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Technological metal forming processes of extrusion, forging and rolling with
imposed cyclic torsion or shear deformation have been recently studied in view of
their advantages with respect to monotonic loading processes, cf. Bochniak and
Korbel [2–4]. The present work is aimed to analyze such process in the case of
simple tension or compression of a cylindrical tube with imposed cyclic torsional
deformation. The material element response is assumed to be rigid-perfectly plastic or
elastic-perfectly plastic. For these models, the analytical solutions can be provided for
the steady cyclic responses and the effect of two process parameters, namely the ratio
of shear and axial strain rates η and the amplitude of shear strain γm, can be clearly
demonstrated. Three different regimes of cyclic response can be visualized in the plane
η, γm. The cyclic response of a cylinder under combined axial compression and cyclic
torsion is predicted by considering a simplified model of a set of concentric tubes and
neglecting their radial stress interaction. The axial force and torsional moment are
then specified by averaging the responses of consecutive tubes. The cyclic response
diagrams for the cylinder are then generated in terms of axial force and torsional
moment related to axial deformation and angle of twist.

1. Introduction

In recent years there has been a growing interest in the metal forming
processes assisted by cyclic loading. The so-called KOBO-type forming pro-
posed by Korbel and Bochniak [2–4, 13] and applied to extrusion of tubes
and wires has demonstrated essential advantages with respect to classical form-
ing processes. The significant reduction of required load for forming, growth of
ductility, possible reduction of the dissipated energy of forming and finer grain
structure are the main beneficial factors, cf. also Kong et al. [11, 12].

At the micro-mechanical scale, it is observed that destabilization of the devel-
oped dislocation substructure occurs with subsequent generation of coarse slip
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bands propagating in a transgranular mode, thus reducing the stress level re-
quired for progressive deformation. Such effects of instabilities of hardened states
at large plastic deformation were discussed already by Basiński and Jackson

[1, 7]. Also Coffin [8] noted in his work that imposed cyclic deformation could
be applied to facilitate the progressive metal forming process.

The present work is aimed at studying such cyclic deformation-assisted process
by applying simple constitutive models of plastic response of metals. Our objec-
tive is to provide an analytical solution of the steady cyclic deformation process
and discuss the effect of two basic parameters η and γm, representing, the ratio
of shear and axial strain rates and the shear strain amplitude. The analysis will
be carried out for a perfectly plastic material model satisfying the Huber–Mises
yield condition. The types of steady cyclic responses are presented by the in-
teraction diagrams in the plane γm, η. Both the piecewise linear and harmonic
shear strain controls are considered. The plastic dissipation in axial and torsional
straining is presented and referred to the dissipation in the monotonic tension
or compression process.

The study will be pertained to a circular cylinder or tube axially deform-
ing with a specified rate and subjected to alternating twist with specified rate
and amplitude. Most cyclic loading experiments available in literature have been
performed at the specified axial stress values in order to study the ratchetting
strain induced by cyclic torsion. The numerous formulations of constitutive mod-
els assumed combined isotropic and kinematic hardening rules with account for
recovery effects. Here we mention some papers by Mróz [14], Mróz and Rodzik

[15], Trąmpczyński and Mróz [18], Chaboche [5], Ohno and Wang [16],
Kang et al. [9], Khoei and Jamali [10], Portier et al. [17] where further
references can be found. In this paper we shall refer to the tests performed by
Bochniak and Korbel [2] and Grossman [6] for the case of tension or com-
pression of cylindrical specimens with imposed cyclic torsion. The analysis will
be presented first for a case of cylindrical tube and next the response of a cylin-
der will be predicted by superposing solutions for a set of tubes of decreasing
radii. The analysis with account for material hardening and recovery effects will
be presented in a separate paper.

2. Problem formulation for a thin-walled tube

Consider a thin-walled tube of initial radius r0, length l0 and wall thickness
t0, subjected to axial tension or compression. Assume the axial strain rate to be
specified and constant. The alternating torsion is imposed in order to reduce the
axial stress and the applied axial force in order to execute the process. Denote
by εx and γxy the axial and shear strain components and their rates by ε̇x, γ̇xy.
The Cauchy stress components referred to the actual configuration are σx, τxy.
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For simplicity, first the small strain formulation is considered which can next be
improved by considering configuration changes for large compressive or tensile
strains (see difference in Fig. 1b).

Fig. 1. Axial and torsional deformation program: a) tube dimensions, b) longitudinal
strain εx(t), c) piecewise linear variation of shear strain, d) harmonic variation of shear

strain γxy(t).

The deformation program is shown in Fig. 1. For uniform in time length
variation (l = l0(1± α̇t)), the axial strain and strain rate are |εx| = α̇t, |ε̇x| = α̇,
where α̇ = |l̇|/l0. The shear strain is assumed to oscillate within the range 2γm

and the period T . For piecewise linear oscillation, Fig. 1c, we have β̇ = γ̇xy =
4γm/T . Denote the ratio of rates of shear and axial strains by η, thus

(2.1) η =
β̇

α̇
= const, β̇ =

4γm

T
, β̇ > 0, α̇ > 0.

For the harmonic variation of γxy, Fig. 1d, we can write

γxy = γm sin

(
2π

T
t

)

, γ̇xy =
π

2
β̇ cos

(
2π

T
t

)

,

and the ratio of strain rates is

(2.2)
γ̇xy(t)
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π

2
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)
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π

2
cos
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|εx|
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)
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2
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(

2π
|εx|
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where Ex = 4γm/η is the strain period corresponding to time period T . Let us
note that the time measure can be replaced by the axial strain |εx| = α̇t.

In this paper we have assumed the uniform extension or compression of tube
and the piecewise linear or harmonic shear strain control. Such programs were
executed in experimental works [2] and [6].

3. Deformation analysis for a rigid-perfectly plastic material model

To understand the constitutive model assumptions in the analysis of cyclic
response of a tube, we provide the analytical solution for the elastic-perfectly
plastic material model assuming the Huber–Mises yield condition and the asso-
ciated flow rule. The constitutive equations can be written in the form:

• yield condition

(3.1) F =
√

σ2
x + 3τ2

xy − σ0 = 0,

• rate equations

(3.2)

ε̇x = ε̇ex + ε̇px =
σ̇x

E
+ λ̇

σx

σ0
,

γ̇xy = γ̇e
xy + γ̇p

xy =
τ̇xy

G
+ λ̇

3τxy

σ0
,

where λ̇ ≥ 0, F ≤ 0, λ̇F = 0, Ḟ λ̇ = 0. Here ‘dot’ denotes the rate with
respect to the process evolution parameter, such as increasing axial strain, E
and G are the elastic Young and Kirchhoff moduli and σ0 denotes the yield
stress.

In this section we shall analyse the rigid-perfectly plastic material. Neglecting
elastic strains, from (3.2) we have

(3.3) ε̇x = ε̇px = λ̇
σx

σ0
, γ̇xy = γ̇p

xy = λ̇
3τxy

σ0
.

Inverting (3.3), the dissipation function can be specified, namely

Ḋ = σxε̇
p
x + τxyγ̇

p
xy = σ0λ̇ = σ0

√

(ε̇px)2 +
1

3
(γ̇p

xy)2
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and

(3.4)

σx =
∂Ḋ

∂ε̇px
= σ0

ε̇px
√

(ε̇px)2 +
1

3
(γ̇p

xy)
2

,

τxy =
∂Ḋ

∂γ̇p
xy

= σ0

1

3
γ̇p

xy
√

(ε̇px)2 +
1

3
(γ̇p

xy)
2

.

For the piecewise-linear shear strain oscillation, Fig. 1c, we obtain from (3.4)

(3.5) σx =
σ0

√

1 +
η2

3

, τxy = ±η
3

σ0
√

1 +
η2

3

and the specific dissipation power equals

(3.6) Ḋ = σ0|ε̇x|
√

1 +
η2

3
= Ḋ0

√

1 +
η2

3
, Ḋ0 = σ0|ε̇x|.

For the harmonically varying shear strain, in view of (2.2), we obtain the stress
components in the plastic state

(3.7)

σx =

√
3σ0

√

3 + η2
π2

4
cos2

(

2π
|εx|
Ex

)
,

τxy =
η

3

√
3σ0η

2π

2
cos

(

2π
|εx|
Ex

)

√

3 + η2
π2

4
cos2

(

2π
|εx|
Ex

)

and the dissipation power is expressed as follows:

(3.8) Ḋ = σ0|ε̇x|
√

1 + η2
π2

12
cos2

(

2π
|εx|
Ex

)

= Ḋ0

√

1 + η2
π2

12
cos2

(

2π
|εx|
Ex

)

.

Some interesting conclusions can be drawn from this simple analysis. For the
case of piecewise linear shear strain control, the stress path AB at constant axial
stress value corresponds to consecutive combined plastic flow periods followed
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by rigid unloading to a reverse shear straining point on the yield surface, Fig. 2a.
The shear hysteresis loop is shown in Fig. 2b and the axial stress variation in
Fig. 2c. It follows from (3.5) and (3.6) that the axial stress value depends on η
and is always reduced, whereas the dissipation power increases with increasing η.

For instance, for η = 3, there is σx =
1

2
σ0 and Ḋ = 2Ḋ0 = 2σ0|ε̇x|. Thus, the

axial stress reduction occurs at the expense of increasing dissipated energy in
the deformation process.

Fig. 2. Piecewise linear shear strain control: a) stress path, b) shear stress-strain
hysteresis loop, c) axial stress variation.

The harmonic shear strain control provides a different stress path ACBC ′

following the yield surface, Fig. 3a. Thus, there is no unloading stage and the
deformation process proceeds in a fully plastic regime. The shear stress-strain
hysteresis loop is shown in Fig. 3b. The axial stress varies between the values
corresponding to A or B and the maximal value σ = σ0 at C, Fig. 3c. The stress-
strain path in Fig. 3c touches the line σ = σ0 at C, C ′, C ′′, .... Note that this
line corresponds to η = 0, that is to monotonic axial straining. The dissipation
power increases with respect to its value Ḋ0 = σ0|ε̇x| corresponding to pure axial
deformation.
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Fig. 3. Harmonic shear strain control: a) stress path, b) shear stress-strain hysteresis loop,
c) axial stress variation.

To illustrate the dissipated energy variation with process parameters, let us
calculate the dissipated energy in tension and torsion modes during one cycle of
deformation. For the piecewise linear shear strain control, in view of (3.5) we have

(3.9) Dγ
c =

cycle∫

0

τxydγxy =
3

4
η

σ0γm
√

1 +
1

3
η2

= σ0Ex

η2

3
√

1 +
η2

3

,

(3.10) Dε
c =

cycle∫

0

σxdεx = σ0Ex
1

√

1 +
η2

3

,

where Dγ
c and Dε

c are the dissipated energies in torsion and axial strain cycles.
The total dissipated energy per cycle equals

(3.11) Dt
c = Dγ

c +Dε
c = σ0Ex

√

1 +
η2

3
= Dt

0

√

1 +
η2

3
.
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Similarly, introducing e = |εx|/Ex, for the case of harmonic control of shear
strain, in view of (2.2), (3.7) and (3.8), we obtain

Dγ
c =

cycle∫

0

τxydγxy = σ0Ex

1∫

0

η2

3

π2

4
cos2(2πe)

√

1 +
η2

3

π2

4
cos2(2πe)

de,

Dε
c =

cycle∫

0

σxdεx = σ0Ex

∫ 1

0

1
√

1 +
η2

3

π2

4
cos2(2πe)

de,

and

Dt
c = σ0Ex

∫ 1

0

√

1 +
η2

3

π2

4
cos2(2πe)de.

Figure 4 presents the variation of dissipated energies per one cycle in axial and
torsional deformation. It is seen that the dissipated energy portion Dε

c decreases
with the increasing cycle frequency, but the dissipated energy Dγ

c increases.
This leads to a total dissipated energy increase during the uniaxial deformation
process.

Fig. 4. Variation of the dissipated energy in one deformation cycle with the strain rate ratio
η: continuous line – piecewise linear shear strain control, dashed line – harmonic shear strain

control.

4. Cyclic solution for an elastic-perfectly plastic material

Consider now the elastic-plastic material model for which the constitutive
equations are specified by (3.1) and (3.2). We shall analyze both the piecewise
linear and harmonic shear strain controls.
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4.1. Piecewise linear shear strain control: analytical solution

In view of the constraint γ̇xy/ε̇x = η, from (3.2) it follows that

(4.1) σ̇x = E

(

ε̇x − λ̇
σx

σ0

)

, τ̇xy = G

(

ηε̇x − λ̇
3τxy

σ0

)

.

For the plastic state, the consistency condition requires that

(4.2) Ḟ = σxσ̇x + 3τxy τ̇xy = 0.

Substituting (4.1) into (4.2), we obtain

(4.3) λ̇ = σ0
Eσx + 3Gητxy

Eσ2
x + 9Gτ2

xy

ε̇x, λ̇ > 0, ε̇x > 0.

Let us note that η takes positive and negative values, however, the shear stress
τxy changes its sign with η, so we have τxy > 0, η > 0 and τxy < 0, η < 0, so
that τxyη > 0. The inverse elastic-plastic equations are

(4.4)

σ̇x = E

(

1 − Eσx + 3Gητxy

Eσ2
x + 9Gτ2

xy

σx

)

ε̇x,

τ̇xy = G

(

η − Eσx + 3Gητxy

Eσ2
x + 9Gτ2

xy

3τxy

)

ε̇x

and for the elastic path we have

σ̇x = Eε̇x, τ̇xy = Gγ̇xy = Gηε̇x.

To integrate analytically the rate equations (4.4), let us introduce the trigono-
metric stress representation satisfying the yield condition (3.1), namely

(4.5) σx = σ0 cos θ,
√

3τxy = σ0 sin θ

with the rates

(4.6) σ̇x = −σ0(sin θ)θ̇,
√

3τ̇xy = σ0(cos θ)θ̇.

The first incremental equation (4.4) can now be presented as follows:

(4.7)
σ0

3G
θ̇ =

√
3η

3
cos θ − sin θ

1 +

(
3G

E
− 1

)

sin2 θ

ε̇x.
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Let us introduce the following notation:

(4.8)

tanΦ =

√
3|η|
3

=
˙̄γxy

˙̄εx
, m =

3G

E
− 1 =

1 − 2ν

2(1 + ν)
,

ε̄x =
E

σ0
εx =

εx
ε0
, γ̄xy =

E

σ0

γxy√
3
, tanϕ = (1 +m) tanΦ

where ε0 = σ0/E is the elastic strain in uniaxial tension associated with the
yield stress σ0. Equation (4.7) can now be rewritten in the incremental form

(4.9) dε̄x =
cosΦ

1 +m
· 1 +m(sin θ)2

sin(±Φ− θ)
dθ.

Integrating (4.9), we obtain for η = ±|η|

(4.10) ε̄x = C +
cosΦ

1 +m

[

m cos(Φ± θ) − (1 +m(sinΦ)2) ln

∣
∣
∣
∣
tan

Φ± θ

2

∣
∣
∣
∣

]

︸ ︷︷ ︸

f(±θ)

where C is the integration constant obtained from the initial values on the re-
spective paths.

Using trigonometric stress representation one may also integrate ε̇px and the
rate of plastic dissipation to obtain the plastic strain and dissipation energy. The
results are collected in the Appendix.

For the elastic path, we can write for η = ±|η|

(4.11)

sx =
σx

σ0
=
Eεx
σ0

+ s0 = ε̄x + s0,

sxy =

√
3τxy

σ0
=

√
3Gη

σ0
εx + t0 = ± tanϕε̄x + t0.

4.2. Analysis of process parameters

Consider now the steady-state cyclic deformation process for specified γm

and η. Figure 5a presents one of the typical steady cyclic states in the stress
plane sx = σx/σ0, sxy =

√
3τxy/σ0. The yield condition is now represented by a

circle of unit radius and the conjugate plastic strain rates are ε̇px and γ̇p
xy/

√
3.

The cyclic stress path is formed by two semi-cycles O∗ − D − A − O∗ and
O∗−B−C−O∗, where the position O∗ is specified by the value sx = s∗ which is
to be determined. The elastic stress paths AB and CD are inclined at the angle
ϕ to the sx-axis, where for positive η

tanϕ =
ṡxy

ṡx
=

√
3τ̇xy

σ̇x
= (1 +m) tanΦ =

(
3

2

1

1 + ν

)
η√
3



Tensile or compressive plastic deformation ... 507

Fig. 5. Steady state cycles representation in the sx, sxy-plane a) the case η > ηm(γm),
b) the case η = ηm(γm), c) the case ηl(γm) < η < ηm(γm), d) the case η > ηl(γm).

and the angle Φ specifies purely plastic strain path for transformed strains ε̄x
and γ̄xy. Note that ϕ > Φ for ν ≤ 0.5. The radial lines O − A and O − D are
inclined at the angles θA and θD to the sx-axis. From geometrical relations it is
seen that

(4.12)

∆θ = θA − θD = π − 2ϕ,

tan θA =
sinϕ

√

1 − (s∗)2 sin2 ϕ− s∗ cosϕ

cosϕ
√

1 − (s∗)2 sin2 ϕ+ s∗ sin2 ϕ
.

Let us specify first the limit value of η for which the elastic unloading or
reloading occurs along the path AB or CD. The elastic unloading is specified
by λ̇ = 0 and

Ḟ = σxσ̇x + 3τxy τ̇xy = σx(Eε̇x) + 3τxy(−G|η|ε̇x) ≤ 0,
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where σx = σ0 cos θA, 3τxy =
√

3σ0 sin θA. For Ḟ = λ̇ = 0 the neutral, limit
process is observed. At the point of reversion of the deformation path we have

(4.13) Ḟ =

(

cos θA −
√

3 sin θA
G

E
η

)

σ0Eε̇x =
(
1 − (2 +m)(sinΦ)2

)
σ0Eε̇x ≤ 0

where we have assumed the limit value of θA = Φ occurring for γm → ∞. For
finite shear amplitude values, there should be θA < Φ. The inequality (4.13)
provides

|η| ≥
√

3

1 +m
= ηl(∞)

and for finite values of γm the corresponding limit value ηl = ηl(γm) should be
greater than ηl(∞), thus

ηl(γm) > ηl(∞).

The other steady cycle pattern can be generated when the points D and B
merge on the sx-axis, Fig. 5b. Then, the maximal axial stress reached in the
cyclic process equals the static value σ0. Considering the elastic path from A
and assuming that it touches the yield surface at B, we can write

sx = ε̄∗x + cos θA = 1

sxy = − tanϕε̄∗x + sin θA = 0.

We note also that θA = π−2ϕ along the path AB. In the case γm → ∞ the angle
θA can be replaced by Φ and we obtain the condition for the maximal stress σx

to be less or equal to σ0

|η| ≥
√

3(3 + 2m)

1 +m
= ηm(∞).

Here again for a finite value of γm, the corresponding value ηm = ηm(γm) is
greater than ηm(∞), thus ηm(γm) > ηm(∞). After reaching the yield stress at
B the stress path remains on the yield surface and at the instant of reversing
the twist, the stress state is represented by point C which is a mirror image of
point A with respect to the sx-axis. When the elastic unloading occurs, the yield
surface is reached again at the point D which is the mirror reflection of point
B, Fig. 5a. The maximal value of the tensile stress smax reached in the course
of deformation process is represented by points B and D. When η = ηm, then
smax = 1 and points B and D merge on the sx-axis.

Figure 6 presents the variation of angle difference ϕ−Φ for increasing values
of η and different values of the Poisson ratio. It is seen that ϕ − Φ reaches
a maximum for η close to 2 and then tends to 0. As far as this difference is
always positive, for the initial elastic loading process, at the instance when the
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yield surface is reached for the first time, one always observes an increase of the
axial stress (compare Eq. (4.9) for θ = ϕ and Figs. 9–11). The characteristic
material parameters and two limit values of η for different metallic materials are
collected in Table 11). It is seen that ηl and ηm vary within very small range.

Fig. 6. Difference ϕ− Φ for varying η and different values of ν.

Table 1. Values of material parameters and two limit values of η for different
metallic materials (volues marked by a star specify the tensile strength). For
Al-alloys, cast iron and steels, the yield stress strongly depends on the steel

composition and the forming process.

Metal E σ0 ε0 ν m ηm ηl

[GPa] [MPa] [%]

Al 68.3 13–22 0.02–0.03 0.34 0.119 2.785 1.637
Al-alloy 70 40–320 0.06–0.45 0.33 0.128 2.771 1.631

Sn 54.3 34.5* 0.06* 0.36 0.103 2.812 1.649
Zn 86.9 110* 0.13* 0.25 0.200 2.661 1.581

Cu(annealed) 123 40–80 0.03–0.06 0.35 0.111 2.798 1.643
Pb 16.2 12.5* 0.08* 0.44 0.042 2.920 1.697
Ag 79.5 276* 0.35* 0.37 0.095 2.825 1.655
Ti 110 170 0.15 0.36 0.103 2.812 1.649
Au 80 138* 0.17* 0.44 0.042 2.920 1.697

cast iron 211 80–150 0.04–0.07 0.27 0.181 2.689 1.594
mild steel 210 130–350 0.06–0.17 0.29 0.163 2.716 1.606

stainless steel 210 500-680 0.24–0.33 0.3 0.154 2.730 1.612

Figure 5c presents the case when the yield point at B is reached by the
elastic unloading path AB for sxy(B) > 0 and similarly, the point D is reached
for sxy(D) < 0. This case corresponds to ηl(γm) ≤ η ≤ ηm(γm). Figure 5d

1)Material parameters in Table 1 are collected on the basis of A concise encyclopedia of met-
allurgy, A.D. Merriman [Ed.] and Vademecum of Material Science [in Polish], W. Domke,
WNT, Warszawa, 1982.
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presents the stress path for which there is no elastic unloading and the whole
deformation process is purely plastic. This occurs when η ≤ ηl(γm).

Let us now provide the solution for the half-cycle of the steady state of
cyclic deformation presented in Fig. 5a. At the point A we have ε̄x(A) = ε̄A,
γ̄xy(A) = γ̄m, ε̄x = ε̄A+∆ε̄x. Along the path portion AB the elastic deformation
occurs and we have

sx = ∆ε̄x + cos θA,(4.14)

sxy = − tanϕ∆ε̄x + sin θA.(4.15)

Along the stress path portion BC the elastic-plastic deformation occurs, and we
have in view of (4.10)

Ēx/2 = ∆ε̄x(θC) = cos θB − cos θA − f(−θB) + f(−θC)

= cos θD − cos θA − f(θD) + f(θA)

and finally

(4.16) γ̄m =
η

2
(cos θD − cos θA − f(θD) + f(θA)) .

On the other hand, when no elastic unloading occurs, this relation simplifies to

(4.17) γ̄m =
η

2
(f(θA) − f(−θA)) .

Equations (4.16) and (4.17) provide the solution for steady cyclic states. In fact,
as θD = θA − (π − 2ϕ), cos θD = − cos(θA + 2ϕ), Eq. (4.16) can be rewritten in
the form

(4.18) γ̄m =
η

2
(− cos(θA + 2ϕ) − cos θA − f(θA + 2ϕ− π) + f(θA)) .

This equation can be solved numerically for specified γ̄m and η thus providing
θA, θD and θB = −θD, θC = −θA. For a purely plastic regime Eq. (4.17) provides
the solution for θA.

Now, let us specify the limit response curves ηl = ηl(γm) and ηm = ηm(γm)
separating in the plane of process parameters η, γm the domains of different
responses, with stress paths shown in Fig. 5. The curve ηm = ηm(γm) separates
the domains C and B. In the domain C both the elastic unloading or reloading
tensile paths AB and CD occur with reduction of maximal stress with respect
to the limit value σx = σ0, cf. Fig. 5a. In the domain B, the elastic unloading
and reloading paths AB and CD exist, but the maximal value of tensile stress
equals σ0, cf. Fig. 5. The curve ηl = ηl(γm) separates the domains B and A,
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where in the domain A no elastic unloading or reloading occurs, cf. Fig. 5d. As
for the case of purely plastic cycle there is θD = −θA, we have, in view of the
relation θD = θA − (π − 2ϕ), the value of θA = π/2 − ϕ = −θD and the limit
line ηl = ηl(γm) is specified by the relation

γ̄m =
ηl

2

(

f
(π

2
− ϕ

)

− f
(

ϕ− π

2

))

.

The response curve ηm = ηm(γm) separating the domains C and B is specified
by setting θD = 0 and θA = π − 2ϕ into Eq. (4.16) what provides

γ̄m =
ηm

2
(1 + cos(2ϕ) − f(0) + f(π − 2ϕ)) .

Figure 7 provides the three response domains in the plane (η, γm/ε0). Let us
note that the separating curves tend to asymptotic values ηl(∞) and ηm(∞) for
γm → ∞.

Fig. 7. The regimes A, B, C of cyclic response in the plane of process parameters η,
γm (m = mAl = 0.128).

Let us note that for the regime C where the elastic unloading or reloading
occurs, we have

smax = cos θD = − cos(θA + 2ϕ), s∗ =
sin(θA + ϕ)

sinϕ
, smin = cos θA

and for the remaining two regimes A and B there is

smax = s∗ = 1, smin = cos θA,

so the angle θA could be easily related to smin.
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Figure 8 presents the distribution of isolines smax = const. The domains A
and B for which smax = 1 is marked below the separating curve ηm = ηm(∞).
It is seen that the isolines smax = const tend to asymptotic values for γm → ∞
and η → ∞, satisfying the relations

γ̄smax
m =

√

3(1 − s2max)

1 +m
, ηsmax

l −
√

3 tan [arccos(smax) − 2ϕ(ηsmax
m )] = 0.

Fig. 8. Minimal values smax of the tensile stress in the plane of process parameters η, γm.
Bold lines separate the regimes A, B, C (m = mAl = 0.128).

The typical axial and torsional cyclic responses for different values of η and
γ̄m are illustrated in Figs. 9–11.

Fig. 9. Variation of the tensile stress path and the hysteresis loop of shear stress-strain
response in the course of cyclic deformation, η < ηl regime A: no elastic unloading.
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Fig. 10. Variation of the tensile stress path and the hysteresis loop of shear stress-strain
response in the steady cyclic deformation, ηl < η < ηm regime B: elastic unloading and no

reduction of smax.

Fig. 11. Variation of the tensile stress path and the hysteresis loop of shear stress-strain
response in the steady cyclic deformation, η > ηm (regime C: elastic unloading, maximal

tensile stress reduction).

Consider now the plastic dissipation generated in one deformation cycle. Fol-
lowing (A.2), (A.3) and (A.4), we may calculate the total dissipation ∆D̄, and
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the portions ∆D̄x, ∆D̄xy. Figure 12 presents the variation of dissipation incre-
ments for increasing values of η. It is seen that the total dissipation increment
largely increases with respect to the dissipation increment in pure tension. How-
ever, the tensile dissipation increment decreases and tends to zero for increasing
values of η.

The increment of plastic dissipation during one cycle when θA → Φ (for
sufficiently large values of Ex and γm) may be calculated as a double increment
of plastic dissipation during the half-cycle, so that

∆D̄cycle = 2(D̄(θA) − D̄(θD)) = 2(D̄(θA) − D̄(θA − π + 2ϕ))

for an elastic-plastic half-cycle and

∆D̄cycle = 2(D̄(θA) − D̄(−θA))

for a totally plastic semicycle. Let us note that the angle θA is uniquely related
to γm, η and Ex for the steady cycle, Eqs. (4.17), (4.18).

Similarly we may calculate the increment of the axial plastic strain ε̄Px during
one steady cycle respectively for two regimes, so we have

∆ε̄Pcycle = 2(ε̄px(θA) − ε̄px(θA − π + 2ϕ)),

∆ε̄Pcycle = 2(ε̄px(θA) − ε̄px(−θA)).

Let the ratio δ =
∆D̄cycle

∆ε̄Pcycle

of a plastic work increment and a plastic strain

increment during one cycle be treated as a energy-based measure of expense
of the plastic extension process. For the pure tension this expense coefficient δ
equals one.

It would be interesting to find the upper limit value of δ for arbitrary values
of η but for γm → ∞ what is equivalent to θA → Φ. We obtain (as compared to
the results (3.9)–(3.11))

(4.19) δl = lim
θA→Φ

∆D̄cycle

∆ε̄Pcycle

= lim
θA→Φ

D̄(θA) − D̄(θA − π + 2ϕ)

ε̄px(θA) − ε̄px(θA − π + 2ϕ)

= lim
θA→Φ

dD̄

dθ
dε̄p

dθ

=
1

cosΦ
=

√

1 +
η2

3

and similarly

(4.20) lim
θA→Φ

∆D̄xcycle

∆ε̄Pcycle

= cosΦ =
1

√

1 +
η2

3

,
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(4.21) lim
θA→Φ

∆ ¯Dxycycle

∆ε̄Pcycle

=
1

cosΦ
− cosΦ =

1

3
η2

√

1 +
η2

3

.

Figure 12a presents the variation of the expense coefficient for varying val-
ues of η and Ex. Figures 12b,c present the evolution of axial and torsional ex-
pense coefficients. The bold lines present the limit values derived analytically,
cf. Eqs. (4.19)–(4.21). It is seen that the total dissipation always increases for
the combined process, however the axial dissipation decreases remarkably for
increasing values of η and γm.

Fig. 12. a) Variation of the ratio of total plastic dissipation increment per cycle and the
axial plastic strain increment (expense coefficient δ) with Ex and η, b) variation of axial

expense coefficient c)variation of torsional expense coefficient.
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4.3. Harmonic shear strain control: incremental relations

Consider now the harmonic shear strain control specified by (2.2), accompa-
nied by the progressive axial extension, thus

(4.22) ε̇x = α̇,
γ̇xy

ε̇x
= η

π

2
cos

(

2π
εx
Ex

)

.

For the elastic regime, the incremental (or rate) equations are

(4.23) σ̇x = Eε̇x, τ̇xy = Gη
π

2
cos

(

2π
εx
Ex

)

ε̇x,

and for the elastic-plastic regime we have

(4.24) σ̇x = E

(

ε̇x − λ̇
σx

σ0

)

, τ̇xy = G

(

η
π

2
cos

(

2π
εx
Ex

)

ε̇x − λ̇
3τxy

σ0

)

.

The yield condition (3.1) and the consistency condition Ḟ = 0 provide

(4.25) λ̇ = σ0

Eσx + 3Gη
π

2
cos

(

2π
εx
Ex

)

τxy

Eσ2
x + 9Gτ2

xy

ε̇x

and the relations (4.24) can be written in the form

(4.26)

σ̇x = E







1 −
Eσx + 3Gη

π

2
cos

(

2π
εx
Ex

)

τxy

Eσ2
x + 9Gτ2

xy

σx






ε̇x,

τ̇xy = G






η
π

2
cos

(

2π
εx
Ex

)

−
Eσx + 3Gη

π

2
cos

(

2π
εx
Ex

)

τxy

Eσ2
x + 9Gτ2

xy

3τxy






ε̇x.

Introducing the trigonometric stress representation (4.5) and the notation (4.8),
the incremental relations (4.26) can be presented as follows:

(4.27)
σ0

3G
θ̇ =

√
3η

3

π

2
cos

(

2π
εx
Ex

)

cos θ − sin θ

1 +

(
3G

E
− 1

)

sin θ2

ε̇x
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or

(4.28) dε̄x =
1

1 +m

1 +m(sin θ)2

tanΦ
π

2
cos

(
ε̄x
Ēx

)

cos θ − sin θ

dθ,

where ε̄x = εx/ε0. Equation (4.28) can be integrated numerically. The elastic
unloading condition is now λ̇ = 0 and

(4.29) Ḟ = σ0

[

cos θ + (1 +m)
π

2

η√
3

cos

(

2π
εx
Ex

)]

ε̇x ≤ 0.

Introducing the notation

tan

[

Φ

(
ε̄x
Ēx

)]

=
π

2

√
3η

3
cos

(

2π
ε̄x
Ēx

)

,

tan

[

ϕ

(
ε̄x
Ēx

)]

= (1 +m)
π

2

η√
3

cos

(

2π
ε̄x
Ēx

)

=
ṡe
xy

ṡe
x

it is obtained from (4.29) for the neutral, limit process

cos (θ − ϕ) = 0, θ − ϕ = ±π
2
,

so the stress trajectory in the sx, sxy-plane at the instant of unloading is tan-
gential to the yield surface. The elastic stress rates ṡe

xy and ṡe
x then specify the

angle ϕ.
The reverse point of the axial stress oscillation is specified by the condition

dsx/dεx = 0 and then

sin θ sin (Φ− θ) = 0, so that θ = Φ

and the tensile stress reduction occurs when Φ < θ.
The typical stress paths are presented in Figs. 13–15. Similarly as for the

piecewise linear shear strain control, the response regimes A, B, C will occur
depending on γm and η.

Figure 13 presents the cyclic material response for η = 6, γm3/ε0 = 4.62
when the cyclic process is composed of elastic and elastic-plastic portions with
the reduction of maximal axial stress (regime C). Figure 14 presents the cyclic
response for η = 6, γm2/ε0 = 9.24 when the elastic and elastic-plastic por-
tions occur with no reduction of maximal axial stress (regime B). Figure 15 for
η = 6, γm1/ε0 = 0.924 presents the response for small amplitude value and no
maximal stress reduction.
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Fig. 13. Harmonic shear strain control with maximal axial stress reduction and elasto-
plastic response (η = 6, γm/ε0 = 4.62) a) cyclic stress path, b) variation of axial and

shear stress and shear strain, c) torsional hysteresis loop.

Fig. 14. Harmonic shear strain control with no maximal axial stress reduction and elasto-
plastic response (η = 6, γm/ε0 = 9.24) a) cyclic stress path, b) variation of axial and shear

stress and shear strain c) torsional hysteresis loop.

Figure 16 presents the cyclic response diagram in the plane γm/ε0, η. It is
seen that the line separating the regimes A + B and C differs essentially from
that generated for a piecewise linear control. In fact, for instance with η = 6
and increasing γm/ε0, we intersect the domain C at two points for small and
large values of γm/ε0. Thus, there is no reduction of maximal value of sx for
sufficiently small values of γm ≤ γm1 and for sufficiently large values γm ≥ γm2.
For a piecewise linear control the separating lines tend to asymptotic values of
γm/ε0 and η, cf. Fig. 7. The diagrams shown in Figs. 13, 14 and 15 are presented
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Fig. 15. Harmonic shear strain control with no maximal axial stress reduction and plastic
response (η = 6, γm/ε0 = 0.924) a) cyclic stress path, b) variation of axial and shear stress

and shear strain, c) torsional hysteresis loop.

Fig. 16. The response diagram in the plane γm/ε0, η specifying domains A + B and C of
no-reduction and reduction of maximal axial stress a) diagram for large values of γm/ε0,

b) diagram for small values of γm/ε0.

for the values γm = γm1, γm2 and γm3 marked in Fig. 16. It is also demonstrated
that the periodic shear strain variation exhibits phase shift with respect to the
shear stress variation.

Figure 17 presents the comparative diagrams of axial stress variation for
piecewise linear and harmonic shear strain control for the same values of γm and
η. It is seen that much greater axial stress reduction occurs for piecewise-linear
control for larger values of γm.
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Fig. 17. Comparison of the tensile stress paths for piecewise linear and harmonic shear strain
controls (E = 77000 MPa, ν = 0.4, σ0 = 500 MPa, η = 6), a) γm1 = 0.006, b) γm3 = 0.03,
c) γm2 = 0.06. Relative parameter values: ε0 = σ0/E ∼ 0.0065, γm/ε0 = 0.924; 4.62; 9.24.

5. Approximate cyclic solution for a cylinder

In this section we shall discuss the approximate solution for the steady cyclic
state in a cylinder subjected to axial tension or compression, combined with
cyclic torsion of a specified angular amplitude. We assume that the cylinder is
composed of thin-walled tubes of varying radii and neglect the radial tube inter-
action, Fig. 18. Assuming the plane cross-section and material incompressibility,
the strain tensor is expressed in the cylindrical coordinate system

εx = ε, γxθ = ϑr, εr = εθ = −1

2
ε

and the non-vanishing strain rate components are

ε̇x = ε̇, γ̇xθ = ϑ̇r, ε̇r = ε̇θ = −1

2
ε̇.

Assume the linear variation of shear strain with the radius r and constant tensile
strain of each tube, so that

γxθ(r) = γR
xθ

r

R
, εx(r) = εx, r = r0 exp(εr), ṙ = rε̇r,

where R is the actual outer radius of the cylinder. The strain rates are

ε̇x = α̇ = const, ε̇r = −1

2
ε̇ = const, γ̇xθ(r) = γ̇R

xθ

r

R
.

Similarly to the case of a thin-walled tube, two different shear strain programs
are considered: piecewise linear and harmonic, so we have

γ̇R
xθ = ηRε̇x, or γ̇R

xθ = ηRπ

2
cos

(

2π
εx
Ex

)

ε̇x.
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Fig. 18. Cylinder geometry.

5.1. Piecewise linear shear strain control: rigid-plastic model

Assuming the rigid-perfectly plastic model, and using the solution (3.5) for
a tube, we can present the stress distribution in the cylinder

(5.1) σx(r̄) =
σ0

√

1 +
η2r̄2

3

, τxθ(r̄) = ±η
3

σ0r̄
√

1 +
η2r̄2

3

,

where r̄ =
r

R
.

The stress distribution for η = 1, 3 and 10 is shown in Fig. 19.

Fig. 19. Variation of axial stress and shear stresses in a cylinder for η = 1, 3, 10.
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Integrating the axial and shear stresses (5.1) over the actual cross-section of
the cylinder, we obtain

F = F0
6

η2

(√

1 +
η2

3
− 3

)

, M = M0

√
3

η3

(

(η2 − 6)

√

1 +
η2

3
+ 6

)

,

where F0 = F (η = 0) is the axial force in pure tension and M0 = M(η → ∞) is
the twisting moment in pure torsion, so that

F0 = πR2σ0, M0 =

√
2

3
√

3
πR3σ0.

Figure 20 presents the evolution of F/F0 and M/M0 in the course of cyclic
deformation. It is seen that the axial force and the torsional hysteretic loop
depend only on the value of parameter η. Figure 21 presents the variation of
F/F0 and |M |/M0 with η. It is seen that the axial force decreases and the
torsional moment amplitude increases with η.

Fig. 20. The cross-sectional force and moment variation in the steady cyclic state.

Fig. 21. Variation of axial force and twisting moment with the parameter η.
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5.2. Harmonic control of shear strain: rigid-plastic model

For the harmonic variation of γxy, the stress components follow from the
solution for a tube, Eq. (3.7), so we have

(5.2)

σx(r̄) =

√
3σ0

√

3 + η2r̄2
π2

4
cos2(2πe)

,

τxθ(r̄) = ±

√
3σ0r̄η

π

2
cos(2πe)

3

√

3 + η2r̄2
π2

4
cos2(2πe)

,

where e = εx/Ex. Figure 22 presents the stress variation within the cylinder for
increasing values of e, and the assumed value η = 3.

Fig. 22. The axial and shear stress distribution in cylinder for η = 3.

The cross-sectional axial force and twisting moment are expressed as follows:

F = F0
6

η2
π2

4
cos2(2πe)

(√

1 +
1

3
η2
π2

4
cos2(2πe) − 3

)

,

M = M0

√
3

η3
π3

16
cos3(2πe)

(

(η2π
2

4
cos2(2πe) − 6)

√

1 +
1

3
η2
π2

4
cos2(2πe) + 6

)

.

Variation of F/F0 and M/M0 in the course of steady cyclic deformation is pre-
sented in Fig. 23. It is seen that the axial force reaches its maximum equal to
F0 and its minimum value strongly depends on η.
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Fig. 23. Variation of axial force and twisting moment in the steady cyclic state for different
values of η.

5.3. Piecewise linear shear strain control: elastic-plastic model

To simplify the analysis, we shall treat the cylinder as a discrete set of thin-
walled tubes and neglect their radial interaction. The resulting axial force and
torsional moment are obtained by summing up and averaging the stress contri-
butions of consecutive tubes. Referring to Fig. 24, it is seen that depending on
the value of radius r and sufficiently large values of η, the tubes can correspond
to the regimes A, B, and C. Thus in the external cylinder portion r2 ≤ r ≤ R,
the regime C occurs with elastic unloading and maximal axial stress reduction,
but in the central cylinder portion 0 ≤ r ≤ r1 the regime A occurs with no elas-
tic unloading during the steady cyclic deformation. In the intermediate portion
r1 ≤ r ≤ r2 the regime B occurs with no reduction of maximal tensile stress.

Fig. 24. Three different stress regimes within a cylinder subjected to monotonic extension
and cyclic torsion.
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6. Concluding remarks

The present paper provides the analysis of cyclic deformation modes for a
tube or cylinder subjected to axial extension or compression with a specified
rate, assisted by cyclic torsion of specified strain rate and amplitude. The funda-
mental process parameters are the ratio of rates of shear and axial strains η and
the shear strain amplitude γm. Three different stress regimes have been detected
and analyzed in detail. The response domains in the plane of process parame-
ters are specified and plotted in the form of diagrams resembling the familiar
Bree diagrams specifying the shakedown, alternating plasticity and ratchetting
domains for structural elements under load control and a perfectly plastic mate-
rial response. It is demonstrated that considerable axial force reduction can be
attained for sufficiently large values of η and γm. However, the plastic energy
dissipation in the process is always larger with respect to the pure axial extension
or compression for a specified total elongation or shortening of the cylinder. The
response for piecewise linear and harmonic shear strain control is illustrated by
presenting the cyclic stress path and stress-strain diagrams. The application of
material hardening models combined with dynamic recovery effects would pro-
vide different results and prediction of reduced energy dissipation. This topic
will be the subject of a separate study and confrontation with experimental
data. The problem of microstructure evolution in the course of cyclic loading,
especially fine-grained structure generation will also be analysed. The present
paper provides the fundamental clarification of cyclic deformation modes and
their dependence on process parameters.

Appendix A.

Using trigonometric stress representation (4.5), the axial component of plastic
strain ε̇px = λ̇ cos θ. Integrating we obtain for η = ±|η|

ε̄px = Cε −
cosΦ

(1 +m) cosϕ

[

cos(ϕ− Φ± θ) + cos(ϕ− Φ) cosΦ ln

∣
∣
∣
∣
tan

(
Φ± θ

2

)∣
∣
∣
∣

]

where Cε denotes the integration constant.
Now, let us specify the rate of plastic dissipation. During one cycle of defor-

mation the elastic work vanishes and the work of external loading is dissipated.
We have

(A.1) Ḋ = σxε̇
p
x + τxyγ̇

p
xy = σ0λ̇ = Ḋx + Ḋxy.

In view of (4.5) and (4.3) we obtain

Ḋ =
σ2

0

E(1 +m)

cosΦ

cosϕ

cos(ϕ∓ θ)

sin(±Φ− θ)
θ̇
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and Ḋx = σ0λ̇ cos2 θ, Ḋp
xy = σ0λ̇ sin2 θ. Denoting D̄ = D/D0, (D0 = σ0ε0) and

integrating (A.1), we obtain for η = ±|η|

(A.2) D̄(θ) = Cw − cosΦ

(1 +m) cosϕ
[cos(ϕ− Φ) ln | sin(Φ± θ)| ± θ sin(ϕ− Φ)]

where Cw denotes the integration constants calculated from the accumulated
value in the previous cycles. The tensile and torsional dissipated energies are

(A.3) D̄x(θ) = Cwx − 1

4

cosΦ

(1 +m) cosϕ

[

cos(±ϕ∓ Φ− 2θ)

+A(±Φ,±ϕ) ln | sin(±Φ− θ)| + θB(±Φ,±ϕ)
]

,

where
A(Φ,ϕ) = cos(ϕ+ Φ) + cos(ϕ− 3Φ) + 2 cos(ϕ− Φ),

B(Φ,ϕ) = sin(ϕ− 3Φ) + 2 sin(ϕ− Φ) − sin(ϕ+ Φ)

and

(A.4) D̄xy(θ) = Cwxy +
1

4

cosΦ

(1 +m) cosϕ

[

cos(±ϕ∓ Φ− 2θ)

+ C(±Φ,±ϕ) ln | sin(±Φ− θ)| + θD(±Φ,±ϕ)
]

,

where
C(Φ,ϕ) = cos(ϕ+ Φ) + cos(ϕ− 3Φ) − 2 cos(ϕ− Φ),

D(Φ,ϕ) = sin(ϕ− 3Φ) − 2 sin(ϕ− Φ) − sin(ϕ+ Φ).
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