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Abstract The problem of optimal design of structures
with active support is analyzed in the paper. The sensitiv-
ity expressions with respect to the generalized force and the
position of actuator are derived by the adjoint structure ap-
proach. Next, the optimality conditions are formulated by
means of an introduced Lagrangian function. The problem
of introduction of a new actuator is also considered and
the condition of modification is expressed by means of the
topological derivative. The obtained sensitivity formula, op-
timality conditions and modification conditions are applied
in the optimization algorithm with respect to the number,
positions and generalized forces of the actuators. Numerical
examples of optimal control of beams illustrate the proced-
ure proposed in the paper.

Keywords Smart structures · Actuators · Adjoint method ·
Optimal active support

1 Introduction

The application of so-called smart structures has
attracted a lot of interest in recent years. These structures
contain actuators and sensors as constitutive elements. The
actuators play the role of active support, and they can gener-
ate suitable forces or moments in order to adapt the structure
to different external loads, including varying loads. Now, the
optimal design problem, besides the specification of cross-
sectional parameters, material parameters, configuration or
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shape parameters and topology of structure, can be formu-
lated in a broader sense, including number, positioning and
control of these actuators.

The present paper provides an extension of previous op-
timal design formulations for beam structures, including
position and stiffness of supports (cf. Mróz and Rozvany
1975; Mróz 1980; Mróz and Lekszycki 1981; Garstecki and
Mróz 1987; Bojczuk and Mróz 1998; Mróz and Bojczuk
2003). Considering the example of a specific beam struc-
ture, the problem of optimal active support using the adjoint
method is analyzed. Two types of actuators are taken into ac-
count, namely force actuators and moment actuators. Force
actuators usually contain hydraulic or pneumatic elements,
while piezoelectric membranes can execute moment actions.
The optimization problem is formulated as the minimization
of displacement or stress functional with constraints set on
the total generalized force of the actuators and possibly on
the orientation of the generalized forces generated by the
actuators. It can also be presented as the minimization of
the global force of the actuators with the constraint set on
the displacement or stress functional. In order to solve these
problems an algorithm composed of two steps is proposed.
In the first step, using sensitivity expressions and optimality
conditions, the standard gradient optimization with respect
to the positions and forces of actuators is performed. In the
second step, the conditions of topology modification are ap-
plied in order to introduce new actuators into the structure.

In numerical examples of optimal design and optimal
control of beams, attention is focussed on the applicability
of the proposed approach. At first, assuming the potential
energy as the measure of global stiffness, the maximization
of the global stiffness is analyzed as an example of the self-
adjoint problem. Next, as an example of the non-self-adjoint
problem, the minimization of the maximal deflection, meas-
ured by an appropriate functional, is considered. In both
cases the problem of movable force actuators is studied.
Here the relation between the optimal position of the actu-
ator and position of the external load for different maximal
actuator force is determined and analyzed. Moreover, it is
shown that, for single-force loading, one actuator alone is
sufficient and usually its position does not coincide with the
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position of the concentrated loading. The problem of active
control of forces generated by actuators at fixed positions is
also discussed here. The optimal actions and switching con-
ditions of actuators are obtained for a moving load, both in
the case of unilateral (with fixed force orientation) and bilat-
eral actuators (with varying orientations). Also, a problem of
active control of actuators placed at fixed positions with re-
spect to global force minimization is considered. Finally, the
application of moment actuators is analyzed in the paper.

2 Optimal design of active support with force actuators

The analysis is focussed here on optimal design of beam
structures under static loading with force actuators. The
general optimization problem, with conditions imposed on
global resultant force of actuators, can be presented as fol-
lows

min
pi ,si

G subject to
n∑

i=1

pi − P0 ≤ 0 , (1)

where pi , si(i = 1, 2, . . . , n) are, respectively, the force and
position of i-th actuator, n is the number of actuators, P0
denotes the global maximal actuator force, and G is an arbi-
trary displacement or stress functional. Here G is assumed to
be the functional of generalized displacements in the form of

G =
l∫

0

F(w)dx , (2)

where w denotes the generalized displacement and, in the
case of a beam, can be treated as the transverse displace-
ment. Moreover, l denotes the length of the beam. In order
to derive sensitivity expressions let us introduce an adjoint
structure of the same geometry and boundary conditions as
the primary structure, but subjected to a distributed load
qa = ∂F

/
∂w (Fig. 1), where superscript a denotes the dis-

placement and stress state, and loading of an adjoint struc-
ture. Now, the variation of the functional G can be expressed
in the general form as follows

δG =
l∫

0

∂F

∂w
δwdx =

l∫

0

qaδwdx . (3)

Consider first the sensitivity of the functional G with re-
spect to variation of the actuators forces. The virtual work

Fig. 1 Sensitivity with respect to forces and positions of force actuators: a primary structure; b adjoint structure

equation for primary and adjoint structures can be presented
in the form

l∫

0

qaδwdx =
l∫

0

Maδκ dx , (4)

where Ma is the bending moment and κ denotes the curva-
ture. Similarly, taking into account that

l∫

0

qwa dx −
n∑

i=1

piw
a
i =

l∫

0

Mκa dx , (5)

the complementary virtual work equation can be expressed
as follows

−
n∑

i=1

δpiw
a
i =

l∫

0

δMκa dx , (6)

where wa
i is the deflection at the i-th actuator location.

Moreover, the following relation holds

l∫

0

δMκa dx =
l∫

0

δ (κEI) κa dx =
l∫

0

EIκaδκ dx

=
l∫

0

Maδκ dx , (7)

where E is the Young’s modulus and I denotes the moment
of inertia. Using (4), (6) and (7) the variation (3) of G can be
written in the form

δG = −
n∑

i=1

δpiw
a
i . (8)

Consider now the sensitivity with respect to translations
δsi of the force actuators. The virtual work equation is ex-
pressed here, as previously, by (4). Next, taking into account
that the deflection of the adjoint structure at the point cor-
responding to the new position of the i-th actuator can be
expressed as follows

wa (si + δsi) = wa
i + θa

i δsi + . . . , (9)

where θa
i is the adjoint deflection slope at the i-th actuator

point, the complementary virtual work equation becomes
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Fig. 2 Interpretation of the optimality criteria for the self-adjoint optimization problem: a the case of nonactive constraint imposed on the global
force of the actuators; b the case with the active constraint

−
n∑

i=1

piθ
a
i δsi =

l∫

0

δMκa dx . (10)

Finally, using (4), (7) and (10) in (3), the sensitivity of G
with respect to translations of the actuators is

δG = −
n∑

i=1

piθ
a
i δsi . (11)

Using the Lagrangian

G∗ = G +λ

(
n∑

i=1

pi − P0

)
, (12)

where λ (λ ≥ 0) is the Lagrange multiplier and taking into
account the sensitivity expressions (8) and (11), we obtain
optimality conditions in the form

∂G∗

∂pi
= −wa

i +λ = 0 , i = 1, 2, . . . , n ,

∂G∗

∂si
= −piθ

a
i = 0 , i = 1, 2, . . . , n ,

λ

(
n∑

i=1
pi − P0

)
= 0 , λ ≥ 0 . (13)

There is a simple geometric interpretation of the optimal-

ity criteria (13). When
n∑

i=1
pi < P0, then λ = 0 and the op-

timal actuator force and location correspond to the con-
ditions wa

i = 0,
(
wa

i

)′ = θa
i = 0. Thus the vanishing de-

flection and its slope specify the optimal action. When

constraint
n∑

i=1
pi = P0 occurs, then λ ≥ 0 and conditions

wa
i = λ, θa

i = 0 specify the optimal location.
In the case of the self-adjoint optimization problem, the

adjoint system coincides with the primary system. Then, for
the nonactive constraint, the deflection and slope vanish at
the actuator force location. When the constraint is active i.e.

n∑
i=1

pi = P0, we have wi = λ, θi = 0, Fig. 2.

Moreover, applying the topological derivative, the con-
dition of introduction of a new (n + 1)-th actuator can be
expressed as follows

∂G∗

∂pn+1

∣∣∣∣
pn+1=0

< 0 , or wa
n+1 > λ , (14)

where wa
n+1 denotes the deflection at the point where a new

actuator will be introduced.

3 An alternative formulation of the problem of active
support design

Now, instead of (1), the optimization can be presented as
follows

min
pi ,si

H subject to G − G0 ≤ 0 , where H =
n∑

i=1

|pi | (15)

where the notation is the same as in Sect. 2.
Here, using the Lagrangian

H∗ = H +λ (G − G0) , (16)

where λ is the Lagrange multiplier and taking into account
the sensitivity relations (8), (11), we obtain the optimality
conditions in the form

∂H∗

∂pi
= sgn(pi)−λwa

i = 0 , i = 1, 2, . . . , n ,

∂H∗

∂si
= −λpiθ

a
i = 0 , i = 1, 2, . . . , n ,

λ (G − G0) = 0 . (17)

Moreover, applying the topological derivative, the con-
dition of introduction of a new (n + 1)-th actuator can be
expressed as follows

∂H∗

∂pn+1

∣∣∣∣
pn+1=0

< 0 , or wa
n+1 >

1

λ
sgn(pi) , (18)

where wa
n+1 denotes deflection at the point where a new ac-

tuator will be introduced.

4 Numerical examples: application of force actuators

Let us consider a beam of length l simply supported at the
ends. The beam is loaded by a concentrated force Q mov-
ing along the beam. Its variable position is specified by the
distance a measured from the left end of the beam.

4.1 Optimal design of moveable actuators for global
stiffness maximization

First, we assume that one moveable actuator is used and its
position is determined by the distance s, measured from the
left end of the beam. Now, the problem of the global stiffness
maximization is of the form
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Fig. 3 The problem of the global stiffness maximization for different values of maximal force of the actuator: a optimal position of the actuator
as a function of load position; b the relative strain energy variation for optimal position of actuator

min
p,s

U subject to p− P0 ≤ 0 , (19)

where U is the strain energy. Using the proposed approach,
the relation between the nondimensional optimal position of
the actuator (s/l) and the nondimensional position of the ex-
ternal load (a/l) is obtained. Usually the actuator position
does not coincide with the position of the force. The results
are shown in Fig. 3a. Here the dashed line, the continuous
line and the dotted line correspond to following maximal
forces of the actuator: P0 = Q, P0 = 0.5Q and P0 = 0.1Q.
In each case, and for an arbitrary position of load, the maxi-
mal admissible force of actuator is utilized.

In order to compare values of the strain energy for the
problems analyzed, the relative strain energy Ur correspond-
ing to the unit stiffness (EI = 1 N/m2), unit length (l = 1 m)
and unit external load (Q = 1 N), is introduced. The rela-
tions between the nondimensional position of the external
load (a/l) and the relative strain energy (Ur) are shown in
Fig. 3b. Here, the continuous and dotted lines correspond to
the following maximal forces of the actuator: P0 = 0.5Q and
P0 = 0.1Q. Moreover, the dot-and-dash line corresponds to
the beam without actuators, and the line for the case P0 = Q
covers the horizontal axis.

Next, let us consider the problem of introduction of
a second actuator. Here, the condition (14) takes the form
w2 > w1, where w1 denotes the deflection at the optimal
position of the first actuator, while w2 is the deflection at the
point at which a new actuator could be added. However, this
condition is not satisfied at any point. So, for the single-force
loading, only one actuator is sufficient.

4.2 Optimal control of two fixed unilateral actuators
for global stiffness maximization

We consider at first optimal control of two actuators, non-
symmetrically placed at fixed positions s1 = 0.25l and
s2 = 0.5l, which can only generate forces of fixed orienta-
tion. Now, the problem of the global stiffness maximization
can be presented in the form

min
p1,p2

U subject to p1 + p2 − P0 ≤ 0 , p1 ≥ 0 , p2 ≥ 0 .

(20)

Here, two cases of the global, maximal force of two ac-
tuators are analyzed, namely P0 = 0.5Q and P0 = Q. The
results are shown in nondimensional coordinates (a/l) and
(pi/Q), respectively, in Figs. 4a and 4b. The continuous line
presents the optimal control of the first actuator, while the
dashed line corresponds to the optimal control of the sec-
ond actuator. In the first case the maximal admissible force is
used for 0.12 ≤ (a/l) ≤ 0.82, while in the second case only
for 0.25 ≤ (a/l) ≤ 0.50.

Next, the problem (20) of optimal control of two actu-
ators, symmetrically placed at fixed positions s1 = 0.3l and
s2 = 0.7l, is considered. The solutions for two cases, namely
P0 = 0.5Q and P0 = Q, are shown, respectively in Fig. 5a
and 5b. The maximal admissible force is used for 0.13 ≤
(a/l) ≤ 0.87 in the first case, and for 0.3 ≤ (a/l) ≤ 0.7 in the
second case.

The variation of the relative strain energy Ur in function
of the nondimensional position of the external load (a/l),
respectively for nonsymmetric (s1 = 0.25l, s2 = 0.5l) and
symmetric (s1 = 0.3l, s2 = 0.7l) positions of the actuators, is
presented in Fig. 6a and 6b. Here, the continuous and dotted
lines correspond to the cases P0 = 0.5Q and P0 = Q.

4.3 Optimal control of two fixed bilateral actuators
for global stiffness maximization

We consider optimal control of two actuators, placed at fixed
positions, which can generate forces of arbitrary orientation.
In this case, the problem of the global stiffness maximization
can be presented in the form

min
p1,p2

U subject to |p1|+ |p2|− P0 ≤ 0 . (21)

As previously, the case of nonsymmetric location of ac-
tuators at positions s1 = 0.25l and s2 = 0.5l, and the case
of symmetric location of actuators at points s1 = 0.3l and
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Fig. 4 Optimal control of two unilateral, nonsymmetrically placed actuators for problem of stiffness maximization: a the case P0 = 0.5Q; b the
case P0 = Q

Fig. 5 Optimal control of two unilateral, symmetrically placed actuators for problem of stiffness maximization: a the case P0 = 0.5Q; b the
case P0 = Q

s2 = 0.7l, are examined for two values of the maximal force,
namely P0 = 0.5Q and P0 = Q. The optimal control is pre-
sented in Figs. 7 and 8. In some intervals the actuator forces
are negative; this ensures better control than in the case
studied in Sect. 4.2.

The variation of the relative strain energy Ur dependent
on the nondimensional position of the external load (a/l),
respectively for nonsymmetric (s1 = 0.25l, s2 = 0.5l) and
symmetric (s1 = 0.3l, s2 = 0.7l) positions of the actuators, is
presented in Fig. 9a and 9b. Here, the continuous and dotted
lines correspond to the cases P0 = 0.5Q and P0 = Q.

4.4 Optimal design and optimal control of actuators
with respect to minimization of the maximal deflection

Assume now that, as in Sect. 4.1, one moveable actuator is
used and its position is determined by the distance s, meas-
ured from the left end of the beam. Now, the problem of the
minimization of the maximal deflection is of the form

min
p,s

G subject to p− P0 ≤ 0 , where G =
l∫

0

[
w(x)

w0

]n

dx .

(22)

Here, the value n = 20 is assumed and w0 denotes the scal-
ing factor. It is chosen as the deflection at the center of the
beam loaded only by the force Q also applied in the beam
center.

The problem (22) is an example of a non-self-adjoint
problem. Now, the adjoint structure is subjected to the dis-
tributed load

qa(x) = ∂F
/
∂w = n

w0
(w/w0)

n−1 . (23)

The relations between the nondimensional optimal position
of the actuator (s/l) and nondimensional position of the ex-
ternal load (a/l) are shown in Fig. 10a. Here the dashed,
continuous and dotted lines correspond to the following
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Fig. 6 The relative strain energy variation for problem of optimal control of two unilateral actuators: a the case of actuators placed at positions
s1 = 0.25l, s2 = 0.5l; b the case of actuators placed at positions s1 = 0.3l, s2 = 0.7l

Fig. 7 Optimal control of two bilateral, nonsymmetrically placed actuators for problem of stiffness maximization: a the case P0 = 0.5Q; b the
case P0 = Q

Fig. 8 Optimal control of two bilateral symmetrically placed actuators for problem of stiffness maximization: a the case P0 = 0.5Q; b the case
P0 = Q

maximal forces of the actuator: P0 = Q, P0 = 0.5Q and
P0 = 0.1Q.

Moreover, the variation of the displacement functional
value (G) with respect to the nondimensional position of the

external load (a/l) is shown in Fig. 10b. Here, the dot-and-
dash curve is plotted for the beam without the actuator, the
dotted curve corresponds to the case P0 = 0.1Q, while the
respective curve for the case P0 = Q coincides with the ho-
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rizontal axis. In the case P0 = 0.5Q, the displacement func-
tional takes very small values, so the respective response
curve lies close to the horizontal axis. Here, the maximal
value of the displacement functional determined at the point
a/l = 0.5 equals G = 0.157×10−6. However, the shapes of
the curves are similar to those of the respective curves for the
problem of the stiffness maximization (cf. Fig. 3b).

As the second problem, analogously as in Sect. 4.2, we
consider optimal control of two unilateral actuators placed at
fixed positions s1 = 0.25l and s2 = 0.5l. The results obtained
in the cases when the global, maximal force of two actua-
tors equals P0 = 0.5Q and P0 = Q, are shown respectively
in Figs. 11a and 11b. Here, the continuous line corresponds
to the first actuator, while the dashed line corresponds to the
second actuator.

4.5 Optimal control of two fixed actuators with respect
to global force minimization

Consider now the optimal control of two actuators, nonsym-
metrically placed at fixed positions s1 = 0.25l and s2 = 0.5l.

Fig. 9 The relative strain energy variation for problem of optimal control of two bilateral actuators: a the case of actuators placed at positions
s1 = 0.25l, s2 = 0.5l; b the case of actuators placed at positions s1 = 0.3l, s2 = 0.7l

Fig. 10 The problem of minimization of maximal deflection for different values of maximal force of the actuator: a optimal position of actuator
dependent on load position; b variation of the displacement functional value for optimal position of actuator

Now, the problem (15) of the global force minimization can
be presented in the form

min
p1,p2

(|p1|+ |p2|) subject to U −U0 ≤ 0 , (24)

where U0 is the upper bound on the strain energy U .
Let us denote by Umax

0 the maximal value of the strain
energy, which corresponds to the case when the moveable
force Q is applied at the beam center. We assume two values
of U0, namely U0 = 0.5Umax

0 and U0 = 0.1Umax
0 . The op-

timal nondimensional actuator forces (pi/Q) as a function
of the nondimensional position of the external load (a/l) for
two cases of U0 are shown respectively in Figs. 12a and 12b.
Here, the continuous line presents the optimal control of the
first actuator, while the dashed curve corresponds to the op-
timal control of the second actuator.

In the case of the optimal control presented in Sects. 4.1,
4.2, 4.3 and 4.4, both actuators apply varying forces in
a continuous way, even when the objective function (global
strain energy or maximal displacement) is relatively small.
However, in the case considered here, the actuator(s) are
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Fig. 11 Optimal control of two unilateral actuators for problem of minimization of maximal deflection: a the case P0 = 0.5Q; b the case
P0 = Q

Fig. 12 Optimal control of two actuators for problem of minimization of their global force: a the case U0 = 0.5Umax
0 ; b the case U0 = 0.1Umax

0

switched on only when the strain energy attains its up-
per limit. So, when U0 = 0.5Umax

0 , they perform action for
0.22 ≤ (a/l) ≤ 0.78, and when U0 = 0.1Umax

0 they act for
0.08 ≤ (a/l) ≤ 0.93. In fact, the variation of actuator force
results from the constraint U = U0 in (24). It seems that this
second way of optimal control is more efficient.

5 Optimal design of active support with moment
actuators

In this section we shall discuss the optimal design of beam
structures with moment actuators. The general optimization

Fig. 13 Sensitivity with respect to moments and positions of the actuators: a primary structure; b adjoint structure

problem, with the condition imposed on the global resultant
moment of actuators, can be presented analogously to (1),
namely

min
mi ,si

G subject to
n∑

i=1

mi − M0 ≤ 0 , (25)

where mi (i = 1, 2, . . . , n) is the moment of the i-th mo-
ment actuator and M0 denotes the global maximal moment
of these actuators.

In order to derive sensitivity expressions let us intro-
duce, analogously to Sect. 2, an adjoint structure of the same
geometry and boundary conditions as the primary structure,
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and subjected to a generalized load qa = ∂F/∂w (Fig. 13).
Now, as previously, the variation of the functional G is ex-
pressed by (3).

At first, consider the sensitivity of the functional G with
respect to the variation of the actuators moments. The vir-
tual work equation for the primary and adjoint structures is
presented by (4). Moreover, we can write for these structures

l∫

0

qwa dx −
n∑

i=1

miθ
a
i =

l∫

0

Mκa dx . (26)

So, the complementary virtual work equation takes the form

−
n∑

i=1

δmiθ
a
i =

l∫

0

δMκa dx , (27)

where, as previously, θa
i denotes the deflection slope of the

adjoint structure at the i-th actuator position. Using (4), (7)
and (27) the variation (3) of G can be written in this case as
follows

δG = −
n∑

i=1

δmiθ
a
i . (28)

Consider now the sensitivity with respect to translations δsi
of the moment actuators. The virtual work equation is ex-
pressed here, as previously, by (4). Next, for the modified
primary structure and for the adjoint structure, we have

l∫

0

qwa dx −
n∑

i=1

miθ
a (si + δsi) =

l∫

0

(M + δM) κa dx .

(29)

The deflection slope of the adjoint structure at the point cor-
responding to the new position of the i-th actuator, can be
expressed in the form

θa (si + δsi) = θa
i +κ

a(−)
i δsi + . . . , (30)

or in the form

θa (si + δsi) = θa
i +κ

a(+)
i δsi + . . . , (31)

where κ
a(−)
i , κ

a(+)
i are the curvatures at this point, respec-

tively, from the left and right hand sides. So, here the curva-
ture discontinuity may appear and this effect can be caused
by action of the concentrated moment in the adjoint struc-
ture. For example it takes place for the strain energy func-
tional U , where the adjoint structure is identical to that for
the primary structure. In order to take into account this effect
and avoid uncertainty in the deflection slope, the concen-
trated moment is presented as the couple of forces, fi (cf.
Mróz 1980). Then mi = fi ×2ai , where 2ai denotes the dis-
tance between the forces fi and it is assumed that ai is

Fig. 14 The concentrated moment, mi , as the couple of the forces, fi ,
and translation, δsi

a small quantity (Fig. 14). Now (26), (29) can be rewritten in
the form

l∫

0

qwa dx −
n∑

i=1

[
fiw

a (si +ai)− fiw
a (si −ai)

]

=
l∫

0

Mκa dx , (32)

and

l∫

0

qwa dx −
n∑

i=1

[
fiw

a (si + δsi +ai)

− fiw
a (si + δsi −ai)

] =
l∫

0

(M + δM) κa dx . (33)

Using, for the displacements from (32) and (33), the
second-order Taylor series expansion at the point x = si , we
have

wa (si −ai) = wa
i − θa

i ai + 1

2
κ

a(−)
i a2

i + . . . ,

wa (si +ai) = wa
i + θa

i ai + 1

2
κ

a(+)
i a2

i + . . . ,

wa (si + δsi −ai) = wa
i − θa

i (ai − δsi)

+ 1

2
κ

a(−)
i (ai − δsi)

2 + . . . ,

wa (si + δsi +ai) = wa
i + θa

i (ai + δsi)

+ 1

2
κ

a(+)
i (ai + δsi)

2 + . . . . (34)

Subtracting (33) and (32) and taking into account (34), we
get

−
n∑

i=1

[
fiai

(
κ

a(−)
i +κ

a(+)
i

)
δsi

+1

2
fi

(
κ

a(+)
i −κ

a(−)
i

)
(δsi)

2
]

=
l∫

0

δMκa dx . (35)

Moreover, taking into account that fiai = 1
2 mi and neglect-

ing small quantities of higher order, the complementary vir-
tual work equation (35) can be rewritten as follows
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Fig. 15 Interpretation of the optimality criteria for the self-adjoint optimization problem: a the case of the nonactive constraint imposed on the
global moment of the actuators; b the case with the active constraint

−1

2

n∑

i=1

mi

(
κ

a(−)
i +κ

a(+)
i

)
δsi =

l∫

0

δMκa dx . (36)

Finally, using (4), (7) and (36) in (3), the sensitivity of G
with respect to translations of the actuators is

δG = −1

2

n∑

i=1

mi

(
κ

a(−)
i +κ

a(+)
i

)
δsi . (37)

Now, using the Lagrangian

G∗ = G +λ

(
n∑

i=1

mi − M0

)
, (38)

where λ (λ ≥ 0) is the Lagrange multiplier and taking into
the account sensitivity relations (28) and (37), we obtain the
optimality conditions in the form

∂G∗

∂mi
= −θa

i +λ = 0 , i = 1, 2, . . . , n ,

∂G∗

∂si
= −1

2
mi

(
κ

a(−)
i +κ

a(+)
i

)
= 0 , i = 1, 2, . . . , n ,

λ

(
n∑

i=1
mi − M0

)
= 0 , λ ≥ 0 .

(39)

Here again, we have a simple geometric interpretation of

the optimality criteria (39). When
n∑

i=1
mi < M0, then λ = 0

and the optimal actuator moment and location correspond to
the conditions

(
wa

i

)′ = θa
i = 0, κ

a(−)
i +κ

a(+)
i = 0. Thus the

vanishing deflection slope and average curvature specify the

optimal action. When constraint
n∑

i=1
mi = M0 occurs, then

λ ≥ 0 and conditions θa
i = λ, κ

a(−)
i +κ

a(+)
i = 0 specify the

optimal location.
In the case of the self-adjoint optimization problem, the

adjoint system coincides with the primary system. Then,
for the nonactive constraint, the deflection slope and aver-
age curvature vanish at the actuator force location. When

the constraint is active i.e.
n∑

i=1
mi = M0, we have θi = λ,

κ
(−)
i +κ

(+)
i = 0, Fig. 15.

Moreover, applying the topological derivative, the con-
dition for introduction of a new (n +1)-th moment actuator

can be expressed as follows

∂G∗

∂mn+1

∣∣∣∣
mn+1=0

< 0 , or θa
n+1 > λ , (40)

where θa
n+1 denotes the deflection slope at the point where

a new actuator will be introduced.

6 Numerical examples: application of moment
actuators

Let us consider a beam of length l simply supported at the
ends. The beam is loaded by the single moving force Q,
whose variable position is specified by distance a measured
from the left end of the beam.

6.1 Optimal design of moveable moment actuator for global
stiffness maximization

Assume that one moveable moment actuator is used and its
position is determined by the distance s, measured from the
left end of the beam. The problem of the global stiffness
maximization is of the form

min
m,s

U subject to |m|− M0 ≤ 0 , (41)

where U is the strain energy. Using the proposed approach,
the optimal position and optimal moment of the actuator as a
function of the external load position is obtained. The results
are shown respectively in Figs. 16a and 16b. The actuator
position does not coincide with the force position. Moreover,
when M0 ≥ 0.3Ql, the condition imposed on the global mo-
ment of the actuator is not active.

In the second case we assume that the maximal moment
of actuator is M0 = 0.1Ql. The diagrams of the optimal pos-
ition and optimal moment of actuator as a function of the
external load position are presented respectively in Figs. 17a
and 17b. Here, the moment actuator lies closer to the beam
ends than previously, and the value of moment is truncated
by M0.

6.2 Optimal design of two actuators for global stiffness
maximization

Assume now that two moveable moment actuators are used
and their positions are determined by the distances s1 and s2
measured from the left end of the beam. Now, the problem
of the global stiffness maximization is of the form

min
m1,m2,s1,s2

U subject to |m1|+ |m2|− M0 ≤ 0 , (42)
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Fig. 16 Optimization of moment actuator: a optimal position of the actuator as a function of the load position; b optimal moment of the actuator
as a function of load position

Fig. 17 Optimization of the moment actuator for M0 = 0.1Ql: a optimal position of the actuator as a function of load position; b optimal
moment of the actuator as a function of load position

where U is the strain energy. The optimal positions and
optimal moments of the actuators as a function of the ex-
ternal load position are shown respectively in Figs. 18a

Fig. 18 Optimization of two moment actuators: a optimal positions of the actuators as a function of load position; b optimal moments of the
actuators as a function of load position

and 18b. Here, the continuous line corresponds to the
first actuator, while the dashed line corresponds to the
second actuator. When M0 ≥ 0.35Ql, the condition im-
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posed on the global moment of the actuators is not ac-
tive.

In order to compare values of the strain energy for dif-
ferent problems with moment actuators, the relative strain
energy Ur is used (see Sect. 4.1). The relations between
the nondimensional position of the external load (a/l) and
the relative strain energy (Ur) are shown in Fig. 19. Here,
the dotted line corresponds to the problem (42) of opti-
mal control of two actuators, while the continuous line de-
scribes optimal action of only one actuator working with-
out any constraint on its maximal moment. Moreover, the
dot-and-dash line corresponds to the beam without actua-
tors.

Fig. 19 Comparison of variations of the relative strain energy for
different problems with moment actuators

7 Conclusions

The approach presented provides a useful tool for the deter-
mination of the number, positions and generalized forces of
actuators in the case of problems with fixed load and also for
control of these actions in the case of problems with varying
load. Application of the active support changes essentially
the structure response and enables significant increase of
structure stiffness or decrease of maximal deflection. The
method can be extended for other problems of active control
and optimal design, such as reduction of stresses, or control
of vibrations.
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