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Abstract  
This paper present elasto-plastic topology optimization with reliability constraint. It recalls fundamental concepts 

from first order reliability analysis and introduces an algorithm for topology optimization of elasto-plastic 

structures. The presented numerical example shows dependence of the volume fraction on probability of failure. 
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1. Introduction 

An important aspect of any optimization process is robustness to variability of structural parameters, either 

material or loading dependent. The more the structure becomes optimal, the lower the resistance to its parameter 

changes. One of the possible ways to tackle this issue is to add to the optimization formulation an additional 

constraint for the probability of failure. The designer will then assure that his or her optimized structure does not 

go below the assumed safety level. Since the probability of failure of engineering structures must be small 

(approximately 0.0001), it is possible to obtain a relatively fast estimation of reliability by using first or second 

order methods i.e. First Order Reliability Method (FORM) or Second Order Reliability Method (SORM). Most 

often, several iterations (finite element solutions) are enough to obtain convergence. Recent advances in 

reliability based topology has been presented in paper by Kharmanda et al. 2002 [1], Kim et al. 2009 [2], 

Kharmanda et al. 2014 [3], Kang and Liu 2018 [4], Chun et al. 2019 [5]. The authors of this paper have also 

several papers in this topic for more than a decade (Logo et al. 2009 [8], Movahedi Rad et al. 2009 [9], Logo et 

al. 2011 [10]).  

In the present paper iterative topology optimization algorithm together with elasto-plastic material formulation 

and reliability approach will be shortly described. 

Analysis of elasto-plastic structure will be presented on numerical example. All aspect of numerical analysis, 

finite element formulation, topology optimization as well as reliability analysis library are performed by our own 

software implemented in MATLAB and C++. 

1. Theoretical background on reliability analysis 

Topological optimization allows to minimize the mass of the structure while maintaining certain mechanical 

properties. By minimizing the mass, we also reduce the durability of the structure, in terms of random events. In 

order to maintain control over the reliability in the optimization process, it is necessary to assess also the safety 

level, together with mechanical properties. These can be: loads, material parameters or shape parameters. Vector 

of random parameters 𝐱 belongs to probabilistic space Ω (fig.1). Some realizations of random variables  �̅� =

{𝑥1 … 𝑥𝑁} may lead to a topology that does not meet the constraints Such structures are in a state of failure. 

Constraints therefore divide the probabilistic space into two domains: the safe domain Ω𝑠 and the failure domain 

Ω𝑓 (fig.2). To check in which state given random realization is, limit state function 𝑔(𝐱) is introduced. Similarly 

to the constraints in deterministic optimization there is a convention that a negative value of function 𝑔(𝐱) 

means the 𝐱 is in failure domain while positive value means safe domain of 𝐱. 
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𝑔(𝐱 ∈ Ω𝑠) > 0 safe domain 

𝑔(𝐱 ∈ Ω𝑓) < 0  failer domain 

 

Figure 1. Probabilistic design space. 

Equation 𝑔(𝐱) = 0 determines limit state surface which separates safe and failure domains (fig 1). Probability of 

failure can be computed as integration of joint probability distribution over failure domain. It is expressed by 

following formula: 

𝑃𝑓[𝐱 ∈ Ω𝑓] = 𝑃[𝑔(𝐱) < 0] = ∫ 𝑓𝑋(𝐱)𝑑𝑥
𝑔(𝐱)<0

      (1) 

Direct computation of probability of failure using above formula is very difficult or even impossible due to an 

implicit form of a function 𝑔(𝐱) , which in the case of topology optimization, is based on finite element 

computations. There are several methods to determine the probability of failure 𝑃𝑓. Most versatile one: Monte 

Carlo (MC) method, allows to asses  𝑃𝑓 for any function continuous or discontinuous. Most serious drawback of 

MC method is numerical complexity. Therefore, combining this method with very complex topological 

optimization is not an option. Another method: Importance Sampling is less complex, but still it takes an 

unacceptably long time to determine the probability of failure. Most promising method seems to be First Order 

Probability Method. (FORM). The foundations for modern methods of reliability analysis were developed by 

Hasofer and Lind [6]. In their work  the concept of the so-called design point or most probable point was 

introduced. 

Design point is the is the realization of random variables with the most probable failure scenario. In other words, 

it is a point on the limit surface in which the joint probability density function reaches its maximum value (fig 2). 

Therefore, the neighborhood of this point has greatest contribution in determining the integral (1). Hence, in the 

case of a small probability of failure, the approximation of the limit surface by the plane will result an acceptable 

estimation of the probability of failure. In topological optimization, as in the case of engineering structures, the 

probability of failure should be very small, usually around 0.001. What makes the FORM method a good choice 

for coupling with topological optimization. 

Rackwitz and Fiesler [7], were the authors of the first iterative gradient based algorithm for searching the design 

point. At the beginning, to facilitate computations, probabilistic design space is transformed to dimensionless 

standard normal space 𝐱 → 𝐮. The design point is the closest point of limit state surface to the center of the 
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coordinate system of standard normal space. So its determination is in fact an optimization task formulated as 

follows: 

Find    min‖𝐮𝟐‖ = 𝐮 ∙ 𝐮𝑇,     (2) 

constrains           𝑔(𝐮) = 0.      (3) 

The iterative Rackwitz-Fiesler formula has the following form: 

𝐮(𝑛+1) =
1

‖∇𝑔(𝐮(𝑛))‖
2 (∇𝑔(𝐮(𝑛))

𝑇
𝐮(𝑛) − 𝑔(𝐮(𝑛))) ∇𝑔(𝐮(𝑛)).    (4) 

 

 

Figure 2. First Order Reliability Method. Design point concept. 

Having a design point 𝐮∗ it is easy to use a linear estimation of the probability of failure. We assume that  

approximate limit surface is a hyperplane and is tangent to the limit surface at the design point (fig 2). Thus, the 

hyperplane equation has the form: 

𝑙(𝐮) = −𝛼𝐮 + 𝛽,      (5) 

where 𝛼 is a unit vector with the direction opposite to the gradient ∇𝑔(𝐮) at the design point 𝐮∗ 

𝛼 =
∇𝑔(𝐮)

‖∇𝑔(𝐮)‖
|

𝐮=𝐮∗
,      (6) 

and 𝛽 is an Hasofer-Lind's reliability index. The linear estimation of the probability of failure has the form: 

           𝑃𝐹𝑂𝑅𝑀 = Φ(−𝛽),      (7) 

𝛽𝐹𝑂𝑅𝑀 = sign(𝑔(𝟎))‖𝐮∗‖.        (8) 

3. Topology optimization approach 

In the case of topology optimization random variables vector  𝐱  can be composed of loads or material constants. 

Shape of the structure is result of topology optimization therefore random nature of shape parameter is not taken 

into consideration. Now we present complete topology optimization with reliability constrains in the form of 

algorithm and flowchart (see next page): 
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Algorithm 2. Topology optimization of elastoplastic structures with reliability constrains. 

Step 1. Initialize design variables to a vector of ones 𝝆𝒆
(0)

= {1, 1, … ,1} and erased element list to an empty list 

ℒ = {}. Initialize random variables vector 𝐱 = {𝑥1 … 𝑥𝑁}. 

Until the load capacity or displacement condition is exceeded repeat Steps 2 to 7. 
 

Step 2. At every k-th iteration solve nonlinear equilibrium equations for the elastoplastic problem  

 𝐊(𝝆𝒆
(𝑘)

)𝐮(𝝆𝒆
(𝑘)

) − 𝐟 = 𝟎. 

 

Step 3. Determine the stress intensity vector calculated as the average of equivalent von Mises stresses 

evaluated at each Gauss point, then normalize the obtained values dividing them by the yield limit 

�̅�𝑖 =
1

𝑁𝑔 𝜎0
  ∑ 𝜎𝑖,𝑔

𝑔𝑁𝑔

𝑔=1 ,       𝑖 = 1,2, … , 𝑁 . 

 

Step 4. Apply a design filter to avoid the checkerboard phenomenon 

{�̅�𝑖}filter =
1

𝜌𝑖
(𝑘)

 ∑ 𝐻𝑗
𝑁
𝑗=1

 ∑ 𝐻𝑗𝜌𝑗
(𝑘)

�̅�𝑗  

𝑁

𝑗=1

 

where 𝐻𝑗 is the convolution operator 𝐻𝑗 = 𝑟min − ‖𝒙𝑖 − 𝒙𝑗‖ and 𝑗 belongs to the set of elements for which the 

distance from the center of the 𝑖-th element is smaller than the filter radius  𝑟min. 
 

Step 5. Perform FORM to assess probability of failure: 

𝑃𝐹𝑂𝑅𝑀 = Φ(−𝛽) 

If structure is not reliable (𝑃𝐹𝑂𝑅𝑀 >  𝑃𝐿𝑖𝑚𝑖𝑡) then stop. 
 

Step 6. Select n finite elements with the smallest stress intensities �̅�𝑒 < �̅�𝑚𝑖𝑛 + �̅�𝑡 (usually �̅�𝑡 = 0.005) and add 

the list of the newly selected elements ℓ to the list of previously erased elements, ℒ (𝑘) = {ℒ(𝑘−1);  ℓ}. 

 

Step 7. Using the current list of erased elements ℒ update corresponding design variables applying the following 

iterative formula: 

𝜌𝑙
(𝑘)

= max
𝑙 ∉ ℒ

(𝜌min, [{�̅�𝑙}filter]𝑝 𝜌𝑙
(𝑘−1)

). 

4. Numerical example 

Reliability assessment in topological optimization will be illustrated on simple benchmark example presented in 

Fig 3. The examples deals with a simple cantilever with a force applied at the free end. Regular rectangular mesh 

composed with Lagrange four-node finite elements was used in the example. Mesh dimension is 40x20 elements. 

Aluminum was chosen as the material with following parameters: Young’s modulus 𝐸 = 71 GPa, Poisson’s ratio 

𝜐 = 0.11, yield stress 𝜎0 = 260MPa, thicknes ℎ =  0.22units.  

 

Figure 3. Design domain for cantilever under investigation. 

Load P 

Fixed 

end 
l=20units 

h=10 units 

unitsmm 

c 
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Flowchart of the proposed method for topology optimization under reliability constraint. 

 

Figure 4. Optimal topology with reliability constraints. 

Probabilistic nature is represented by three random variables Young’s modulus, yield stress and Poisson’s ratio. 

Distribution parameters of random variables displayed in Table 1. 

variable mean value standard deviation 

Young’s modulus 71GPa 5% 

Yield stress 260MPa 5% 

Poisson’s ratio 0.11 10% 

Table 1. Probabilistic properties of material parameters. 
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Limit state function reflects displacement condition. Unsafe state means the displacement in point c (see fig 4) 

𝑢𝑐 exceeds permissible value 0.1m (l/200), so the limit state function is specified by the formula:  

𝑔(𝐮)  =  0.1 − 𝑢𝑐.      (9) 

In the Figure 5 dependence of the volume fraction on probability of failure has been presented. iteration 

 

Volume fraction [%]. 

Figure 5. Probability of failure as a function of volume fraction. 

3. Conclusions 

In the present paper topology optimization with reliability constraint has been formulated. The final topology of 

a cantilever with reliability constraint is shown Fig.4. Additionally, in Fig 5. it can be observed that above certain 

level of volume fraction the probability of failure rapidly grows.  
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