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Abstract: The present work is aimed to investigate the capability of the discrete element method
(DEM) to model properly wave propagation in solid materials, with special focus on the determination
of elastic properties through wave velocities. Reference micro–macro relationships for elastic
constitutive parameters have been based on the kinematic hypothesis as well as obtained numerically
by simulation of a quasistatic uniaxial compression test. The validity of these relationships in the
dynamic analysis of the wave propagation has been checked. Propagation of the longitudinal and
shear wave pulse in rectangular sample discretized with discs has been analysed. Wave propagation
velocities obtained in the analysis have been used to determine elastic properties. Elastic properties
obtained in the dynamic analysis have been compared with those determined by simulation of the
quasistatic compression test.
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1. Introduction

Wave propagation is a fundamental phenomenon which is encountered frequently in different
natural processes, for instance, earthquakes, and engineering problems such as non-destructive testing
or structures subjected to impact loading. A range of numerical schemes are used in literature
to discretize the wave equation in space and investigate the wave propagation phenomenon, e.g.,
finite different schemes as elastodynamic finite integration technique [1,2] and local interaction
simulation approach [3], finite element method [4], spectral element method [5], discontinuous
Galerkin method [6], or boundary element method [7]. The discrete element method (DEM) is
often used for the analysis of different problems of geomechanics involving wave propagation [8–10].
Owing to its simplistic mathematical framework based on Newtonian equations of motion, the DEM
has emerged as a numerical tool of frequent choice for investigating the systems with inhomogeneities,
or discontinuities existing in the material or appearing under loading. Although the main reason
to use the DEM in such problems is not its capability to represent elastic waves, but this feature is
important since wave propagation is an inherent phenomenon in any dynamic problem.

In the DEM, a material is represented by a large assembly of discrete elements interacting with
each other by contact. Various contact laws representing physical effects such as elasticity, viscosity,
damage and friction [11–14] can be used to define the inter-particle contact interactions. It is the
cumulative behaviour of these micro level interactions that determine the bulk properties of the
material. Perhaps, the most important advantage of DEM with respect to the previously mentioned
methods is the ability to investigate the physical phenomena occurring at the micro level and its
relationship with the macroscopic behaviour. It gives an advantage to DEM over other methods in
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modelling problems of practical nature because the expected behaviour of a system can be obtained
numerically, simply by choosing appropriate microscopic parameters.

The influence of the particle level interaction in the DEM on macroscopic characteristics of wave
propagation has been studied by many authors, for instance, Sadd et al. in [8], studied the effects
of contact laws on wave attenuation and dispersion behaviour of granular material, whereas in [9]
Sadd et al. mainly focused on studying the influence of material microstructure on wave propagation
behaviour. Mouraille and Luding [10] investigated dispersion and frequency dependence of wave
propagation properties of a regular granular media by exploiting micro–macro transition [15] between
particle level interactions and global behaviour. In [16], O’Donovan and O’Sullivan presented a
detailed study of the wave velocities and inter-particle contact stiffness using an ideal and relatively
simple hexagonal assembly of uniform sized particles. O’Donovan et al. compared experimental
results on a model cubical cell of soil with DEM and continuum analysis in [17] and hence was limited
only for particular material properties.

In the above mentioned studies, wave propagation in cohesionless granular media has been
considered. Propagation of seismic waves in a cohesive material (an intact rock) has been simulated by
Toomey and Bean [18] using a regular hexagonal configuration of circular discs. The results have been
compared with a high-order finite difference solution of the wave equation. Propagation of elastic
waves in rocks and material dynamic properties have been investigated using discrete element particle
models by Resende et al. [19]. As a matter of fact, modelling of wave propagation is an inherent part
of all discrete element simulations of any problem involving dynamic loading, such as blasting [20],
rock cutting [21,22], or rock fragmentation [23].

Micro–macro relationships are essential in material modelling with the DEM. A standard
procedure consists in the calibration of the microscopic (contact) model simulating a laboratory
quasi-static strength test, such as unconfined compression, shear, Brazilian, or triaxial compression
test and apply the calibrated model to simulation of the investigated problem, cf. [21]. It is not always
possible to verify if the effective macroscopic properties are represented properly in the discrete
element model. The wave propagation problem gives such a possibility. Propagation of ultrasound
waves is commonly used as a measurement technique to determine elastic properties. We will exploit
the analogous possibility in the numerical analysis to verify if the micro–macro relationships for elastic
constants obtained in the simulation of wave propagation correspond to the relationships determined
by other methods.

This work presents 2D discrete element modelling of elastic wave propagation in a rock-type
cohesive material. Performance of an irregular disc configuration in the simulation of longitudinal and
shear elastic waves will be investigated for different values of the shear to normal contact stiffness
ratio. Two separate cases will be investigated for the longitudinal mode—propagation in a bulk solid
and propagation under uniaxial stress conditions e.g., in a bar. Numerical results will be compared to
theoretical predictions for equivalent macroscopic elastic properties determined using the micro–macro
relationships obtained by simulation of the uniaxial compression test.

The outline of the paper is as follows. Basic notions of elastic wave propagation are given in
Section 2. The formulation of the discrete element method is briefly described in Section 3. Micro–macro
constitutive relationships in the DEM have been introduced in Section 4. The micro–macro relationships
for elastic properties, Young’s modulus, shear modulus, and Poisson’s ratio, have been determined
theoretically and numerically by simulation of the uniaxial compression tests in Section 5. Finally,
the results of DEM simulation of the elastic wave propagation have been presented in Section 6. The
macroscopic elastic properties in the discrete model have been evaluated based on the longitudinal
and shear wave velocities. The corresponding micro–macro relationships have been compared with
those obtained by the simulation of the uniaxial compression test (UCT).
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2. Basic Notions of Elastic Wave Propagation

An elastic wave in a solid body can propagate in two modes, in the form of the longitudinal (also
called compression) and transverse (also called shear) waves. In the longitudinal wave, the motion of
the material points is in the direction of propagation whereas, in the shear wave, the motion of the
material points is in a plane perpendicular to the direction of propagation. Wave propagation velocity,
being one of the main parameters characterizing waves, in solid media depends on elastic constants
viz. Young’s modulus E, Poisson’s ratio ν, and shear modulus G, with the following relationships [24]:

cbulk
l =

√
E(1− ν)

ρ(1 + ν)(1− 2ν)
, (1)

for longitudinal wave velocity, cbulk
l and

cs =

√
G
ρ

=

√
E

2ρ(1 + ν)
, (2)

for the shear wave velocity, cs with ρ denoting the bulk density. Knowing the wave velocities,
the Poisson’s ratio and the Young’s modulus can be deduced by combining Equation (1) with
Equation (2) in the following form:

ν =
2−

(
cbulk

l /cs

)2

2
[
1−

(
cbulk

l /cs
)2
] , (3)

E =
ρ
(

cbulk
l

)2
(1 + ν)(1− 2ν)

1− ν
, (4)

and from the Equation (2), the shear modulus is obtained as:

G = ρc2
s . (5)

The effective macroscopic elastic properties will be determined from the simulations of the bulk
longitudinal and shear wave propagation using Equations (3)–(5).

Alternatively, the elastic properties can be determined combining the simulation of the shear
wave and the simulation of the longitudinal wave propagation under the uniaxial stress conditions
(like in a bar). The relationship for shear wave velocity remains the same as given by Equation (2),
and the longitudinal bar wave velocity cbar

l is given by [25]:

cbar
l =

√
E
ρ

, (6)

The Young’s modulus can be obtained directly from Equation (6):

E = ρ
(

cbar
l

)2
, (7)

and combining relationships (6) and (2) the Poisson’s ratio can be obtained as:

ν = 0.5

(
cbar

l
cs

)2

− 1 . (8)

The shear modulus remains the same as defined by Equation (5).
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3. Formulation of the Discrete Element Method

Numerical simulations have been performed in this work using the discrete element code
DEMPack [26], which has been validated in various applications [21,22,27–29]. The underlying
formulation of discrete element method implementation following main assumptions of Cundall and
Strack [30] is presented below.

3.1. Equations of Motion

The DEM considers the dynamics of a particulate system. In this work, 2D DEM models
employing initially bonded cylindrical particles (discs) have been used. The translational and rotational
motion of the discrete elements is described by means of the Newton–Euler equations of rigid body
dynamics. For the i-th element,

miüi = Fi , (9)

Jiω̇ωωi = Ti , (10)

where ui is the element centroid displacement in a fixed (inertial) coordinate frame x, ωωωi —the angular
velocity, mi—the element mass, Ji— the moment of inertia. Vectors Fi and Ti are respectively composed
of the forces and moments due to the external load F ext

i , due to the contact interaction with adjacent

particles, f c
ij and t c

ij, and due to the external damping, F damp
i and T damp

i :

Fi = F ext
i +

nc
i

∑
j=1

fc
ij + F damp

i , (11)

Ti =
nc

i

∑
j=1

tc
ij +

nc
i

∑
j=1

sc
ij × fc

ij + T damp
i , (12)

where nc
i is the number of elements in contact with the i-th discrete element, and sc

ij is the vector
connecting the centre of mass of the i-th element with the contact point with the j-th element (Figure 1).
In the present work, only the force-type contact interaction will be considered, resulting in zero values
for the interaction moments t c

ij of Equation (12).

f
c

ij

i

h

j

x1

x2

Xj

Xi

R i

R j

n

s
c
ij

Figure 1. Definition of the inter-particle interaction.

The damping terms Fdamp
i and Tdamp

i in Equations (11) and (12) in the present work are of
non-viscous type and are given by:

Fdamp
i = −αt‖Fext

i +
nc

i

∑
j=1

fc
ij‖

u̇i
‖u̇i‖

(13)
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Tdamp
i = −αr‖

nc
i

∑
j=1

sc
ij × fc

ij‖
ωωωi
‖ωωωi‖

(14)

where αt and αr, are respective damping factors for translational and rotational motion.

3.2. Time Integration Scheme

A second order explicit central difference scheme [31] is employed to integrate Equations (9)
and (10). For translation motion, the time integration operator at the n-th time step is given as:

ün
i =

Fn
i

mi
, (15)

u̇n+1/2
i = u̇n−1/2

i + ün
i ∆t, (16)

un+1
i = un

i + u̇n+1/2
i ∆t. (17)

Similarly, the time integration scheme for the rotational motion can be formulated as:

ω̇n
i =

Tn
i

mi
, (18)

ωn+1/2
i = ωn−1/2

i + ω̇n
i ∆t. (19)

If required, the rotational configuration can be determined, however, for the disc elements used in this
work, the evaluation of rotational configuration is not essential.

The explicit time integration scheme used in DEM imposes a limitation on the time step due to
the conditional numerical stability. The time step ∆t must not be larger than the critical time step ∆tcr,

∆t ≤ ∆tcr , (20)

which is determined by the highest natural frequency of the system, ξmax as,

∆tcr =
2

ξmax
. (21)

The highest frequency ξmax can be evaluated by solving the eigenvalue problem defined for the entire
system of connected particles, however, this would be computationally expensive. Analogously to the
standard simplification proposed for the explicit FEM [32], the maximum frequency of the full system
in the DEM can be estimated by natural frequencies of subsets of connected particles surrounding each
particle, cf. [33],

ξmax ≤ max ξ
(i)
max (22)

where ξ
(i)
max is the maximum natural frequency of the system of connected particles surrounding the

i-th particle. The problem of the critical time evaluation can be simplified further by considering
equivalent single degree mass–spring systems with the natural frequency

ξ(i) =

√
k(i)eff
mi

(23)

where k(i)eff is the effective stiffness governing the motion of the i-th particle. Hence, the limit on the
time step can be given by

∆t ≤ min 2
√

mi

k(i)eff

(24)
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The effective stiffness k(i)eff depends on the normal and tangential contact stiffnesses, the number of
particles connected to the i-th particle as well as contact directions, cf. [33]. In practice, the time step
can be estimated approximately taking, cf. [34]

∆t ≤ α

√
mmin

kmax
(25)

where mmin is the minimum mass and kmax is the largest normal or tangential contact stiffness and α

is the user specified parameter accounting for multiple contacts for each mass. For regular packings
of equal particles with the same stiffness for all the contacts the parameter α can be determined
analytically [33]. For irregular packing a safe value of the parameter α can be based on the results of
numerical simulations [34].

3.3. Contact Model

The formulation of the contact model employs the decomposition of the contact force between
two elements fc into the normal and tangential components, fn and ft, respectively:

fc = fn + ft = fnn + ft , (26)

where n is the unit normal vector at the contact point (Figure 1). The normal and tangential contact
forces can be evaluated assuming different models [12,35]. Granular materials are usually modelled
assuming cohesionless frictional contact [36], while rock-like materials, as well as various other
materials, require cohesive contact models [13]. The present work has been focused on the elastic
behaviour of the materials modelled with bonded particles, therefore a cohesive contact model is
presented. Nevertheless, the formulation presented is valid for a cohesionless contact model, as well.

An initial bonding between the neighbouring particles is assumed. The bonds are established
between the neighbouring particles i and j, if the gap between the particles g satisfies the condition:

g ≤ g0
max (27)

where g0
max is a tolerance in the contact verification and the gap g is given by

g = ‖xj − xi‖ − Ri − Rj (28)

In the soft contact approach used here, the impenetrability condition is satisfied approximately and a
certain overlap between the contact particles h is allowed such that,

h = −g > 0 . (29)

The normal and tangential particle interactions are often modelled by linear springs connected in
parallel with dashpots, providing an additional mechanism to dissipate contact oscillations. However,
in this work the main focus is to investigate the elastic wave propagation, therefore the elastic bonds
are assumed here and no additional dissipative mechanisms in the contact model are taken into
account (Figure 2). The normal and tangential contact force components are evaluated assuming the
linear relationships:

fn = kng , (30)

ft = kt ut , (31)

where kn is the interface stiffness in the normal direction, kt—interface stiffness in the tangential
direction, and ut—the relative displacement at the contact point in the tangential direction. The relative
tangential displacement ut must be evaluated incrementally, cf. [33]:
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un+1
t = un

t + ∆ut (32)

where un
t is the vector of the relative tangential displacement from the previous time step rotated to

the present contact plane and ∆ut is the incremental relative tangential displacement

∆ut = vn+1/2
rt ∆t (33)

with vn+1/2
t being the relative tangential velocity at the contact point determined as

vn+1/2
rt = (vc

r)
n+1/2 − vn+1/2

rn n (34)

where (vc
r)

n+1/2 is the relative velocity at the contact point and vn+1/2
rn its projection on the

normal direction:
vn+1/2

rn = (vc
r)

n+1/2 · n (35)

Cohesive bonds are broken instantaneously when the interface strength is exceeded in the
tangential direction by the tangential contact force or in the normal direction by the tensile contact force

fn ≥ Φn (36)

‖ft‖ ≥ Φt (37)

where Φn in the interface strength in the normal direction, and Φt the interface strength in the tangential
direction. After decohesion the contact is treated assuming a standard contact model with Coulomb
friction. The normal contact force can be compressive only (Fn ≤ 0) and the tangential contact force is
limited by µ| fn|

‖ft‖ ≤ µ| fn| (38)

where µ is the Coulomb friction coefficient.

kt

kn

Figure 2. Rheological scheme of the bonded particle interaction model.

4. Micro–Macro Relationships

Obtaining a required macroscopic behaviour by using suitable interparticle contact model and
relevant parameters is one of the main difficulties in the DEM. The effect of microscopic parameters
in the DEM on macroscopic response have been investigated considerably in literature [37–39]. The
present work is aimed to investigate the micro–macro relationships between elastic macroscopic
properties defined in terms of effective elastic moduli and microscopic DEM parameters. It has
been widely indicated in the literature that the macroscopic stiffness parameters depend upon the
microscopic parameters such as normal and tangential contact stiffness, kn and kt, respectively, particle
size R̄, porosity, e, coordination number [40]. The micro–macro relationships in the DEM can be
obtained using various theoretical [41] or numerical [42] methods.
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4.1. Analytical Micro–Macro Relationships

Effective macroscopic properties of granular materials can be estimated in terms of
micromechanical parameters using the kinematic Voigt or static Reuss hypotheses [43]. The kinematic
assumption of uniform strain gives the following analytical formulae for the Young’s modulus and
Poisson’s ratio for the isotropic packing of equal sized cylindrical discs [41]:

E =
4NcR2kn

V
· kn + kt

3kn + kt
, (39)

ν =
kn − kt

3kn + kt
, (40)

where Nc is the total number of inter particle contacts in the volume V. For the non-uniform particle
sized assembly such as used in this work, the arithmetic mean of the radii is generally used. The
specimen volume V can further be expressed in terms of the particle volume, Vp and specimen porosity
e as follows:

V =
NpVp

1− e
(41)

where Np is the number of particles in the specimen and

Vp = πR2t (42)

for the disc particle with the thickness, t. Thus, by taking into account Equations (41) and (42),
the Equation (39) can be written as:

E =
2knnc(1− e)

πt
· kn + kt

3kn + kt
(43)

where nc is the coordination number, a parameter defined as an average number of contacts per particle,

nc =
2Nc

Np
. (44)

By rearranging Equation (43), we get the micro–macro relationship for the Young’s modulus in the form,

Eπt
2knnc(1− e)

=
kn + kt

3kn + kt
. (45)

4.2. Numerical Micro–Macro Constitutive Relationships

Micro–macro constitutive relationships can be obtained numerically by performing the DEM
simulations of laboratory tests, such as the unconfined compression test [44], triaxial test [45], Brazilian
test [40], or shear test [46]. Dimensional analysis with the Buckingham π-theorem provides a suitable
framework to establish the numerical micro–macro relationships from the DEM simulations in the
dimensionless form [44,47].

According to [42] the dimensionless micro–macro constitutive relationships for the Young’s
modulus and Poisson’s ratio can be proposed in the following form:

Et
kn

= ΨE

(
kt

kn
, e
)

(46)

ν = Ψν

(
kt

kn
, e
)

(47)

where ΨE and Ψν are certain scaling functions of dimensionless parameters kt/kn and porosity e.
Following [48] the effect of the specimen porosity and its characteristics can be taken into account
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using the results of micromechanical considerations expressed by Equations (40) and (45). Thus,
the dimensionless (46) and (47) can be rewritten as follows

Eπt
2knnc(1− e)

= Ψ̂E

(
kt

kn

)
(48)

ν = Ψ̂ν

(
kt

kn

)
(49)

where Ψ̂E and Ψ̂ν are scaling functions of the dimensionless parameter kt/kn.

5. Determination of the Micro–Macro Relationships

The dimensionless micro–macro relationships (48) and (49) will be determined numerically by
simulation of the uniaxial compression test (UCT) and compared with the analytical ones given by
Equations (40) and (45), which have been derived on the basis of Voigt’s kinematic hypothesis.

Figure 3 shows a square sample 50 mm by 50 mm discretized with 4979 disc shaped elements
of nonuniform size with an average radius of 0.370 mm, the maximum and minimum radii being
0.652 mm and 0.218 mm, respectively. The particle packing is characterized by the coordination
number, nc = 5.8 and porosity e = 0.096. The loading has been introduced by the flat plates moving
with a constant velocity 5 mm/s and compressing the specimen through the contact with its top and
bottom sides. The microscopic parameters used in these simulations have been the following: particle
density ρ = 2000 kg/m3, normal contact stiffness kn = 7× 1010 N/m. Cohesive bonds strengths
φn = φt = 2.9× 104 N and Coulomb friction coefficient µ = 0.83 have been assumed. Additionally,
a non-viscous background damping has been used in this example assuming the damping factors
αt = αr = 0.2. Simulations have been conducted for values of the tangential to normal contact stiffness
ratio kt/kn ranging between 0.0 to 1.0 in steps of 0.1, obtained by changing the tangential contact
stiffness kt for each simulation run.

Figure 3. Uniaxial compression test (UCT) of an irregular configuration of nonuniform size particles
used for establishing dimensionless constitutive relationships.

Figure 4 presents the macroscopic stress–strain curve for one of the analyses.
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Figure 4. The stress-strain curve for the uniaxial compression numerical test for kt/kn = 0.5.

The stress–strain curve has been used to determine the macroscopic Young’s modulus E:

E =
∆σyy

∆εyy
(50)

by taking the stress range from 0 to 50% of the maximum stress level in the considered simulation.
The macroscopic Poisson’s ratio has been calculated as

ν = −∆εxx

∆εyy
(51)

where the increments of the strain components correspond to the range used in the determination of
the Young’s modulus.

The macroscopic stress, σ has been evaluated in this work by using an averaging procedure
involving the internal contact forces in the RVE [43]:

σ =
1

VRVE

Nc

∑
c=1

fc ⊗ Lc (52)

where RRVE is the volume of RVE which in the present case is assumed to be the volume, V of
the sample, and Nc is the number of contacts in the RVE. fc denotes the contact force vector at the
contact c, whereas Lc is the vector connecting centroids of two contacting particles and known as the
branch vector.

The macroscopic strain tensor for the discrete element assembly has been calculated using the
procedure proposed in [40]. Averaging is performed over a triangular mesh generated over the centres
of the particles forming the specimen. This is a two level averaging procedure. First, a constant strain
εk in all the triangles are determined using the formula derived from the averaging equation:

εk =
1
Sk

∫
Sk

εdS , (53)

where Sk is the area of an elementary cell. Applying the divergence theorem, the surface integral in
Equation (53) can be transformed into the line integral
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∫
Sk

εdS =
1
2

∫
Lk

(u⊗ n + n⊗ u)dL , (54)

where Lk is the closed boundary of the triangular element, u—the displacement field and n—the
unit normal vector outward to the element. The line integral in Equation (54) is evaluated in terms
of nodal displacements and geometric parameters characterizing the triangular element. Having
determined the strain εk

ij in each element the average strain tensor in the whole specimen is obtained
by the weighted averaging

ε̄ =
1
S ∑

k
Skεk . (55)

With known porosity e, normal contact stiffness kn, coordination number nc, unit particle thickness
t, and the Young’s modulus determined from Equation (50), the scaling function Ψ̂E for the given ratio
kt/kn can be calculated according to Equation (48). The values of the scaling function Ψ̂ν defined by
Equation (49) are obtained directly from Equation (51). The values of the dimensionless parameter
involving the Young’s modulus and Poisson’s ratio for all the simulated cases in the full range of the
ratio kt/kn have been plotted in Figures 5 and 6, respectively.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  0.2  0.4  0.6  0.8  1  1.2

E
 π

/2
k n

n c
(1

-e
) 

kt/kn

Analytical
Numerical - UCT

Figure 5. Dimensionless micro–macro relationship for the Young’s modulus as a function of ratio
kt/kn.
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 0  0.2  0.4  0.6  0.8  1  1.2

ν
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Numerical -UCT

Figure 6. Dimensionless micro–macro relationship for the Poisson’s ratio as a function of ratio kt/kn.

The numerical values have been compared with the analytical predictions according to
Equations (40) and (45), which have been derived on the basis of Voigt’s kinematic hypothesis. The
close agreement between analytical and numerical values of dimensionless elastic parameters observed
here verifies the correctness of dimensionless micro–macro relationships obtained in a static unconfined
compression test simulation.
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6. Simulation of the Wave Propagation

6.1. Discrete Element Simulation Setup

The propagation of the plane elastic longitudinal and shear waves has been simulated using a
rectangular sample (cf. Figure 7) discretized with 682 bonded disc elements with parameters shown in
Table 1. Simulations have been performed for the ratio kt/kn ranging between 0.0 to 1.0 in steps of 0.1.
Particles forming the left edge of the sample are free, whereas the right edge of the sample is fixed.
Longitudinal waves have been simulated for propagation in a bulk medium and in a bar. For the bulk
model, the elements comprising the top and bottom edges are allowed to move only in the direction of
wave propagation, whereas free boundary conditions have been applied at the top and bottom edges
to obtain uniaxial stress condition for simulating the longitudinal bar wave propagation. The periodic
boundary conditions have been imposed for these edges for simulation of the shear wave. The wave
impulse has been induced by assigning initial displacements to the particles on the free edge using the
following function:

u0
i=x,y = A cos

(
2πx

L
+ 1
)

(56)

where the position of the particles in x-direction is bounded within, 0 ≤ x ≤ L/2 in reference to the left
edge of the sample. An amplitude A = 0.01 mm and wavelength L = 8 mm are assumed, resulting in
number of elements per wavelength for the maximum particle radius, Rmax = 0.145 mm approximately
equal to 28 (L/(2× Rmax)). Thus it was ensured that the recommended 20 elements per wavelength
are used analogously to the FEM [49]. The initial displacements in the x direction have generated the
longitudinal wave, while the initial displacements in the y direction have been set to induce the shear
wave. Wave propagation has been simulated assuming zero damping conditions. Breakage of cohesive
bonds has been impeded by setting very high values of bond strength.

Figure 7. Discrete element sample used in numerical simulations of wave propagation. Disc elements
in green color indicate the nodes used to measure the wave velocity in the sample.

Table 1. Parameters of discrete element method (DEM) sample used in numerical studies of wave
propagation.

Symbol Parameter Value Units

Np no. of particles 682 -
Rmax. max. radius 0.145 mm
Rmin. min. radius 0.1 mm
l sample length 16.54 mm
w sample width 2.3 mm
e porosity 0.11 -
ρp particle density 2000.0 kg/m3

ρavg. sample average density 1784.26 kg/m3

kn normal contact stiffness 1 × 1010 N/m



Materials 2019, 12, 4241 13 of 22

6.2. Numerical Results

Figures 8 and 9 show the propagation of the longitudinal wave pulse in a bulk solid and in a bar,
respectively, in terms of particle displacement vectors at different time steps for the ratio kt/kn = 0 .
The shear wave pulse propagation in the discrete sample for the ratio kt/kn = 0 in terms of particle
displacement vectors at different time steps is shown in Figure 10.
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Figure 8. Longitudinal bulk wave propagation through DEM sample. Snapshots of particle
displacement vectors captured at time—(a) t = 0 s, (b) t = 3.187× 10−6 s, (c) t = 5.683× 10−6 s,
(d) t = 8.822× 10−6 s.



Materials 2019, 12, 4241 14 of 22

2.00·10
-5

1.78·10
-5

1.56·10
-5

1.34·10
-5

1.12·10
-5

8.87·10
-6

6.67·10
-6

4.45·10
-6

2.23·10
-6

0.00

(m)

(a)

(m)

9.85·10
-6

8.61·10
-6

7.37·10
-6

6.13·10
-6

4.89·10
-6

3.66·10
-6

2.42·10
-6

1.18·10
-6

-5.85·10
-8

-1.30·10
-6

(m)

(b)

9.47·10
-6

8.25·10
-6

7·0210
-6

5.79·10
-6

4.56·10
-6

3.33·10
-6

2.10·10
-6

8.76·10
-7

-3.52·10
-7

-1.58·10
-6

(m)

(c)

2.20·10
-6

9.09·10
-7

-3.86·10
-7

-1.68·10
-6

-2.97·10
-6

-4.27·10
-6

-5.57·10
-6

-6.86·10
-6

-8.16·10
-6

-9.45·10
-6

(m)

(d)

Figure 9. Longitudinal bar wave propagation through DEM sample. Snapshots of particle displacement
vectors captured at time—(a) t = 0 s, (b) t = 3.187× 10−6 s, c) t = 5.683× 10−6 s, (d) t = 8.822× 10−6 s.
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Figure 10. Shear wave propagation through DEM sample. Snapshots of particle displacement vectors
captured at time—(a) t = 0 s, (b) t = 5.85× 10−6 s, (c) t = 1.184× 10−5 s, (d) t = 1.496× 10−5 s.
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Figure 11. Evolution of x-displacement with time for nodes A and B cf. Figure 7 at longitudinal bulk
wave propagation.
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Figure 12. Evolution of x-displacement with time for nodes A and B cf. Figure 7 at longitudinal bar
wave propagation.
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Figure 13. Evolution of y-displacement with time for nodes A and B (cf. Figure 7) at shear
wave propagation.

The peak-to-peak method has been used to evaluate numerical wave velocities from the evolution
of particle displacements with respect to time. Displacement time graphs for selected particle pairs for
the longitudinal bulk and bar wave have been plotted in Figures 11 and 12, respectively. Displacement
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time graph for selected particle pairs for the shear wave has been plotted in Figure 13. The time ∆t
taken by the wave to travel between chosen nodes has been shown in these plots. An average of
velocities for five pairs of discrete elements (highlighted with green color in Figure 7) has been used
as the velocity for a particular kt/kn ratio. From the DEM simulations results shown in Figures 8–13,
it can be observed that the longitudinal bulk wave pulse travels with the fastest velocity and the shear
wave pulse propagates with the lowest velocity amongst all the three cases. This verifies that in fact by
using the DEM the expected wave propagation behaviour can be reproduced. The computational cost
(CPU time) for simulating wave propagation cases investigated is quite small. For instance, the CPU
time required to simulate the propagation of shear wave impulse through the length of the discrete
sample shown in Figure 7, is equal to 7 s with kt/kn= 0.0, critical time step ∆tcr = 1.941 × 10−8 s and
required 503 time steps. Dependence of the wave velocities on the stiffness ratio kt/kn has been shown
in Figure 14 for the longitudinal bar wave and in Figure 15 for the shear wave. Numerical results
presented in Figurs 14 and 15 have been compared with analytical ones. Analytical wave velocities
have been determined as functions of the ratio kt/kn using Equations (2) and (6) with macroscopic
Young’s modulus E and Poisson’s ratio ν of the discrete sample deduced from Equations (39) and (40),
respectively for a given stiffness ratio, kt/kn with no. of contacts, Nc = 1852 and average coordination
number, nc = 5.43 for the DEM sample shown in Figure 7. A very good agreement between numerical
results and theoretical predictions can be observed in Figures 14 and 15. Similarly, in Figure 16 where
longitudinal bulk to shear wave velocity ratio, cbulk

l /cs as a function of the ratio kt/kn has been plotted,
overall numerical and analytical results agree well, except a few minor deviations at lower values of
ratio kt/kn. The ratio of longitudinal bar to shear wave velocity, cbar

l /cs as a function of the ratio kt/kn

has been plotted in Figure 17, where a good agreement between numerical and analytical results can
be observed as well.
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Figure 14. Comparison of longitudinal bar wave velocity, cbar
l in DEM sample with analytical results as
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Figure 17. Comparison of longitudinal bar to shear wave velocity ratio, cbar
l /cs in DEM sample with

analytical results as a function of ratio kt/kn.

The wave velocities obtained numerically for different kt/kn ratios have been used to evaluate
macroscopic elastic parameters for the DEM sample. Equations (3) and (4) have been used to determine
effective macroscopic Young’s modulus and Poisson’s ratio from the simulations of the longitudinal
bulk wave propagation. Similarly, macroscopic Young’s modulus and Poisson’s ratio for longitudinal
wave propagation in a bar have been analysed using Equations (7) and (8). Shear modulus for the
transverse wave propagation has been determined from Equation (5). The elastic moduli determined
by DEM simulations of the elastic wave propagation have been plotted as functions of the kt/kn ratio in
Figures 18 and 19 in comparison with the results obtained by simulations of the uniaxial compression
test. The Young’s modulus and Poisson’s ratio corresponding to the simulation of compression test
have been evaluated using the dimensionless scale functions given in Figures 5 and 6, respectively, and
these parameters have been used subsequently in the relationship, G = E/2(1 + ν) for the evaluation
of shear modulus.

A very good agreement between the Young’s moduli obtained through dynamic and quasistatic
numerical simulations in the full range of ratio kt/kn between 0.0 and 1.0 can be seen in Figure 18.
Similarly, a close concurrence between Shear moduli obtained from the dynamic and quasistatic
numerical simulations for the entire range of the ratio kt/kn can be noticed in Figure 19. A certain
deviation of dynamic results from the quasistatic data can be observed in Figure 20 for some values
of the Poisson’s ratio. This can be explained by analysing the form of Equation (3) for the wave
propagation in a bulk solid and Equation (8) for the wave propagation in a bar. It can be deduced that
the numerical evaluation of Poisson’s ratio is highly sensitive to the numerical evaluation of the wave
velocity ratios cbulk

l /cs and cbar
l /cs. Even a small numerical error in the evaluation of wave velocities

leads to the square of the error in Poisson’s ratio calculation. For small values of the Poisson’s ratio
(close to zero) the numerical error can be of the order of the evaluated parameter value.
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Figure 18. Comparison of Young’s modulus obtained using longitudinal bulk wave velocity with shear
wave velocity and longitudinal bar wave velocity with shear wave velocity in DEM sample, with UCT
numerical results as a function of ratio kt/kn.
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UCT numerical results as a function of ratio kt/kn.
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wave velocity and longitudinal bar wave velocity with shear wave velocity in DEM sample, with UCT
numerical results as a function of ratio kt/kn.

7. Conclusions

Numerical simulations have confirmed the capability of the discrete element method to represent
properly phenomenon of the elastic wave propagation in a solid material both in longitudinal and
shear modes. The wave propagation velocities agree well with theoretical predictions. This allows
to use wave velocities to determine elastic macroscopic properties of solid media discretized with
discrete elements. Comparisons with micro–macro relationships obtained numerically by simulations
of the quasistatic compression test show that the values of the Young’s and shear moduli based on the
wave velocities agree very well with those determined by simulations of the quasistatic compression
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test, however, there is a certain difference for the Poisson’s ratio in the range of its low values (lower
than 0.1). Calculation of the Poisson’s ratio in this range is very sensitive to inaccuracies in evaluation
of wave velocities.
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