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Two important signalling pathways of NF-kB and ERK transmit merely 1 bit of

information about the level of extracellular stimulation. It is thus unclear how

such systems can coordinate complex cell responses to external cues.

We analyse information transmission in the MAPK/ERK pathway that

converts both constant and pulsatile EGF stimulation into pulses of ERK

activity. Based on an experimentally verified computational model, we demon-

strate that, when input consists of sequences of EGF pulses, transmitted

information increases nearly linearly with time. Thus, pulse-interval transcod-

ing allows more information to be relayed than the amplitude–amplitude

transcoding considered previously for the ERK and NF-kB pathways. More-

over, the information channel capacity C, or simply bitrate, is not limited by

the bandwidth B ¼ 1/t, where t � 1 h is the relaxation time. Specifically,

when the input is provided in the form of sequences of short binary EGF

pulses separated by intervals that are multiples of t/n (but not shorter than

t), then for n ¼ 2, C � 1.39 bit h21; and for n ¼ 4, C � 1.86 bit h21. The capa-

bility to respond to random sequences of EGF pulses enables cells to

propagate spontaneous ERK activity waves across tissue.

1. Introduction
Cells secrete and recognize chemical signals in order to coordinate their actions at a

supercellular level. In addition to chemical identity, quantifiable features of the

signal such as amplitude or duration are usually relevant for eliciting a proportion-

ate physiological cell response. The amplitude of an input signal can be translated

into the amplitude or duration of activity of an effector protein such as a transcrip-

tion factor. It has been shown for the nuclear factor kappa–light chain enhancer of

activated B cells (NF-kB) system that the response in a population of cells is pro-

portional to the product of signal amplitude and its duration [1]. Some signalling

pathways that exhibit oscillatory behaviour transcode the input amplitude to the

frequency of effector pulses [2]. Such an ability has been recently demonstrated

in the mitogen-activated protein kinase (MAPK) pathway, where, in response to

extracellular epidermal growth factor (EGF) (input) of constant amplitude, extra-

cellular signal-regulated kinase (ERK) (effector) exhibits activity pulses with

constant amplitude but frequency and pulse duration determined by concen-

trations of EGF [3]. In the MAPK system, the amplitude-to-frequency transcoding

is enabled by a particular topology of feedback loops and associated time scales [4].

Molecular interpretation of pulsatile (or more complex) temporal codes of effec-

tor molecules is an area of active research [5–7]; however, less attention has been

devoted to the characterization of responses of signalling systems challenged

with time-varying inputs. It has been demonstrated that both the NF-kB and the

MAPK/ERK pathways respond in a pulsating manner to periodic pulses of cyto-

kines, tumour necrosis factor (TNF) and EGF, respectively [8,9]. Experimental

and computational analysis of responses to pulsating inputs has shown that the
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Figure 1. The MAPK pathway and analysis of ERK responses to repeated EGF pulses. (a) Schematic diagram of the MAPK pathway. As analysed in [4], PF1 and NF1 lead to relaxation
oscillations, whereas NF2 and NF3 shape the time profile of the pulse of active ERK (ERKpp). (b) ERKpp(t) profile in response to two 5 min long 100 pg ml21 EGF pulses separated by
T¼ 45, 51.5, 60 min. Black bold line: deterministic model trajectory; thin blue lines: 10 stochastic trajectories (visible only for T¼ 51.5 min). (c) ERKpp(t) profile in response to four
EGF pulses repeated every 60 min with successive amplitudes 3, 100, 10, 30 pg ml21. (d ) Fraction of simulated cells for which R2 . 0.5R1, as a function of the time interval T
between EGF pulses. The fraction is calculated based on at least 500 independent numerical simulations (number of simulations for T close totwas up to 5000) performed assuming
lognormal distributions logN(mi, s

2) of protein levels (and first-order reaction coefficients) with meanmi equal to the default value of a given variable, and six different values ofs.
EGFR, epidermal growth factor receptor; MEK, mitogen-activated protein kinase kinase; NF, negative feedback; PF, positive feedback; SOS, son of sevenless. (Online version in colour.)
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ability of the NF-kB system to respond to a series of TNF pulses is

inherently limited by the relaxation time t associated with oscil-

lation-generating negative feedback [10,11]. Information

transmission through both the NF-kB and the MAPK/ERK

pathways has been analysed within the generic framework of

information theory [12,13], revealing that these pathways are

able to transmit about 1 bit of information about a constant

stimulus concentration [14–17].

In this work, we present a computational analysis of infor-

mation relay within an experimentally verified model of the

MAPK/ERK pathway [4], calibrated on MCF10A cells [3],

where a fast positive feedback loop (involving RAS and SOS)

is nested within a slow negative feedback loop (involving

ERK and SOS; see figure 1a). Such network topology allows

both to transcode constant EGF stimulation to periodic ERK

activity pulses and to transcode analogous EGF pulses to

nearly digital pulses of ERK activity. Based on the model, we

approach the following representation problem: What is the

signal transcoding strategy that allows the maximum amount

of information to be transmitted through a given transmission

channel in a given time span or to achieve the highest infor-

mation transmission rate in the long term? We propose to

code input information in the form of sequences of short digital

EGF pulses. Then, we estimate the maximum transmission rate

with respect to the noise strength. In particular, we demon-

strate that when input information is encoded in intervals

between subsequent EGF pulses, then the information channel

capacity, computed as the maximum mutual information (MI)

rate, may exceed channel bandwidth, B ¼ 1/t. By theoretical

and numerical analysis of transmission of binary EGF

sequences with varying inter-pulse intervals we demonstrate
that the MAPK/ERK pathway is able to transmit more than

1 bit per hour.

2. Methods
2.1. Parameters and simulations
To perform our analyses, we employed the computational model

described in [4], which has been amended with extrinsic noise

and perturbed according to stimulation protocols, characterized

by the following parameters:

— pulse duration: 5 min, pulse amplitude: 0 or 100 pg ml21

(unless otherwise specified);

— (square of) the second parameter of the lognormal

distribution describing additive noise: s0 ¼ 1.0;

— (square of) the second parameter of the lognormal distribution

describing cell-specific noise: s ¼ 0, 0.1, 0.3, 0.5, 0.7, 1.0;

— basic term to determine the first parameter of the lognormal

distribution describing cell-specific noise: m0 ¼ f0, 0.01, 0.03,

0.1, 0.3g;
— number of pulses: 6 or 8, inter-pulse interval: T ¼ 15, 20, 30,

40, 50, 60, 70, 80 min;

— number of simulations for a given input sequence of pulses:

M ¼ 1000.

All parameters of the MAPK model are provided in electronic

supplementary material, table S1. Abundances of molecules of

each pathway component were drawn from lognormal distri-

butions logN(mi, s) with median mi equal to a default value for

this component. Also, all pseudo-first-order reaction parameters,

which are proportional to the level of an implicit enzyme, were

independently drawn from a lognormal distribution. These ran-

domly set parameters of the MAPK pathway are written in
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green in electronic supplementary material, table S1. For each con-

sidered combination of inter-pulse interval T, noise strength s and

specific input sequence of pulses, we generated M cell-specific

random sets of parameters (as described above) and simulated

model dynamics of each cell deterministically using an adaptive

ODE solver embedded in BioNetGen [18]. To simulate the effect

of the additive noise of different strengths, we post-processed

the obtained M trajectories of ERKpp(t).
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2.2. Mutual information calculation and maximization
Estimation of the MI defined in equation (3.2) has been performed as

proposed by Kraskov et al. [19]. In this approach (see [19], eqn (8)),

effectively the output probability distributions, Yi, and marginal dis-

tribution, Y, are estimated based on the distance to the kth nearest

neighbour and on the number of points within this distance. For

all estimates described in this article, we have set the number of near-

est neighbours k ¼ 15, and assumed that distances in input space X
are much larger than those in Y space (which implies that in eqn (8)

from [19] we set nx ¼M). We sampled multi-dimensional output

distributions in M ¼ 1000 d-dimensional points obtained by running

M simulations, each with parameters independently drawn from

lognormal distributions as described in §2.1. The number of dimen-

sions d was 2, 3, 4, 5, 6 or 8, equal to the number of pulses (or

pseudopulses) of the considered sequences. The number of distinct

binary sequences was 2d. From each sequence we obtained d num-

bers quantifying the ERK response to d subsequent pulses; see

equation (3.1). We implemented the method of Kraskov et al. [19]

such that for each input category, x, the counts of nearest neighbours

from all other categories, x0 = x, are weighted according to current

p(x0), enabling iterative constrained maximization of the estimated

MI over the complete set of input probabilities. To obtain estimates

of the maximum MI (channel capacity) and p(x) associated with

inputs, we employed a stochastic gradient optimizer, Adam [20],

available in TensorFlow [21]. Our implementation of the channel

capacity estimator is provided in the form of a Python module

called CCE (see http://pmbm.ippt.pan.pl/software/cce). The accu-

racy of our implementation of the Kraskov algorithm is checked

within unit tests, where we calculate MI numerically based on

eight three-dimensional Gaussian distributions either (1) centred

along an S-shaped curve or (2) centred in vertices of the cube. In

both cases the distributions are overlapping so MI is about 1.8 ,

log2(8)¼ 3 bit. These nearly accurate values can be then compared

with the values obtained using the Kraskov algorithm based on M
points drawn at random from each distribution. The Kraskov algor-

ithm overestimates MI by about 2% for M¼ 1000 and 1.5% for M¼
5000; in the second case, 3.5% for M ¼ 1000 and 2.5% for M ¼ 5000.

Accuracy is nearly the same in the case when all eight input probabil-

ities are equal (test_use_case_1.py) and in the case when input

probabilities are varied to maximize MI (test_use_case_3.py).
3. Results
3.1. ERK responses to the repeated EGF pulses of

different frequencies and amplitudes
The ability of a cell to respond to EGF pulses depends on their

amplitude, duration and pulsing frequency. We focus on rela-

tively short pulses of 5 min. In figure 1b we show trajectories

resulting from one deterministic (black bold line) and 10 stochas-

tic (thin blue lines) simulations of the MAPK model in response

to two EGF pulses, both of amplitude 100 pg ml21, separated by

three different time intervals T of 45, 51.5 and 60 min. Let Ri(T )

denote the integrated ERK response after the ith EGF pulse:

Ri(T) ¼
Ð (iþ1)T

iT ERKpp(t) dt: ð3:1Þ
Since the ERKpp pulse lasts about 30 min, for T . 30 min,

R1(T ) ¼ const¼ : Rmax with the numerically calculated Rmax¼

2.65� 109 molecule� s. Let us consider the integrated ERK

responses to the first and the second EGF pulse. For T¼
45 min, the response to the second pulse, R2, is negligible with

respect to R1, R2(45)/R1(45)� 1, while for T¼ 51.5 min,

R2(51.5)/R1(51.5) ¼ 0.5. For T¼ 60 min, R2 ¼ 2.00 � 109

molecule � s is comparable to R1. This indicates a threshold

t ¼ 51.5 min above (below) which the system can (cannot) be

activated in response to the next pulse. It is of note that this

threshold time (relaxation time) t is very close to the minimal

period of oscillations under constant EGF stimulation observed

experimentally [3].

In figure 1c, we analyse the ERK activity time profile in

response to EGF pulses repeated every 60 min, with successive

amplitudes 3, 100, 10, 30 pg ml21. While there is no response

to the 3 pg ml21 pulse, the responses to the remaining three

pulses have comparable amplitudes, even though the

10 pg ml21 pulse follows the much stronger 100 pg ml21

pulse, which has an inhibitory effect. Overall, the results pre-

sented in figure 1b,c show that the MAPK system exhibits

nearly all-or-nothing ERK responses to the pulsatile simu-

lation. We thus expect that, for such stimulation, information

is not coded by the level of EGF, but by the presence or

absence of an EGF pulse that exceeds some threshold. Conse-

quently, in the further analysis we restrict ourselves to 5 min

long EGF pulses of amplitude 100 pg ml21.

We notice that the stochastic trajectories in figure 1b,c are

nearly indistinguishable from the deterministic one except for

trajectories with T ¼ 51.5 min in figure 1b. This is a consequence

of a large number of reacting molecules at each step of the path-

way, which makes the intrinsic noise of signal processing

negligible. When comparing model predictions with exper-

iment we found that, to reproduce experimentally observed

heterogeneity of single cell responses, one has to include extrin-

sic noise, that is, assume that the levels of the MAPK pathway

components vary among cells [4]. Since intrinsic noise was

found to be negligible, henceforth we will use a deterministic

approximation (ODEs). In order to analyse how extrinsic noise

influences the transmitted information, we will consider two

noise sources, as follows.

(a) Cell-specific noise associated with uncertain levels of

pathway components (in individual simulated cells) and

with pseudo-first-order rates of dephosphorylation reac-

tions (by implicit phosphatases). We will assume that

these variables follow the lognormal distributions

logN(mi, s
2) with median mi equal to the default value

of an ith parameter.

(b) Additive noise associated with ERK activation mediated

by pathways that are not included in the model. For the

additive noise we will also assume a lognormal distri-

bution logN(m*, s2
0) with s0 ¼ 1 and m* ¼ m0 � Rmax �

T/(60 min). For most of the analysis we take m0 ¼ 0.03,

which is equivalent to the assumption that about 3% of

ERK activity results from the additive noise.

The parameters s and m0 that characterize the strength of

the cell-specific and the additive noise will be varied. The

MAPK channel information capacity (or simply bitrate) is con-

trolled by the maximal frequency of EGF pulses that can induce

ERK activation. For figure 1d we perform similar simulations to

those for figure 1b, but accounting for the extrinsic noise. We

http://pmbm.ippt.pan.pl/software/cce
http://pmbm.ippt.pan.pl/software/cce
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Figure 2. Responses to eight possible series of three pulses having amplitude
of either ‘0’ (‘pseudo-pulse’) or ‘1’ (100 pg ml21 in dimensional units). For
each base repeating time Ti (60, 30 or 20 min) and each pulse sequence, 30
independent numerical simulations were performed with s ¼ 0.3, m0 ¼

0.03. For T ¼ 30 min and T ¼ 20 min, the sequences transmitted to the
same output sequence are grouped and encircled by bold frames. The first
element of each group is accurately transmitted and will be referred to as
a group representative. (Online version in colour.)
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compute the fraction of cells for which the response to the

second pulse is at least half of the response to the first pulse,

as a function of the time interval T between EGF pulses, for sev-

eral values of s (keeping m0 ¼ 0.03). For s ¼ 0, all cells exhibit

significant responses to the second pulse when T . t and none

of them exhibit such responses when T , t. For s ¼ 0.1 and

s ¼ 0.3 the significant responses to the second EGF pulse are

reached for T substantially larger than t; additionally, even

for T , t, a fraction of cells exhibit significant responses to

the second EGF pulse. For larger noise, s � 0.5, regardless of

T, there are cells that exhibit a significant response to the

second pulse and cells that fail to respond. In summary,

based on the above analysis, we may expect that, for zero or

small noise, EGF pulses separated by intervals T . t will

lead to a significant ERK activation, whereas, for larger

noise, EGF pulses will be missed in some cells even for T . t,

but some other cells will show responses for T , t.

3.2. ERK activation in response to sequences of three
EGF pulses

In figure 2 we show responses to eight sequences of EGF pulses.

We consider three base repeating times Ti (time intervals

between repeated pulses) of 60, 30 or 20 min. In the following

convention the sequence ‘101’ for T¼ T1 ¼ 60 min denotes a

sequence of three EGF pulses of successive amplitudes: 1 (in

dimensional units 1 � 100 pg ml21) at t ¼ 0 min, 0 (a ‘pseudo-

pulse’) at t¼ 60 min, and 1 at t ¼ 120 min. For T¼ T2 ¼

30 min, the same sequence denotes pulses of amplitude 1 at

t ¼ 0 min and t¼ 60 min, and a pseudo-pulse at t ¼ 30 min.

For illustration purposes, times Ti are chosen so that T1 .

t, T2 , t , 2T2, and 2T3 , t , 3T3. For each of the eight

sequences and each Ti, we perform 30 simulations (each cor-

responding to a single cell) with s ¼ 0.3, m0 ¼ 0.03; the

resulting trajectories of ERKpp(t) are shown in figure 2.

Since the noise is moderate, one can expect that for T ¼
60 min most cells will respond to all EGF pulses (by looking

closely one can spot that only one and two cells show a very

weak response to the second pulse in sequences ‘110’ and

‘111’, respectively). One can thus say that for T ¼ 60 min

almost all EGF sequences are transmitted properly.

For T ¼ 30 min, cells are not able to properly transmit EGF

sequences ‘011’, ‘110’ and ‘111’. Sequence ‘011’ leads only to a

single ERKpp pulse—in essence producing the same response

as sequence ‘010’. We will say that these two input EGF

sequences lead to a ‘010’ ERKpp response. In some simplifica-

tion, the distinction between ‘0’ and ‘1’ of the ERKpp response

is based on integrated ERKpp. When the integral exceeds some

threshold, the ERKpp response is interpreted as ‘1’. The

threshold however is not predefined, but rather set by likeli-

hood. Above the threshold the probability that the input was

‘1’ is higher than the probability that the input was ‘0’. EGF

sequence ‘110’ is interpreted as ‘100’, whereas EGF sequence

‘111’ is interpreted as ‘101’. In the last case—because the

second pulse does not elicit ERK activation—the third pulse

can be transmitted. Overall, for T ¼ 30 min, one can dis-

tinguish two EGF sequences, ‘000’ and ‘100’, that are

accurately transmitted (i.e. produce ‘000’ and ‘100’ ERK

response, respectively), and three groups f‘010’, ‘011’g,
f‘100’, ‘110’g and f‘101’, ‘111’g (grouped in bold frames in

figure 2) that are transcoded, respectively, to ERKpp sequences

‘010’, ‘100’ and ‘101’. The element of the group which is accu-

rately transmitted (i.e. here ‘010’, ‘100’ and ‘101’) will be
referred to as the group representative. For T ¼ 20 min, the

analysis is analogous: there are also two sequences that are

accurately transmitted, but only two groups—one containing

two EGF sequences, the other containing four EGF sequences.

Because an ERKpp pulse at the first position inhibits signal

transmission for about 50 min, EGF sequences ‘100’, ‘110’,

‘101’ and ‘111’ are all transcoded to ‘100’.

Transmitted information is limited from above by log2(K),

where K is the number of distinct output sequences. In our

case, K ¼ 8 for T ¼ 60 min, K ¼ 5 for T¼ 30 min and K ¼ 4 for

T¼ 20 min. Thus, transmitted information (or MI) is limited

from above by, respectively, log2(8) ¼ 3, log2(5) ¼ 2.32 and

log2(4) ¼ 2. The estimated bitrate, that is, MI/(3Ti), equals,

respectively, 1 bit h21, 1.55 bit h21 and 2 bit h21. As we can

see, the bitrate is highest when the base repeating time is

20 min, which is only a fraction of the relaxation time t. We

will see that this observation remains true also for longer

sequences and that this simple theoretical estimates agree well

with numerical values obtained for small noise.

3.3. Quantitative estimation of transmitted information
In order to estimate the bitrate numerically we will calculate the

MI between input and output sequences. The inputs x [ X are

EGF binary sequences of length L. We have performed simu-

lations for L ¼ 8 and L ¼ 6. For each input sequence we
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performed M ¼ 1000 simulations obtaining M response vectors

y ¼ (R1, . . . ,RL) [ Y, where Ri are defined as in equation (3.1)

with the additive noise included. These simulations probe a

(continuous) output probability distribution Y. The analysis of

short sequences (L , 6) is based on truncated simulation data

obtained for L ¼ 6. In this way we gained larger statistics; for

example, for L ¼ 2 (figure 3), we have 16 000 simulations for

each of four binary input sequences. In our case the domain of

input is discrete, so MI can be expressed as

MI(X; Y) ¼
P

x[X
p(x)

Ð
y[Y p(yjx)log

p(yjx)

p(y)

� �
dy: ð3:2Þ

To calculate MI, one has to assume or determine input

sequence probabilities p(x). We proceed as follows:

(1) assume that all input sequences have equal probabilities, or

(2) assume that all group representatives have equal probabil-

ities, while the other sequences have zero probabilities, or

(3) calculate input probabilities that maximize MI.
3.4. Numerical estimation of the transmitted
information in sequences of two pulses

In figure 3 we analyse the ability of the system to resolve

binary sequences ‘00’, ‘01’, ‘10’ and ‘11’ for three base repeat-

ing times Ti ¼ 60, 50 and 40 min, for moderate noise (s ¼ 0.3,

m0 ¼ 0.03). In figure 3a we present scatter plots in the (R1, R2)-

plane showing responses to the four binary sequences with

corresponding MI values. The scatter plot for T ¼ 40 min

shows that for this time interval the system is essentially

able to transmit three input sequences, ‘00’, ‘01’ and ‘10’,

while the sequence ‘11’ produces almost the same output as

sequence ‘10’. Consequently, MI ¼ 1.51 , log2(3) � 1.58. For

T ¼ 50 min and T ¼ 60 min, the system distinguishes ‘10’

and ‘11’ sequences to a certain extent and MI values (equal,

respectively, to 1.60 and 1.73) exceed log2(3) but are still sub-

stantially lower than the upper bound MImax ¼ log2(4) ¼ 2.

We further investigate the system’s inability to transmit

four sequences by detailed analysis of responses to the

second pulse. When the amplitude of the first pulse is 0,



Table 1. Information transmitted in L ¼ 4 pulses with intervals T ¼ 60, 30, 20, 15 min. Comparison of numerical and theoretical estimates for small noise,
s ¼ 0.1 and m0 ¼ 0.03.

T
(min)

theoretical MI value numerical MI value, s 5 0.1 and m0 5 0.03

maximum and minimum
values of group
probabilities together
with the group
representativea

equal
probabilities of
input sequences

maximized
log2(K )

numerically
maximized

equal probabilities
of all group
representatives

equal
probabilities of
all input
sequences

60 log2(16) ¼ 4 log2(16) ¼ 4 3.93 3.93 3.93 ‘0001’: 0.065; ‘0110’: 0.060

30 4 – 9/8 ¼ 2.875 log2(8) ¼ 3 2.96 2.96 2.82 ‘0010’: 0.129; ‘1010’: 0.120

20 4 – 13/8 ¼ 2.375 log2(6) ¼ 2.58 2.55 2.55 2.33 ‘0100’: 0.171; ‘1001’: 0.161

15 4 – 17/8 ¼ 1.875 log2(5) ¼ 2.32 2.32 2.32 1.89 ‘1000’: 0.202; ‘0000’: 0.195
aData obtained via numerical MI maximization.
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then, regardless of Ti, the system almost perfectly dis-

tinguishes between amplitudes 0 and 1 of the second pulse

(figure 3b). The value MIR2

00,01 (given on each histogram in

figure 3b) is calculated between the inputs X ¼ f‘00’, ‘01’g
(assuming that both sequences are equiprobable) and the

output to the second pulse, R2. For each Ti, MIR2

00,01 � 0.98

(MIR2

00,01 ¼ 1 means that both inputs are perfectly distinguish-

able). In the case when the amplitude of the first pulse is 1,

the ability to distinguish between amplitudes 0 and 1 of the

second pulse is much lower (figure 3c): for T ¼ 60 min,

MIR2

10,11 ¼ 0:49; for T ¼ 50 min, MIR2

10,11 ¼ 0:22; and for T ¼
40 min, MIR2

10,11 ¼ 0:03; the nearly zero value for T ¼ 40 min

is a consequence of the fact that the system cannot respond

to two EGF pulses with a time interval of 40 min. In

figure 3d we show histograms of the marginal probability dis-

tributions of responses to the second pulse. The MIR2

�0,�1values

shown in these histograms measure the ability to distinguish

between amplitudes 0 and 1 of the second pulse when the

first pulse is unknown.

Let us notice that two-dimensional MI is greater than

the sum of unidimensional MIs, MIR1

0�,1� þMIR2

�0,�1. Here

MIR1

0�,1� ¼MIR2

00,01, because the response to the second pulse in

the case when the first pulse has amplitude 0 is identical to

the response to the first pulse—regardless of the amplitude of

the second pulse. This implies that information that can be

inferred from two pulses together is higher than information

inferred from the first and the second pulse separately (i.e.

when the interpretation of the second pulse ignores information

inferred from the first pulse). This indicates that a receiver with

memory, which can record and analyse the full response to an

EGF sequence, can infer more information than a memoryless

receiver that processes each pulse individually.

3.5. Theoretical versus numerical estimation of
information carried by pulse sequences

To estimate MI for small noise, one can express it in terms of

entropy and conditional entropy:

MI(Y; X) ¼ H(Y)�H(YjX) ¼ H(X)�H(XjY), ð3:3Þ

where H(X ) and H(Y ) are the entropies of input and output,

H(YjX ) is the conditional entropy of the output given the

input, while H(XjY ) is the conditional entropy of the input

given the output. First, we note that this formula implies
that MI is limited by the input entropy H(Y ) as well as the

output entropy H(X ). In the simplest case of T . t, all EGF

sequences are properly transmitted (transcoded) to ERK

sequences, and thus H(YjX ) ¼ H(XjY ) ¼ 0 (which means

that the knowledge of input is sufficient to deduce output

and, conversely, knowledge of output is sufficient to infer

input). Thus, for T . t we have MI(Y; X ) ¼ H(Y ) ¼ H(X ) ¼

L (where, recall, L is the length of binary input sequences).

In this case, the bitrate is equal to the base repeating frequency

F ¼ 1/T. In the case of T , t, MI(Y; X ) ¼ H(X ) can be reached

when one is confined to input sequences that can be unam-

biguously transmitted, that is, to group representatives (as

defined in figure 2).

Let us now consider the case of L ¼ 4, T ¼ 30 min. The

input sequences form eight groups: f‘0000’g, f‘0001’g,
f‘0010’, ‘0011’g, f‘0100’, ‘0110’g, f‘0101’, ‘0111’g, f‘1000’,

‘1100’g, f‘1001’, ‘1101’g and f‘1010’, ‘1110’, ‘1011’, ‘1111’g.
In each group, input sequences are indistinguishable, so

K ¼ 8. The maximum MI is log2(8) ¼ 3 and is achieved

when probabilities of all group representatives (first sequence

in each set) are equal to 1/8. The same maximal MI value is

achieved when in each group the sum of all probabilities is

equal to 1/8. In this case, one also learns 3 bits about input

as knowing the output sequence allows one to infer from

which of the eight equiprobable groups the input signal orig-

inates. Unsurprisingly, by maximizing MI numerically in the

case of small noise (s ¼ 0.1, m0 ¼ 0.03) we obtain almost

equal probabilities of each group of input sequences

(table 1, last column).

Let us notice that by assuming that all 16 input sequences

have equal probabilities, we obtain a somewhat lower value of

MI(Y; X ) ¼ H(X ) 2 H(XjY ). Now, H(X ) ¼ log2(16) ¼ 4, while

H(XjY ) ¼ (2/16)log2(1) þ (5/8)log2(2) þ (1/4)log2(4) ¼ 9/8,

which gives MI(Y, X ) ¼ 23/8 , 3. The calculations for T ¼
20 min and T ¼ 15 min are analogous, with the difference

that for T ¼ 20 min there are K ¼ 6 groups, and for T ¼
15 min there are K ¼ 5 groups. Also, in the two latter cases

the maximized MI¼ log2(K) is larger than MI calculated

under the assumption that all input sequences are equiprob-

able; moreover, the difference is larger than for T ¼ 30 min.

These theoretical values are compared with numerical esti-

mates for small noise (table 1). One can see that both the

maximized MI and the MI calculated by assuming that all

sequences are equiprobable agree well with theoretical
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estimates. Additionally, one may notice that the numerically

maximized MI perfectly agrees with the value calculated by

assuming that all group representatives have equal probabilities

and the other sequences have zero probability.

3.6. Bitrate estimation in the limit of infinitely long
sequences
To estimate the upper limit of MI for small noise for a given

base repeating time T, one has to calculate the number of

sequences of length L that can be accurately transmitted. For

T¼ 30 min, the accurately transmitted sequences are those

without ‘11’ subsequences. It is straightforward to show that

the numbers nL of such sequences follow the Fibonacci

sequence. Let n0
L and n1

L denote the number of such sequences

of length L ending in, respectively, ‘0’ and ‘1’. In the first case

the sequence can be extended by adding either ‘0’ or ‘1’ at its

end; in the second case it can be extended only by adding ‘0’.

Thus, we have n0
Lþ1 ¼ n0

L þ n1
L, and n1

Lþ1 ¼ n0
L. Next,

n0
Lþ2 ¼ n0

Lþ1 þ n1
Lþ1 ¼ nLþ1 and n1

Lþ2 ¼ n0
L þ n1

L ¼ nL, hence

nLþ2¼ nLþ1þ nL (i.e. nLþ1¼ nLþ nL21). Analogously for T¼
20 min (or any T satisfying 2 T , t , 3 T ), we may notice

that the accurately transmitted sequences are those without

both ‘11’ and ‘101’ subsequences. It is also straightforward to

show that the number of such sequences satisfies a recurrence

relation similar to the Fibonacci sequence, i.e. nLþ1¼ nL þ
nL22. Finally, for any T satisfying kT , t , (kþ 1)T, the

number of accurately transmitted sequences satisfies nLþ1 ¼

nLþ nL2k. In the limit of large L, these recurrence relations

can be solved: nL(k) ¼ ak,0 � aL
k , where ak satisfies

akþ1
k ¼ ak

k þ 1, and, for k� 10, ak,0 are constants of order 1,

i.e. a1,0 � 1.17, a2,0� 1.03, a3,0 � 0.94, a10,0� 0.74.

MI that can be transmitted in a sequence of length L is

thus MI(k, L) ¼ log2(ak,0) þ L � log2(ak), therefore the bitrate

C(k, L) ¼ (k þ 1)�MI(k, L)/L and, in the limit of L!1,

C(k, L) ¼ C(k) ¼ (k þ 1) � log2(ak). By straightforward calcu-

lation one can find that for T ¼ 30 min the bitrate is C(2) �
1.39 bit h21; for T ¼ 20 min, C(3) � 1.65; and for T ¼ 15 min,

C(4) � 1.86 bit h21. C(k) is the monotonically increasing func-

tion of k, and C(k)/log2(k)! 1 for k!1.

In figure 4a, for inter-pulse intervals T ¼ 60, 30, 20 and

15 min we compare bitrates that were predicted theoretically

with those calculated based on numerical simulations.

Despite a moderate magnitude of noise (s ¼ 0.3, m0 ¼ 0.03),

there is good agreement between theoretical low-noise pre-

diction and numerical simulations both for not maximized

MI (equal input probabilities) and maximized MI. This

suggests that the theoretical asymptotic bitrate value, C(k),

serves as a good approximation even for low and moderate

noise, s � 0.3 and m0 � 0.03.

Bitrates increase monotonically with repeating frequency

F ¼ 1/T. The maximized bitrate is higher than the bitrate cal-

culated for equal input sequence probabilities. The difference

is most significant for the smallest T ¼ 15 min, when the ratio

of sequences that can be properly transmitted to all sequences

is low. However, even for equal input probabilities the bitrate

for T ¼ 15 min is much larger than for T ¼ 60 min.

3.7. Influence of noise on bitrate
Noise can substantially decrease the amount of transmitted

information. As shown in figure 1d, noise reduces a system’s

ability to respond to the second EGF pulse, especially when
the time span between the pulses is comparable to t. In

figure 4b we show bitrate with respect to s, with additive

noise kept constant, m0 ¼ 0.03. As expected, bitrates for all con-

sidered T (60, 30, 20 and 15 min) decrease with s. Interestingly,

the ratio of the optimized bitrate for T ¼ 15 min to the bitrate

for T ¼ 60 min increases with noise, which implies that coding

using short base repeating time is less sensitive to noise. This is

because, in the optimized coding using the short repeating

times, the two (non-pseudo) pulses are less frequently separ-

ated by a 60 min interval than for the base repeating time
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T ¼ 60 min. For T ¼ 60 min, subsequences ‘10’ and ‘11’ are

equiprobable, and the latter is sensitive to noise (figure 1d).

Let us notice that even for very high noise parameter s ¼

1.0, for T ¼ 15 min, C . 1 bit h21 (i.e. C exceeds the bitrate

for T ¼ 60 min in the limit of small noise).

Small noise s ¼ 0.1 influences bitrate only for T ¼ 15 min

but more detailed analysis suggests that for T ¼ 15 min the

high bitrate for s ¼ 0.0 can be considered an artefact. We

found that in this case the system can distinguish between

sequences ‘10’ and ‘11’, because the second EGF pulse

increases the ERK activity tail. This effect is small and

becomes invisible even for small noise (s � 0.1). The analysis

shown in figure 4b is continued in electronic supplementary

material, figure S1, where we consider the base repeating

times from 30 to 80 min. For s � 0.3, bitrate increases mono-

tonically with F; only for small noise, s � 0.1, is the bitrate

for T ¼ 60 min somewhat higher than for T ¼ 50 min. This

effect is clear in the context of figure 1d, which shows that

for small noise the pathway transmits pulses separated by

60 min intervals but not by 50 min intervals.

In figure 4c we repeat the analysis shown in figure 4b, but

now analysing the effect of the additive noise, keeping s ¼

0.3. This effect is very weak up to m0 ¼ 0.1 (recall that for

m0 ¼ 0.1 the amplitude of the additive noise is equal to 10%

of the response amplitude). For m0 ¼ 0.3, the relative

reduction of bitrate is significant, and the relative reduction

again is the strongest for T ¼ 60 min. The analysis is contin-

ued in electronic supplementary material, figure S2 for the

base repeating times from 30 to 80 min and shows that,

regardless of the amplitude of additive noise, bitrate

increases monotonically with F.

In summary, the analysis shown in figure 4b,c and elec-

tronic supplementary material, figures S1 and S2 shows

that, as expected, noise reduces bitrate. Generically, bitrate

increases monotonically with F ¼ 1/T, for T between

15 min and 80 min. Moreover, this increase is steeper for

higher noise. In other words, high-frequency coding is less

sensitive to noise than low-frequency coding.
4. Discussion
Two important regulatory pathways of NF-kB and ERK were

found to transmit merely 1 bit of information about the level of

extracellular stimulation [14,16], which roughly means that

these pathways only relay information about the absence or

presence of a stimulus. Information about the stimulation

dose is increased only slightly when output is measured in

more than one time point [16,22]. These results suggest that,

in the considered pathways, information is encoded not in

the input amplitude but in the temporal profile of, respect-

ively, TNF and EGF, which are transcoded to the temporal

profiles of nuclear NF-kB or active ERK. The question about

optimal information coding can be formulated as the following

representation problem: What is the input signal coding that

allows the highest information transmission rate to be achieved

in long time? It has been investigated previously whether the

amplitude or the frequency coding can transduce more infor-

mation from receptors to transcription factors [23]. Here, we

proposed considering information coded in sequences of

EGF pulses and, for such coding, we theoretically estimated

from below the maximum transmission rate.
The considered model predicts that nearly all EGF inputs

are converted to pulses of ERK activity [4]. Relaxation oscil-

lations arise in response to constant EGF stimulation. The

oscillation period is a non-monotonic function of the EGF

level, attaining minima for the moderate stimulation. The

ratio of the ON phase to the OFF phases increases monotoni-

cally with the EGF dose; at high dose, oscillations are replaced

by constant response [4]. Analogous pulses of EGF are con-

verted to nearly digital pulses of ERK activity. Conversion of

various inputs to nearly digital ERK activity pulses may

suggest that pulses are used as symbols in intracellular com-

munication. This motivated us to quantify MI between

sequences of short EGF pulses and corresponding sequences

of ERK activity. Based on this we estimated from below the

EGF-to-ERK-channel information capacity, or simply the bit

rate at which information can be transmitted.

We showed that high repeating frequency coding allows

to substantially exceed bandwidth limit equal 1 bit/t,

where, recall, t � 1 h is the threshold (or relaxation) time.

Specifically, we considered sequences of EGF pulses of ‘1’

or ‘0’ amplitude separated by time intervals T that are mul-

tiples of hour/n, and showed that, in the case when

intervals between pulses of amplitude ‘1’ (true pulses) are

not smaller than 1 h, C � 1.39 bit h21 for n ¼ 2, and C �
1.86 bit h21 for n ¼ 4. Because ERK activity pulses are

nearly digital, the considered encoding is not very sensitive

to noise. Moreover, the high repeating frequency coding

(n . 1) is less sensitive to noise than coding with n ¼ 1. The

high repeating frequency coding is equivalent to coding by

pulse/spike intervals, proposed many years ago for neural

information processing [24]. Neuronal spikes are separated

by intervals of at least an order of magnitude longer than

spike duration [25]. In this case, information is more effi-

ciently encoded by time intervals between subsequent ‘1’

(that are not shorter than t and resolved with accuracy t/n)

than by sequences of ‘0’ and ‘1’ separated by t.

The bitrate is inversely proportional to threshold time,

which for our model is t ¼ 51.5 min. It should be noted

that the value of t may be cell line dependent. According

to the model, t decreases with the strength of the negative

feedback from ERK to SOS (figure 5). The abrupt decrease

of the t from 40 min to 25 min is observed when the strength

of the feedback is close to one-quarter of its nominal value. At

this value, ERKpp does not exhibit oscillations in response to

the constant EGF stimulation (figure 5). Therefore, the model

suggests that there is a trade-off between short relaxation
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time and the ability of the system to translate constant EGF

stimulation into series of pulses. In rat PC-12 cells, Ryu

et al. [9] observed pronounced oscillations in response to

3 min long pulses with a period of 23 min, and also smaller

oscillations (that are not arising in our model) in response

to the higher frequency pulses. As expected from our analy-

sis, these cells do not exhibit oscillations in response to a

constant EGF stimulation. Responses exhibited by the PC-12

cell line can be reproduced by the considered model by

removing the negative feedback from ERK to SOS and the

positive feedback between SOS and RAS. This may suggest

that signalling at the level of SOS is different in the PC-12

cell line from that in the human MCF-10A epithelial cells

studied by us [4].

Because the negative feedback loop emanating from ERK

targets SOS, a protein at the very beginning of the MAPK cas-

cade, ERK activity oscillations are associated with oscillations

of all components between SOS and MEK. Thus, the same

or a higher amount of information is reached by pathway com-

ponents preceding ERK. These proteins control different

cellular functions. For example RAF-1 interacts with ROKa,

which is implicated in the reorganization of cytoskeletal fila-

ments [26] and with MST2/LATS pathway controlling

apoptosis [27].

Characteristic spatio-temporal profiles of cytokines such as

TNF and EGF have not been fully characterized. There is how-

ever growing evidence that these profiles are bursty and

spatially localized rather than slowly fluctuating and spatially

uniform. In the context of NF-kB, recently Bagnall et al. [28]

showed that TNF propagation is of short range and NF-kB sig-

nalling is limited to distances of a few cell diameters from the

neighbouring tissue-resident macrophages. Capuani et al. [29]

demonstrated that at physiological EGF concentrations (which

do not exceed 1 ng ml21) only a fraction of EGF receptors are

activated, which suggests that EGF diffusion is of short range,

with EGF being removed from the extracellular space by the

receptors. This allows for the existence of spatially localized

ERK activity waves that may arise spontaneously [30] or in

response to wounding [31], and coordinate motility of cells

in the tissue. Hiratsuka et al. [31] observed in vivo ERK acti-

vation waves propagating from the wound edge. Under

steady-state conditions, the epidermis occasionally revealed

bursts of ERK activation patterns where ERK activation is pro-

pagated from cell to cell in a radial manner. ERK activity

waves induce collective cell migration in the opposite direction

[32], promoting wound healing or sealing a hole in the
epithelium after individual cell apoptosis. These waves,

although not yet fully characterized, are dependent on EGF

receptor ligands because inhibition of EGF receptors comple-

tely blocks ERK activity propagation [27], which in turn

suppresses collective cell migration [32]. Propagation of ERK

activity waves requires timely digital ERK activation in sub-

sequent layers (or lines in epithelium) of cells. To maintain

directionality cells behind the wavefront have to remain inhib-

ited until the signal propagates to the next layer. The ability to

transmit spontaneous signals requires a single cell to accu-

rately respond to random sequences of EGF pulses, which is

equivalent to transmitting information at sufficiently high bit

rates.

Regulatory pathways can be perceived as noisy infor-

mation-transmitting channels, but can also be considered as

decision-making modules that employ feedbacks and other

nonlinear regulatory elements to convert input into one of

several predefined outputs. MAPK/ERK and NF-kB path-

ways convert both constant and pulsating cytokine

stimulation into pulses of ERK or NF-kB activity. Here, we

consider an optimal representation problem and investigate

which EGF time profiles can transmit the maximum

amount of information to ERK. Motivated by the growing

evidence that physiological EGF stimulation is short ranged

and bursty, we focus on sequences of short EGF pulses. We

found that information can be transmitted with the rate

exceeding the classical bandwidth limit of about 1 bit h21 in

the case when inter-pulse intervals are used to code infor-

mation. The timely activation of ERK in neighbouring cells

allows for propagation of waves that coordinate collective

cell migration during wound healing.
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