neural networks (CNNs)
to transform input images into a single decision as output,
which corresponds to the probability that the examined image
contains pathology. However, datasets in medical imaging are
usually too small to train a DL model from scratch. This issue
makes the researchers turn to transfer learning methods for
CADx system development [12,11]. In this case, a DL model
pre-trained on a large dataset is used as a feature extractor for
the task of interest. The performance of the pre-trainedmodel
relies on the similarity of the medical images at hand to those
from the training dataset. In [13] the authors applied several
transfer learning techniques to extract features for breast
classification using the VGG19 neural network. In [14] the
authors proposed to use amodified and fine-tunned version of
the Inception neural network. Both studies reported good
results and depicted the usefulness of transfer learning in
breast lesion classification.

In this paper we combine two pattern recognition techni-
ques to characterize breast lesions in ultrasound images. The
first one is related to eigenfaces and Fisherfaces which have
been used for human face recognition [15]. These methods of
image decomposition relies on the idea of a template that
match a specific object, e.g. the human face. Our first aim is to
apply Fisher linear discriminant analysis (FLDA) to ultrasound
images of malignant and benign lesions in a similar fashion as
performed in face recognition. The second pattern recognition
technique is related to the concept of neural transfer of artistic
style [16]. As reported in several papers, DLmodels can be used
to separate the content and the style of a particular image [17].
Neural style transferring has been applied to create appealing
images that combine paintings of well-known artists with
regular photos [16]. In this work, we extract the neural style
representations corresponding tomalignant and benign breast
lesions. We assume, that there exist a universal style
connected with the lesion type. Next, we apply the FLDA on
these neural style representations for classification. It is
presented that the decomposition of the style is much more
effective for classification than the decomposition of ultra-
sound images. The proposed approach may serve as a general
method of transfer learning.

This paper is organized in the following way. First we
describe the dataset used in this study. Second, the concepts of
Fisherimages and eigenimages are introduced. Next, we
explain how the neural style representation can be extracted
using a deep neural network. Our approach to analysis is
described. The results are presented and discussed.
2. Materials and methods

2.1. Dataset

In this study we used the freely available breast lesion dataset,
the OASBUD (Open Access Series of Breast Ultrasonic Data,
https://doi.org/10.5281/zenodo.545928) [18]. The dataset con-
tains raw ultrasound data recorded from breast focal lesions
and was originally used to test quantitative ultrasound
techniques [19,20]. It includes 52 and 48 scans frommalignant
and benign lesions, respectively. For each lesion, two
orthogonal scans were acquired. Moreover, for each scan a
region of interest (ROI) was determined by a radiologist to
correctly indicate lesion area. The study protocol was
approved by The Institutional Review Board. Additional
informations about the dataset and the study can be found
in the original paper [18].

To reconstruct the ultrasoundB-mode images based on raw
data, we employed the approach proposed by the authors [18].
First, the envelope of ultrasonic signals was calculated using
the Hilbert transform. Lesion area was cropped using the ROI
provided by the radiologist to contain the lesion plus 5 mm of
the surrounding tissue area. Second, the envelope was log
compressed to 40 dB dynamic range. Next, the data were
resized using the bicubic interpolation to 224 � 224 and
normalized.

2.2. Discriminant analysis

The eigenimages and the Fisherimages were extracted using
the standard approach known from face recognition [15]. Each
image was vectorized and the principal component analysis
was applied to determine the eigenimages (eigenvectors)
corresponding to malignant and benign breast lesions. The
eigenimages are related to the directions with the greatest
variance in the data. In comparison, the FLDA finds a direction,
called the Fisherimage, that best separates the classes. This
direction is expected to maximize the ratio of the variance
between the classes to the variance within the classes. In the
case of binary classification there is only one Fisherimage.

2.3. Neural style transfer

To build the style representation of an imagewe used the style
transferring method proposed by Gatys [16]. This method
utilizes the VGG19 CNN pre-trained on the ImageNet dataset

https://doi.org/10.5281/zenodo.545928


[(Fig._1)TD$FIG]

Fig. 1 – The architecture of the VGG19 neural network.
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[21,22]. The architecture of the VGG19 neural network is
depicted in Fig. 1. The network includes large blocks of
convolutional layers that code different information from
images. In our study we used the implementation of the
VGG19 model publicly available in Keras [23].

The style representation captures information on texture
but not the image content or arrangement. This representation
is obtained using the feature space built on top of filter
responses in network layers. The style of an image is captured
using the Gram matrix that determines the correlations
between the filter responses in a convolutional layer. Feature
correlations in the ith convolution layer can be expressed by
the Gram matrix Gi 2 Rni�ni, where ni is the number of distinct
filters in the ith layer and the matrix G of inner products is
equal to:

Gi
jk ¼

X

l

FijlF
i
kl; (1)
where Fjl stands for the lth position in the jth vectorized feature
map. The Gram matrix is unique for each image and can be
considered as a transformation of the input image, see Fig. 2.

2.4. Method validation

In our study, the FLDA was applied to ultrasound images and
the Gram matrices calculated using several convolutional
layers. Patient specific leave-one-out cross-validation was
performed to evaluate the classification. In each case, the test
set consisted of 2 images from the same patient and the
training set consisted of all remaining images. After the
training phase, the FLDA was used to calculate the projection
for the data in the test set and the results were averaged. Final
results were used to determine the receiver operating
characteristic (ROC) curve. To evaluate the breast lesion
classification performance, the area under the ROC curve
(AUC) was calculated. The sensitivity, specificity and accuracy
of were determined based on the ROC curve for the point on
the curve that was the closest to the upper left corner [24]. All
calculations were performed in Python with the scikit-learn
package.

3. Results
The FLDA algorithm was applied to classify breast lesions
using different image representations. First, we used the
ultrasound images. This approachcorresponded to the classic
method of using Fisherimages for classification. In this case,
we obtained AUC value of 0.758. Next, the style representa-
tions codedbyGrammatriceswere extractedusing theVGG19
neural network. In [16] the layers conv1_1, conv2_1, conv3_1,
conv4_1 and conv5_1 were used for neural style transferring.
In our study we employed all convolutional layers of the
VGG19 neural network. For each layer, the Gram matrix was
calculated and the FLDA algorithmwas applied for classifica-
tion. For each classifier the AUC value was calculated. Fig. 3
shows that the AUC value increases approximately mono-
tonically as deeper layers are employed for classification. The
worst classification performance was obtained for the
classifier trained using ultrasound images with AUC value
of 0.758. The highest AUC value was equal to 0.847 and was
obtained for the classifier developed using layer conv4_4. The
ROC curves calculated for the worst and the best performing
classifiers are shown in Fig. 7. The difference between AUC
values was statistically significant according to the Delong
test ( p-value < 0.001) [25].

In the next step our approach to transfer learning was
compared with the best performing transfer learning method
proposed in [13]. Features were extracted from the max
pooling layers of the VGG19 neural network. Next, features
were average-pooled, normalized and concatenated to form
the final feature vector. The FLDA classifierwas applied. In this
case, the AUCwas equal to 0.826. According to the Delong test,
this method achieved better performance than the classifier
trained using ultrasound images (p-value = 0.007) and statisti-
cally similar performance to our approach (p-value = 0.26).
Results are depicted in Table 1.
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Fig. 2 – An example of a B-mode image of a benign breast lesion and the corresponding Gram matrix calculated using VGG19
layer conv4_4.
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Fig. 3 – AUC values for the classifiers developed using ultrasound images and convolutional layers of the VGG19 neural
network.
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To illustrate class specific patterns the eigenimages were
extracted separately for the benign andmalignant breast lesion
ultrasound images. For this task the entire dataset was used.
Fig. 4 shows the first two eigenimages of both classes.
Additionally, the PCA was applied to decompose the Gram
matrices of benign and malignant lesion images calculated for
features in layer conv4_4. Fig. 5 presents the scatter plots of the
first two principal components. In the case of the ultrasound
images, first two components explained around 16%of variance
Table 1 – Classification performance.

Algorithm AUC Accuracy Sensitivity Specificity

FLDA images 0.758 0.71 0.596 0.833
FLDA conv4_4 0.847 0.80 0.808 0.792
FLDA pooling
layers, see [13]

0.826 0.77 0.865 0.666
while for the second approach this factor was higher and equal
to 29%. Fisherimages for the ultrasound images and Gram
matrices from layer conv4_4 are presented in Fig. 6.

4. Discussion
The proposed transfer learningmethod utilizes Grammatrices
that capture correlations between the filter responses in the
VGG19 neural network [16]. Our study shows the usefulness of
this approach. Table 1 indicates that the classification
performance increases as the deeper layer is employed for
training. Moreover, Fig. 5 shows the scatter plots of the first
two principal components determined for the ultrasound
images and theGrammatrices calculated using conv4_4. In the
case of the neural features, the malignant and benign lesions
are easier to separate visually. Fig. 5 depicts that the AUC value
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Fig. 4 – The two first eigenimages corresponding to: (a) benign and (b) malignant breast lesions.
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Fig. 5 – The scatter plots of the first two principal components obtained using: (a) B-mode images and (b) Gram matrices from
layer conv4_4.
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increased from 0.758 for the image based FLDA algorithm to
0.847 for the classifier developed using layer conv4_4. This
result illustrates the discriminative power of the VGG19 neural
network. However, the classification performance does not
increase in the case of the classifiers developed using Gram
matrices from the 5th block of the VGG19 neural network.
In the case of the layer conv5_3, the AUC value actually
decreased to around 0.78. This could be caused by the fact
that the last convolutional block is more tuned to recognize
objects contained in the ImageNet dataset. The classification
performance is presented in Table 1. The method proposed in
[13] achieved slightly lower, but comparable performance,
with the AUC value equal to 0.826. In the original paper higher
AUC value of 0.872 was reported. This difference was caused
probably by the datasets, in the original paper, 1125 breast
lesions were used to develop classifiers. The methods
proposed in our study and in [13] require averaging across
filter responses andworkwith the VGG19 neural network. This
neural model employs large blocks of uniform convolutional
layers that code different level information from images.
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Fig. 6 – Fisherimages corresponding to: (a) ultrasound images and (b) Gram matrix from layer conv4_4.
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The use of these transfer learningmethods in the case ofmore
complex neural architectures is not straightforward and is out
of the scope this study.

The eigenimages in Fig. 4 reveal important features related
to malignant and benign breast lesions. Supposedly, the first
eigenimages in both cases refers to the shape of the lesion. In
both cases lesion boundaries are clearly depicted. Several
papers on CADx systems for breast lesions classification
reported that the morphological features related to lesion
contour are the most useful for lesion differentiation [5].
Another factor is related to the observation that the brightness
of malignant lesions is usually smaller in comparison to the
brightness of surrounding tissue than in the case of the benign
lesions. This feature is connected to the fact that the
malignant lesions highly attenuate ultrasound waves [26].
This phenomenon is clearly depicted in the second eigen-
image in Fig. 4. A large difference in brightness is observed

[(Fig._7)TD$FIG]

Fig. 7 – The ROC curves for the worst and the best
performing classifiers.
between the region above and below the lesion. As the wave
propagates through the tissue, it is attenuated in the lesion
area. As a result, the tissue below the lesion seems to be darker
than the tissue above. The same issue can be observed in the
Fisherimage in Fig. 6a). The impact of the attenuation may be
important for the researchers who would like to apply data
augmentation to train a DL model from scratch. Rotation of
ultrasound images can produce images without the dark
region below the lesion. Such images would loose one of the
characteristic physical features related to malignancy.

Themain idea behind the eigenfaces and the Fisherfaces is
that there is a universal face template. The concept of
template is similar to the concept of style in neural style
transfer. Facial images are connected to a certain style
specified by color and shape. In the case of breast lesions,
the style is related to a specific speckle pattern, echo intensity
and lesion shape. Contour attributes are related to lesion type.
CNNs are excellent edge detectors and this fact may explain
the good performance of the neural transfer learning. Our
approach can be considered as a transfer learning technique. A
pre-trained neural network is used to extract features for
classification and to train another model. In some sense our
approach is similar to kernel discriminant analysis but instead
of a specified kernel, the neural model is applied to transform
nonlinearly the input data. We assume that there is a style
space generated by the network and that the images fromeach
class correspond to a different subspace of this space.

To successfully extract eigenimages, the initial images
have to be centered, scaled and similarly oriented. These
conditions are usually hard to meet in reality. In the case of
ultrasound imaging, the lesion appearance in image strongly
rely on radiologist performing the examination. In comparison
to facial images, the lesion images commonly have different
size, orientation and shape. In this study we showed that this
problem can be minimized by using a pre-trained convolution
neural network. Grammatrices help separate the content from
the style. However, this approach is more difficult to interpret.
The eigenimages extracted using the ultrasound images
presented in Fig. 4 can be assessed by an expert. These
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eigenimages contain lesion features reported in the literature.
In comparison, the Fisherimage obtained using the Gram
matrices in Fig. 6b) is difficult to interpret. It is unclear which
image features it encodes. However, in a similar way it would
be difficult to interpret the Gram matrix corresponding to a
Van Gogh painting. We could calculate the Gram matrices
corresponding to a set of Van Gogh paintings. Next, it would be
possible to extract eigenimages using Gram matrices and
transfer the style they represent to regular photos as in the
neural style artistic transfer. It could reveal the most
important features associated with the Van Gogh paintings.

5. Conclusions
In this paper we proposed a transfer learning method for
breast lesion classification. Our approach was based on
discriminant analysis. First, the eigen-decomposition and
the FLDA were applied to differentiate ultrasound images of
malignant and benign breast lesions. Next, the neural style
patterns of breast lesions were extracted using the VGG19
neural network. FLDA was used to differentiate style repre-
sentations obtained for malignant and benign lesions. Our
approach may be useful for the researchers interested in
breast lesion characterization.
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