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Abstract.
This work presents results of investigations on the determination of strain localization in

sheet forming. Nakajima formability test has been chosen for the experimental studies and
numerical analysis. The onset of localized necking has been determined using the criteria studied
in the authors’ earlier works, based on the analysis of the principal strains evolution in time.
The first criterion is based on the analysis of the through-thickness thinning (through–thickness
strain) and its first time derivative in the most strained zone. The limit strain in the second
method is determined by the maximum of the strain acceleration. Limit strains obtained from
these criteria have been confronted with the experimental forming limit curve (FLC) evaluated
according to modified Bragard method used in the ISO standard. The comparison shows that
the first criterion predicts formability limits closer to the experimental FLC and second method
predicts values of strains higher than FLC. These values are closer to the maximum strains
measured before fracture appears in experiment. These investigations show that criteria based
on the analysis of strain evolution used in numerical simulation and experimental studies allow
us to determine strain localization.

1. Introduction
Analysis of formability in sheet forming operations is still a subject of research works [1, 2, 3]. In
the engineering practice the strain based forming limit diagrams (FLD) are the most commonly
used tools to validate sheet metal formability. The forming limit curve (FLC) on the FLD
is the principal strain locus determined by the failure in the form of strain localization or
material fracture. There are many approaches to evaluate the FLCs including experimental
[4], theoretical [5], as well as hybrid methods combining experimental data with analytical or
numerical approaches [6]. An overview of methods of FLC determination is presented in [7].

Theoretical methods are based on criteria of the loss of stability (strain localization) or
damage (fracture) of the material. Over the past few decades, theoretical methods received
significant progress. Despite that, the most reliable approaches for evaluation of formability
are based on the experimental methods. Nakajima [4] test considered in this work is one of
the most often used experimental methods. The strains during the experiments are measured
automatically using systems such as AutoGrid, ASAME or ARAMIS. The limit strains (forming
limits) can be calculated using different methods [7] proposed by Veerman , Bragard, Kobayashi,
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Hecker and others based on the analysis of the strains measured in the critical zone. The modified
Bragard method is used in the standard ISO 12004-2 [4].

Along with the evolution of measurement systems, new methods for determining limit strains
have been developed. There is a group of the algorithms based on the analysis of time evolution
(t-d method) of strains and their time derivatives. Volk and Hora [8] have presented a method
based on the analysis of the first derivative of the strains in the necked zone. The onset of
necking is assumed to occur at the point corresponding to a sudden change of the slope of the
strain rate vs. time curve. The first and second time derivatives of the principal strains (strain
velocities and accelerations) have been postprocessed in [5]. The onset of necking is determined
by the peak of the major strain acceleration vs. time curve. Martnez-Donaire et. al [9] propose
the t-d method in which the onset of necking was detected by the appearance of a maximum in
the first time derivative of ε1 at the boundary of the instability region.

FLD concept is very useful tool in sheet metal forming finite element analysis (FEA).
Numerical evaluation of the forming operations formability is usually performed by confronting
strains estimated in numerical simulation with the FLC. This analysis allows us to determine
that the strains assumed for the formed material are above the FLC but we are not able to
determine a failure point in the simulation itself.

The present work aims to compare the two criteria of strain localization applied in the
numerical and experimental analysis of the Nakajima formability test. Investigations have
been carried out for DC04 grade steel sheet. Two specimens with different strain paths for
these comparisons have been chosen. The onset of localized necking has been determined
using the criteria studied in the authors’ earlier works, based on the analysis of the principal
strains evolution in time. The first criterion is based on the analysis of the through-thickness
thinning (through-thickness strain) and its first time derivative in the most strained zone. The
maximum of the strain acceleration determines the limit strain in the second method. Limit
strains obtained from these criteria have been confronted with the experimental FLC evaluated
according to the ISO 12004-2 standard.

The outline of this paper is as follows. The experimental results of the Nakajima test are
briefly described in the section 2, then the two algorithms for determination of limit strains,
which are used in this work, are described in section 3. These algorithms are applied to
experimental and numerical results shown in section 4. Finally, conclusions drawn from this
work are given.

2. Experimental results
Nakajima formability tests have been carried out for the steel sheet grade DC04 0.85 mm thick.
The tests have been performed using a PTFE foil between the sheet and punch. Six samples
with width ranging from 30 to 180 mm have been used to build the FLC. Results from tests for
selected two specimens presented in figure 1 have been used for validation of numerical results.
These specimens (30mm width and circular with 180 mm diameter) related to the uniaxial and
biaxial strain paths. The GOM ARAMIS system has been used to measure strains on the surface
of the sample and to analyze the deformation. The experimental FLC shown in figure 2 has
been built using the GOM ARAMIS software according to ISO 12004-2 [4].

3. Methods for determination of limit strains
The criteria to determine the strain localization have been applied to the most strained locations
in the samples identified from the strain distributions in the experiment or numerical analysis.
The evolution of the principal strains and thinning rate have been presented in Fig. 3a. Two
criteria have been applied to analyze the strain evolution.

The limit strain in the first criterion proposed by Volk and Hora [8] is defined by the point
corresponding to a sudden change of the slope of the thinning rate vs. time curve. The critical
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a) b)

Figure 1. Sample fractured specimens: (a)
30 mm wide, (b) circular (180 mm diameter).

 0

 0.2

 0.4

 0.6

 0.8

 1

-0.6 -0.4 -0.2  0  0.2  0.4  0.6

ε
1  =

 -[(R
+
1)/R

]ε
2

ε 1
 =

 ε 2

m
aj

o
r 

st
ra

in
 ε

1

minor strain ε2

limit strains
limit mean strains

exper. FLC

Figure 2. Forming limit diagram with
experimental FLC.
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Figure 3. Determination of the onset of localized necking in the experiment for the specimen
30 mm wide: a) evolution of principal strains, b) thinning rate history, c) major principal strain
rate history, d) major principal strain acceleration history in the failure zone.

point in Fig. 3b is determined by the intersection of the extensions of approximately straight
segments of the thinning rate curve before and after necking. The intersection corresponds
to the time t = 24.4 s. Thus, the limit principal strains for the considered specimen, are
given by the values of the minor and major principal strain at time t = 24.4 s, ε1 = 0.639
and ε2 = −0.313. According to the second criterion presented by Situ et al. [6], the strain
localization is determined by the inflection point in the major strain rate curve shown in Fig.
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3c. The inflection point corresponds to the maximum of the major strain acceleration curve
plotted in Fig. 3d. The maximum is achieved at the time t = 25 s, and the point of strain
localization for the considered specimen, is given by the values of the minor and major principal
strains at this time, ε1 = 0.772 and ε2 = −0.35. Both criteria will be used in the same manner
to analyze strains in the most strained locations in the other studied specimens identified from
the strain distributions determined experimentally and numerically.

4. Numerical model and simulation results
The Nakajima test has been simulated in authors own computer explicit dynamic finite element
program [10, 11]. Sheet metal specimen has been discretized by BST (Basic Shell Triangle)
elements [12]. The material has been considered using the Hill48 constitutive model with planar
anisotropy which is generally agreed that is sufficiently accurate for the DC04 steel.

Material properties of the DC04 sheet have been determined from tensile tests of the
specimens cut at the different orientation with respect to the rolling direction. The stress-strain
curve fitting the average results of tensile tests has been taken in the following form:

σy (ε̄p) = K(ε0 + ε̄p)n = 528(0.0097 + ε̄p)0.205 MPa (1)

Anisotropy has been defined by the Lankford coefficients r0 = 1.96, r45 = 1.3, r90 = 2.19.
The simulations have been carried out using a simplified geometrical model, taking into account
higher friction between the blank holder, die, and sheet instead of modeling the drawbead. This
has allowed us to reduce the number of elements considerably and to avoid very small elements
limiting the time step length.

a) b)

Figure 4. Thickness ratio (deformed to initial thickness) distribution at the end of simulation
on deformed shapes of the specimens: a) 30 mm wide, b) circular with the diameter of 180 mm.

Simulations have been performed for two specimens: with width of 30 and one full circular
specimen with the diameter of 180 mm. Figure 4 shows deformed shapes of the two samples with
the thickness ratio (deformed to initial thickness) distribution at the end of the simulation. The
level of stamping at which the failure in the form of necking is achieved in numerical simulation
has been assessed using the same presented procedure as applied to determine limit strains in
the experiment. Results of the determination of the onset of localized necking in numerical
simulation and experiment have been shown for the 30 mm wide and circular specimens in
Tab.1.

The forming limit diagram with strains corresponding to these samples is given in Fig. 5a
and the strain paths for the most strained locations of these specimens until the critical state
have been plotted in the FLD shown in Fig. 5b. To obtain strain paths for these specimens
as close as possible to the experimental strain paths (Fig. 5) calibration procedure for the
friction, conditions have been performed. Friction conditions between the punch and sheet have
been analyzed for several friction values, and by the inverse analysis, it was found that for the



5

1234567890 ‘’“”

NUMISHEET2018 IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 1063 (2018) 012060  doi :10.1088/1742-6596/1063/1/012060

Table 1. Determined limit principal ( ε1 major and ε2 minor) strains in numerical simulation
and experiment.

analysis type
thinning rate evolution criterion maximum strain acceleration criterion
time s major strain ε1 minor strain,ε2 time major strain ε1 minor strain ε2

numerical 30 mm 3.81e-3 0.697 -0.394 4.03e-3 0.46 -0.019
experimental 30 mm 24.4 0.639 -0.313 25.0 0.772 -0.35
numerical circular 4.1e-3 0.42 0.227 4.19e-3 0.493 0.237

experimental circular 37.3 0.4317 0.253 38 0.489 0.2614

specimen 30 mm wide friction coefficient assessed value µ = 0.05 and the full circular specimen
with µ = 0.1. The differences in process time between experiment (v = 75 mm/min) and
simulation (v = 10 m/s) result from the fact that the punch speed in the simulation was higher
than the speed in the experiment. By increasing the punch speed [13], the total simulation time
has been reduced.

It can be seen both in Table 1 and in Fig. 5 that the thinning rate evolution criterion gives
the values of limit strains are close to the experimental ones. The maximum strain acceleration
criterion, in turn, overestimates the limit strains while compared to the experimental FLC
according to the ISO norm. Furthermore, experimental and numerical strains are close to the
values of strains before the fracture.
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Figure 5. Comparison between simulated and experimentally measured principal in-plane
strains plotted on the a) FLD and b) limit strains for experimental and numerical strain paths
compared with the experimental FLC.

The comparison between experimental and numerically predicted drawing force in the
function of punch displacement is presented in Fig. 6. Points corresponding to moments of
localization determined by the different criteria have been shown in Fig. 6. Maximum strain
acceleration criterion predicts limit strains which correspond to the higher force and punch
displacement value closer to the maxim force.

It can be seen that Hill48 model with the material parameters from tensile tests, overestimates
the force-displacement response which is also observed by other authors [3]. Nevertheless, the
limit strains determined from numerical simulations and in experiments are close to each other.

5. Conclusions
Investigation of numerical results received in simulations of Nakajima tests done for the selected
specimens proves the validity of the developed numerical model. Limit strains obtained
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Figure 6. The comparison between numerical and experimental drawing force response in
Nakajima formability test for the specimen: a) 30 mm wide, b) circular with the diameter of
180 mm.

experimentally and numerically have been compared to experimental FLC. A closer prediction
with the FLC has been achieved from the first criterion based on the change of the slope of the
thinning rate.

The second criterion which is based on the maximum strain acceleration gives values of strains
higher than FLC determined according to ISO 12004-2 norm. These values are closer to the
strains corresponding to fracture limit. Both criteria predict failure at the time step close to
the maximum punch force. The results show that investigated time-dependent methods allow
determining strain localization in numerical simulation and experimental studies.
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