
An Almost Perfectly Predictable Process
with No Optimal Predictor

Dariusz Kalociński
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Abstract—A novel kind of a negative result is pre-
sented for the problem of computable prediction. A non-
stationary binary stochastic process is constructed for
which almost surely no effective method of prediction
achieves the infimum of prediction errors defined as the
normalized Hamming distance between the sequence of
predictions and the realization of the process. Yet it is
shown that this process may be effectively predicted almost
surely up to an arbitrarily small error since the infimum
of prediction errors is zero.

I. INTRODUCTION

The question of prediction or forecasting is centuries
old. In information-theoretic setting it was studied in
particular by Shannon in [1]. In this context, ’prediction’
may be explicated in several slightly different ways.
Some authors by ’prediction’ mean experimental es-
timation of unknown conditional probabilities [2]. In
this approach, one may study asymptotic convergence
of the estimator, the vanishing of quadratic difference
between estimates and true probabilities, or use some
other familiar measures such as Kullback-Leibler diver-
gence. Universal estimators exist for sources such as
finite Markov chains or stationary ergodic processes [2].

A different meaning of ’prediction’ may be found in
[3]. Here, at the beginning of each period a predictor is
expected to choose an action from a space of possible
actions. At each moment, a finite number of discrete
observations is available. Using information about these,
the predictor makes a choice of some particular action
such as a guess of a most probable outcome of the
next bit of some binary process. Then, the action is
evaluated according to some appropriate loss function.
The performance is measured by comparing predictor’s
choice with the outcome of the particular realization of
the process in the next period. In particular, this may

simply mean that the predictor guesses the next value in
the realization. In such scenario an elegant loss function
is given by a simple ratio of correct to all predictions.
Such notion was also studied in theoretical computer
science—specifically, in the context of algorithmic ran-
domness and stochasticity [4], [5].

In probabilistic setting, a considerable attention was
given to universal procedures for prediction of wide
classes of stochastic processes. In particular, Algoet [3]
studied prediction of stationary ergodic processes. The
minimum conditional expected loss is bounded from
below by an optimal strategy based on a priori known
probabilities. Since the probabilities are rarely known in
real applications, one may sought universal methods that
are asymptotically optimal for a reasonably large class
of processes. Indeed, such universal predictors exist for
stationary ergodic processes.

The scope of this paper is limited to prediction of
binary processes understood as an effort to guess the
next bit of the process. Of course, what constitutes a rea-
sonable predictor is subject to discussion. For practical
reasons one may choose to limit the scope of interest to
some class of predictors, e.g., finite-state predictors [6],
[7]. Here, it is assumed that a minimal constraint for
predictors is computability as understood in theoretical
computer science and, in particular, in computability
theory (for an introduction to computability theory, see
e.g., [8], [9]). Computability, although restrictive, is a
relatively weak constraint on effectiveness.

Following the requirement of computability, we as-
sume that an effective predictor should be implementable
in a form of a computer program in some programming
language such as C or Python. Note that some of the
known universal prediction schemes are not effective
in this sense. For example, the predictor described in
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[10] requires access to an external source of randomness
and it is not known whether this randomization can be
avoided.

In general, not every computable function is total—
it may not halt for some inputs. It is not clear how to
measure performance of a predictor that is sometimes
undefined. Therefore, we further limit our attention only
to those predictors that are both computable and total.
Such predictors will be called proper predictors. For
proper predictors, prediction is defined for every (finite)
sequence of values. This is satisfied, for example, by
deterministic predictors with finite memory but the class
of proper predictors is not limited to these.

A simple but important observation can be made
about the cardinality of the set of proper predictors.
Every proper predictor may be associated with a program
which computes it. A computer program is a finite string
of letters over a finite alphabet. Therefore, it may be
uniquely coded by a natural number. Consequently, the
set of all predictors is countable. This allows to use
various diagonalization arguments to construct binary
sequences or stochastic processes which are in some
way out of the reach of every proper predictor. Similar
arguments may be made for different problems such as
effective measure estimation. For an example of such
construction see, e.g., [11].

In the sequel of the paper, we will present an example
of a non-stationary binary process of some paradoxical
property. It will be proven that almost surely no proper
predictor is optimal for this process. In other words,
for every proper predictor there exists another proper
predictor which is almost surely better than the former
one. In particular, every predictor is asymptotically worse
than the improper predictor based on the perfect a
priori information about the underlying measure. That
being said, the process in question is far from being
unpredictable. Indeed, we will show that proper pre-
diction suffices to predict the process, almost surely,
with an arbitrarily small error. The present theorem is
an extension of a similar result proven for deterministic
case in [12].

II. PREQUISITIES

Symbol λ denotes the empty string. For non-empty
strings σ ∈ {0, 1}∗, we will write σ = σ1 . . . σn = σn1 ,
where σi ∈ {0, 1} are individual bits. Similarly, for in-
finite sequences x ∈ {0, 1}ω, we will write x = x1x2...,
where xi ∈ {0, 1}. Using these notations, we introduce
the following two definitions.

Definition 1 (predictors). A proper predictor is a total
computable function f : {0, 1}∗ → {0, 1}. An improper
predictor is a total function f : {0, 1}∗ → {0, 1} which
is not computable.

Definition 2 (prediction errors). Let f be an (im)proper
predictor and let σ ∈ {0, 1}∗ be a non-empty string,
σ 6= λ. The prediction error of f on σ is defined as

ς(f, σ) :=
#{1 ≤ i ≤ |σ| : σi 6= f(σi−11 )}

|σ|
(1)

For an infinite sequence x ∈ {0, 1}ω, the prediction
errors of f on x are defined as

ς+(f, x) := lim sup
n→∞

ς(f, xn1 ), (2)

ς−(f, x) := lim inf
n→∞

ς(f, xn1 ), (3)

whereas we write ς(f, x) := ς+(f, x) = ς−(f, x) if the
later two limits are equal.

III. STATEMENT OF THE RESULT

Theorem 1. There exists a binary stochastic process
X = X1X2... such that for every proper predictor f
there is a proper predictor g such that

ς−(g,X) < ς−(f,X) almost surely. (4)

Moreover, for every ε > 0 there exists a proper predictor
f such that

ς+(f,X) < ε almost surely. (5)

The proof of Theorem 1 uses a version of the di-
agonal argument and relies on the fact that the set of
total computable functions (in particular, the set of all
proper predictors) is countable. Thus, we can use some
enumeration of all proper predictors in our construction.
The process will be constructed inductively. At each
step, a different predictor will be under consideration,
selected according to a predefined function p : N → N,
assigning p(n)-th predictor (from a chosen non-effective
enumeration of all proper predictors) to the n-th bit
of the process. The corresponding measure, for bits
assigned to a given predictor, will be defined in a way
that ensures that the predictor almost surely fails at
predicting correctly almost all of those bits. Specifically,
the function p assigning predictors to the bits of the
process will be defined so as to guarantee that the first
predictor in the enumeration will be wrong in the limit
almost surely at least once for every two bits, the second
predictor will be wrong at least once for every four bits,
and so on.
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Crucially, the function p which assigns bits of the
process to predictors has the following property: given a
predictor f , there exists an effective procedure which
recognizes the bits corresponding to the predictor—
namely, those bits where we can expect f to be wrong
for the most of the time. So, we can use this to correct the
prediction by acting inversely to f when needed. In this
way we can guarantee the existence of a better proper
predictor.

On the other hand, a well kwown fact in computability
theory is that the enumeration of all (and only) proper
predictors cannot be effective, that is, it cannot be real-
ized by any computable function. (To see this, assume for
a contradiction that f1, f2, . . . is a computable enumera-
tion of all proper predictors and define a proper predictor
f such that f(wn) = 1 − fn(wn), where wn is the n-
th binary string in the bounded lexicographical order.
Clearly, f is a proper predictor but it is not in the list
f1, f2, . . . .) Since there is no computable enumeration
of all proper predictors, we cannot use the correction
procedure to all proper predictors. This ensures that
no predictor is optimal and perfect (i.e., no predictor
achieves the prediction error equal 0).

But assigning predictors to infinitely many bits in ade-
quately sparse way and setting appropriate probabilities,
we can also ensure that the process may be predicted
with an arbitrarily small error. This will follow from the
fact that you can take an arbitrary finite number of proper
predictors, use them as subprocedures and act inversely.

IV. PROOF OF THEOREM 1

We begin with this auxiliary observation.

Lemma 1. For every even number i > 0 there exist
unique integers k ≥ 1 and n ≥ 0 such that

i = (1/2 + n)2k. (6)

Moreover, i is odd if and only if k = 1.

Let h1, h2, . . . be an (uncomputable) listing of all
proper predictors. We start by defining an assignment
p : N → N, so that the predictor hp(i) will be assigned
to the i-th random bit of the process X . By Lemma 1,
for each natural number i there are unique integers k ≥ 1
and n ≥ 0 such that

i = (1/2 + n)2k.

We set p(i) := k. It is easy to verify that for each k,
the predictor hk is assigned to a bit of the process X
once per 2k bits. We will use this observation later on.

Table I shows in a visual way how the bits of process
X are assigned to the predictors.

Now, we proceed to construct the probability distribu-
tion of process X inductively. Firstly, set

P (X1 = hp(1)(λ)) = 1.

Subsequently, we set iteratively for i ∈ N that

P (Xi+1 = hp(i+1)(σ)|Xi
1 = σ) =

1

(i+ 1)2
.

In other words, the probability that hp(k) makes a correct
prediction on k-th bit is equal to 1/k2. Now, let i1, i2, . . .
be all natural numbers such that for some m,

m = p(i1) = p(i2) = . . .

Observe that∑
i∈{i1,i2...}

P (hm correctly predicts i1-th bit) <∞.

Hence, by the Borel-Cantelli lemma, predictor hm is cor-
rect on finitely many bits with indices from {i1, i2, . . .}
almost surely.

Observe that in+1 − in = 2m. Consequently, we have

ς−(hm) > 2−m almost surely.

We will construct a predictor g which is almost surely
better than hm. We know on which bits predictor hm
is correct only finitely many times and we know that
these bits are placed once per every 2m bits. Since we
can effectively compute the indices of these bits, we can
use that information to alter the prediction when it is
desirable. Let for all σ ∈ {0, 1}∗

g(σ) = h(σ) iff p(|σ|) 6= m.

Note that on bits with indexes from {i1, i2, . . .} predictor
g is wrong only finitely many times while predictor
hm is correct only finitely many times (almost surely).
Moreover, on the rest of the bits these predictors always
agree. Hence

ς−(g,X) = ς−(hm, X)− 2−m almost surely.

Since m was chosen arbitrarily, this completes the proof
of the first part of Theorem 1.

To demonstrate the second part of Theorem 1, we will
show that for every ε > 0 there is a predictor f such that

ς+(f,X) < ε almost surely.

Fix an ε > 0. Let k > 0 be the smallest number such
that

2−k = 1−
k∑
i=1

1

2i
< ε.
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TABLE I
THE ASSIGMENT OF RANDOM BITS Xi OF THE PROCESS TO PREDICTORS hk

h1 −→ · X1 · X3 · X5 · X7 · X9 · X11 · X13 · . . .
h2 −→ · · X2 · · · X6 · · · X10 · · · · . . .
h3 −→ · · · · X4 · · · · · · · X12 · · . . .

...

We will construct a predictor f such that

ς+(f,X) ≤ 2−k almost surely.

We already know that, in the limit, the first predictor h1
is almost surely wrong at least on the half of the bits,
the second predictor h2 is almost surely wrong at least
once for every four bits, and so on. We can compute
the indexes on which this happens. We will require that
f makes a different prediction than h1, . . . , hk on the
corresponding bits. This will guarantee that almost surely
f is asymptotically correct at least on fraction

1− 2−k =

k∑
i=1

1

2i

of the bits. To be precise, we set

f(σ) =

{
1− hp(|σ|)(σ) p(|σ|) ≤ k,
0 otherwise.

Since k is finite and we can compute p(|σ|) for every σ,
f is a proper predictor. Consequently,

ς+(f,X) ≤ 2−k < ε almost surely.

V. CONCLUSIONS

In this paper, we have constructed a binary stochastic
process with two important properties. On the one hand,
the process may be effectively predicted very well, up
to an arbitrarily small prediction error. Indeed, for a
given positive threshold ε, there exists a proper (i.e.,
total computable) predictor with a prediction error almost
surely smaller than ε. On the other hand, no such
predictor is optimal. Indeed, for any proper predictor,
there is another proper predictor with an almost surely
smaller prediction error. Consequently, the constructed
process escapes any effective method of prediction while
being arbitrarily well predictable.

The assumption of effectiveness plays an important
role in our construction. Firstly, proper predictors form
a countable set which allows us to use diagonalization
within a discrete infinite binary process. Secondly, proper
predictors, being computer programs, are closed on
subroutinization and complementation. Subroutinization

means that any finite number of proper predictors can
be made into a new proper predictor that inherits the
behaviour of its subroutines. Closure on complementa-
tion guarantees that flipping the behaviour of a proper
predictor yields another proper predictor (in this context,
it is perhaps worth noting that closure on complementa-
tion is not common to all computing devices—consider,
for example, non-deterministic pushdown automata [8]).
These two features are used when it is demonstrated that
one can predict the process up to an arbitrary small error.
Thirdly, no enumeration of proper predictors is effective
which essentially leads to non-optimality of all predictors
for the constructed process.

It seems, however, that any model of computation
that shares the above properties should be prone to
a construction similar to the one presented here. For
example, it seems that restricting predictors to determin-
istic finite-state automata should yield a similar result.
Another interesting point is that the process constructed
in this way reflects an inherent constraint of a given
model of sequential prediction in general. Although
the constructed process is not optimally predictable by
any predictor from the predefined set of admissible
prediction strategies, there is a predictor outside this set
that can predict the process with zero error. However,
such a predictor requires more computational power.
In the present paper, the stochastic process in question
is random and not effectively computable, while the
predictors are deterministic. Hence, it is reasonable to
ask for similar results for nondeterministic prediction,
for example predictors giving answers according to some
(computable) measure. Again, given sufficiently strong
model of prediction, similar diagonalization argument
may be applied.
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