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A B S T R A C T   

A model of crystal plasticity is developed in which the effects of plastic flow non-uniformity are 
described through the full dislocation density tensor. The micromorphic approach is used in 
which the dislocation density tensor is represented by the curl of an independent constitutive 
variable called microdeformation. The microdeformation tensor is enforced by an energetic 
penalty term to be close to the actual plastic distortion tensor. The curl of microdeformation 
tensor enters the constitutive model in two independent but complementary ways. First, it is an 
argument of the free energy density function, which describes the kinematic-type hardening in 
cyclic non-uniform deformation. Second, its rate influences the rates of critical resolved shear 
stresses, which corresponds to additional isotropic hardening caused by incompatibility of the 
plastic flow rate. The latter effect, missing in the standard slip-system hardening rule, is described 
in a simple manner that does not require any extra parameter in comparison to the non-gradient 
theory. In the proposed model there are two independent internal length scales whose interplay is 
examined by means of 1D and 2D numerical examples of plastic shearing of a single crystal.   

1. Introduction 

The aim of this paper is to examine a crystal plasticity model that combines in a novel way two physically related but conceptually 
and mathematically distinct effects of plastic flow non-uniformity on the material hardening. The first one is due to the influence of the 
dislocation density tensor, being a measure of accumulated geometrical incompatibility of the plastic deformation, on the free energy 
density of the material. In the classical terminology, it leads to kinematic hardening since reverse deformation can reduce this effect to 
zero. The second effect is due to the influence of the current rate of dislocation density tensor, representing incompatibility of the 
current plastic flow rate, on the rate of critical resolved shear stresses. In particular, the rate of average density of the dislocations 
induced by the current slip-rate gradients can be assumed non-negative, which leads to isotropic hardening, also for cyclic de-
formations. The gradient effects are accompanied by the usual anisotropic hardening of a uniformly deformed crystal that encompasses 
self-hardening (diagonal) and latent-hardening (non-diagonal) terms of the slip-system hardening matrix. 

To describe the first effect outlined above, it is proposed to include the full dislocation density tensor, defined by Nye (1953), Bilby 
et al. (1955), Kr€oner (1960), Le and Stumpf (1996), Steinmann (1996) and Cermelli and Gurtin (2001), among others, into the 
constitutive setting. Such strain gradient plasticity models have been developed for instance by Gurtin (2006) and more recently by 
Kaiser and Menzel (2019). The use of the full dislocation density tensor instead of individual densities of geometrically necessary 
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dislocations as done for instance in (Gurtin, 2000; Bayley et al., 2007; Gurtin et al., 2007; Bargmann et al., 2014) is more efficient from 
the computational point of view and contains essential features of strain gradient plasticity as discussed in (Mesarovic et al., 2015; 
Wulfinghoff et al., 2015). Strain gradient plasticity based on the dislocation density tensor can be viewed as a limit case of the microcurl 
model proposed by Cordero et al. (2010) which results from the application of the micromorphic approach by Forest (2009) to gradient 
crystal plasticity. According to the micromorphic theory by Mindlin (1964); Eringen and Suhubi (1964), the material point is endowed 
with new degrees of freedom, namely a second order (generally) non–symmetric tensor called microdeformation, in addition to the 
usual displacement vector. In the microcurl model, this microdeformation and its curl are introduced as constitutive variables in the 
free energy density function. A penalization is introduced such that the microdeformation almost coincides with the plastic distortion 
tensor. As a result the curl of the microdeformation tensor will practically coincide with the usual dislocation density tensor. This 
approach can be regarded as an efficient method to implement strain gradient crystal plasticity in finite element codes. The microcurl 
model was applied to the continuum modelling of grain size effects in polycrystals by Cordero et al. (2012) and to Bauschinger effects 
in laminate microstructures (Forest, 2008; Wulfinghoff et al., 2015). The microcurl model was extended by Alipour et al. (2019) to 
include grain boundary yielding effects. A simplified version of the microcurl model was proposed in (Wulfinghoff and B€ohlke, 2012; 
Wulfinghoff et al., 2013; Erdle and B€ohlke, 2017). Instead of considering a microdeformation tensor, these authors introduce a scalar 
micromorphic variable related to the accumulated plastic slip, and its gradient into the free energy density function. The advantage of 
this model is the reduction of complexity from the computational mechanics point of view. The drawback is that this enhancement 
does not induce size-dependent back-stress effects in contrast to the original microcurl model. The full micromorphic deformation 
tensor will therefore be used in the present work. 

To describe the second effect, i.e. of the current incompatibility of the plastic flow rate on the isotropic part of the hardening rate, 
the approach proposed recently by Petryk and Stupkiewicz (2016) is used. Incompatibility of the plastic distortion rate is measured by 
the effective slip-gradient rate, _χ, defined as a norm of the rate of the dislocation density tensor. The associated evolving internal length 
scale, ℓ, has been derived from phenomenological relationships established in the dislocation-based theory of plasticity and expressed 
through standard parameters of a non-gradient hardening law, including the material constants in Taylor’s formula (Taylor, 1934) and 
the current stress and hardening modulus θ. The product θℓ _χ added to the conventional formula for anisotropic hardening rate for a 
single crystal constitutes its simple gradient-enhancement. It has been shown that this modification alone can provide realistic pre-
dictions of the experimentally observed indentation size effect (Stupkiewicz and Petryk, 2016). An evolving length scale was also 
introduced recently into other models of strain gradient plasticity (Dahlberg and Boåsen, 2019; Scherer et al., 2019). 

The present paper extends the earlier works to a novel combination of the ‘microcurl’ model of micromorphic type (Cordero et al., 
2010) and the ‘minimal’ gradient-enhancement of the incremental hardening law (Petryk and Stupkiewicz, 2016). It is distinct from 
the related work by Ry�s and Petryk (2018) which was limited to the Gurtin-type models of gradient plasticity (Gurtin, 2000; Gurtin 
et al., 2007; Bargmann et al., 2014) combined with the gradient-enhanced hardening law. In particular, unlike in the previous works, 
the effective slip-rate gradient _χ is expressed here by a norm of the curl of the micromorphic rate-variable. The numerical treatment 
here is also different since the micromorphic variable acts as an additional degree of freedom of a global type, so that the dual-mixed 
formulation applied in (Ry�s and Petryk, 2018) is not needed here. One advantage of the micromorphic approach to strain gradient 
plasticity is its numerical efficiency due to the introduction of independent degrees of freedom connected at the constitutive level to 
standard mechanical variables, as demonstrated in contributions related to strain localization phenomena by Anand et al. (2012); 
Peerlings et al. (2012). In particular there is no need for front-tracking methods for the interface between plastically loaded zones and 
elastic domains of the structure, in contrast to some strain gradient implementation methods (Liebe et al., 2003). Numerical efficiency 
of the micromorphic-type modelling has recently been confirmed in 3D setting, although only for a scalar micromorphic variable, in 
the study of martensitic phase transformation by Rezaee-Hajidehi et al. (2019). 

The paper is organized as follows. In Section 2 the microcurl model in crystal plasticity is presented in the small deformation 
framework. The field equation and boundary condition for the generalized couple stress tensor are derived in two alternative ways, 
with and without the use of the method of virtual power. In Section 3, the condition for plastic flow is derived using the compatibility of 
actual and virtual dissipation rates. The minimal gradient enhancement of the incremental hardening law with an associated natural 
length scale ℓ is presented along with its adjustment to the micromorphic approach. Sections 4 and 5 contain several numerical ex-
amples which visualise two different effects of plastic flow incompatibility on the material behaviour that come from the gradient- 
dependence of the condition for plastic flow and incremental hardening law. In section 4, 1D examples of plastic simple shear of a 
two-phase laminate and shearing of a constrained strip are analysed, and numerical results are compared to analytical ones. In section 
5 the analysis is extended to 2D finite element examples of cyclic simple shear of a square single crystal and an idealized polycrystal. 
Throughout this paper, the attention is limited to quasi-static isothermal deformation. 

2. The microcurl model 

2.1. Kinematics 

In the small deformation framework adopted in this paper, the spatial displacement gradient, denoted interchangeably as ru �
u�r, is split additively into elastic (He) and plastic (Hp) parts, 

H ¼ He þHp; H ¼ u�r: (1) 

The second-order tensors H, He, Hp are generally non-symmetric and can be decomposed into their symmetric and skew-symmetric 
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parts, 

H ¼ εþω; He ¼ εe þωe; Hp ¼ εp þ ωp; (2)  

respectively. The rate _Hp of plastic distortion of a single crystal reads 

_Hp
¼
X

α
_γαsα �mα ¼

X

α
_γαNα; (3)  

where _γα is the slip rate on the α-th slip system defined by slip direction sα and slip-plane normal mα whose scalar product vanishes to 
ensure plastic incompressibility, sα ⋅mα ¼ 0. As usual, � stands for a tensor product. 

Geometrical incompatibility of a spatial field of Hp (or � He, equivalently) is measured by its curl, commonly called Nye’s tensor 
(Nye, 1953), defined here using the following sign convention 

curlHp :¼ ϵjkl
∂Hp

ik

∂xl
ei � ej ¼ � curlHe; (4)  

where ei denotes an orthonormal basis in Euclidean space R3 and ϵjkl the permutation symbol, with the summation convention for 
repeated indices. 

Following the micromorphic approach (Forest, 2009) that extends the original theory by (Mindlin, 1964; Eringen and Suhubi, 
1964), as a counterpart to Hp a micromorphic variable κp is introduced and treated in the calculations as a global variable corre-
sponding to local Hp. 

2.2. Free energy density 

In the microcurl model of crystal plasticity (Cordero et al., 2010), extended to include local internal variables in analogy to 
(Steinmann, 1996), (Menzel and Steinmann, 2000) and (Aslan et al., 2011), the Helmholtz free energy density function per unit 
volume, ψ , at a given temperature is assumed to have the four arguments: the elastic strain εe, local internal variables ξ ¼ (ξα), the 
relative plastic strain ep :¼ Hp � κp, and Γp as the curl of micromorphic variable κp. In the computational version of the model used in 
this paper, ψ is assumed in the following additive form 

ψðεe; ξ; ep;ΓpÞ ¼ ψeðεeÞ þ ψpðξÞ þ ψmicroðepÞ þ ψcurlðΓpÞ; (5)  

where, using a central dot to denote full contraction of tensors, 

ψeðεeÞ ¼
1
2
εe �C εe; εe ¼ ε � εp;

ψmicroðepÞ ¼
1
2

ep �Hκep; ep ¼ Hp � κp;

ψcurlðΓpÞ ¼
1
2
Γp �AΓp; Γp :¼ curlκp:

(6) 

In the previous functions, the fourth order tensor C is the standard tensor of the elastic moduli determined by two independent 
moduli μ, ν in the isotropic case. For the sake of simplicity, the additional fourth order tensors Hκ and A are characterized by the 
generalized moduli Hκ and A, respectively, assuming Hκ ¼Hκ 1 and A ¼ A 1, where 1 denotes the fourth-order identity tensor operating 
on non-symmetric second order tensors. 

The choice of a quadratic potential ψcurl is justified by micromechanical analyses like the consideration of stacked pile–ups in 
(Baskaran et al., 2010) or direct comparison with discrete dislocation dynamics in (Chang et al., 2016). Other higher order energy 
potentials have been proposed involving the norm of the dislocation density tensor or the logarithm of the norm (Berdichevsky, 2006; 
Le and Sembiring, 2008; Forest and Gu�eninchault, 2013). However, these potentials are associated with singularities which signifi-
cantly complicate the numerical analysis (Wulfinghoff et al., 2015). 

There are two possible interpretations of the Hκ material parameter in ψmicro. It can first be seen as a numerical regularization 
parameter in order to implement strain gradient plasticity in a simple way. It should then take sufficiently large values. It can also be 
regarded as a true material parameter that requires calibration from appropriate experimental or numerical data. For instance, Cordero 
et al. (2012) calibrated values for Hκ so as to reproduce the Hall-Petch relationship from finite element polycrystal simulations, at least 
in a certain range of grain sizes. It involves intermediate values of Hκ that will be explored in the examples of Section 4. 

The term ψp is needed for thermodynamic consistency of the model that includes statistical storage of dislocations, as it represents 
mechanically unrecoverable changes in the residual free energy which do not contribute to isothermal dissipation. Its rate is assumed 
in the form 

_ψp ¼
X

α

∂ψp

∂ξα

_ξα ¼
X

α
pα _γα;

_ξα ¼ ηα _γα; (7)  

which can be given a physical interpretation but may be left unspecified in the calculations, see (Ry�s and Petryk, 2018) and section 3.1 
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for more details. 
Quantities related to partial derivatives of function ψ are as follows 

σ ¼ ∂ψ
∂εe; pα ¼

∂ψ
∂ξα

ηα; s ¼ �
∂ψ
∂ep; M ¼

∂ψ
∂Γp; (8)  

where σ is the (symmetric) Cauchy stress tensor, pα – internal forces, s – the (non-symmetric) microstress tensor, M – the generalized 
couple stress tensor, see section 2.4. The stress σ and negative microstress � s resolved on the α-th slip system are denoted by 

τα :¼ σ �Nα; xα :¼ � s �Nα; (9)  

where τα is the standard resolved shear stress and xα plays below the role of a kinematic hardening component (back-stress). 
The rate of free energy density ψ is calculated straightforwardly as follows 

_ψ ¼ σ � _εe
þ
X

α
pα _γα � s � _ep þM � _Γp

¼ σ � _ε �
X

α

�
τα _γα � pα _γα

�
� s �

 
X

α
_γαNα � _κp

!

þM � _Γp

¼ σ � _εþ s � _κp þM � curl _κp �
X

α
ðτα � xα � pαÞ _γα:

(10) 

The quantity 

πα :¼ τα � xα � pα (11)  

that appears in the above expression for _ψ may be identified with the thermodynamic driving force conjugate to _γα that results from the 
assumed form of the free energy density function ψ. 

2.3. Balance equations 

We consider a continuous deformable body that in the geometrically linear setting occupies a domain V of boundary ∂V in an 
Euclidean space R3. The assumed basic kinematic fields are (Cordero et al., 2010) 

f _u; _κp
g: (12) 

The fields _u and _κp are assumed to be continuous and sufficiently smooth so that their gradients along with the divergence theorem 
have a mathematical sense. Note that the field of slip rates _γα is not treated as a global kinematic variable, due to the fact that the 
proposed theory is based on the full dislocation density tensor (curlκp) instead of the individual GND densities. 

When neglecting body and inertia forces, the power density of internal forces in V is assumed in the following form, consistent with 
Eq. (10), 

pint ¼ σ � r _uþ s � _κp þM � curl _κp; (13)  

and the power density of external contact forces on ∂V as 

pext ¼ t � _uþm � _κp; (14)  

where t is the traction vector and m – the double traction tensor. The respective volume integrals 

Pint ¼

Z

V
pintdV; Pext ¼

Z

∂V
pextdS (15)  

are assumed to be equal, by the virtual power equality (Germain, 1973) 

Pint ¼ Pext (16)  

that is assumed to hold for arbitrary fields of _u and _κp and for every subset Π of V. 
The integral Pint is transformed with the help of the divergence theorem as follows 

Pint ¼

Z

V

�
σ � r _uþ s � _κp þM � curl _κp

�
dV

¼ �

Z

V
divσ � _udV �

Z

V

�
ϵkjlMik;l � sij

�
_κp

ijdV þ
Z

∂V
σijnj _uidSþ

Z

∂V
Mijϵjklnl _κp

ikdS;
(17)  

where n is a unit external normal to ∂V. 
Since equality (16) is assumed to hold for arbitrary fields of _u and _κp then, following (Cordero et al., 2010), we obtain the field 

equations in V 
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divσ ¼ 0; curlM þ s ¼ 0 (18)  

along with the boundary conditions over ∂V 

t ¼ σ � n; m ¼ Mϵ �n (19)  

where (Mϵ)ikl ¼ Mijϵjkl. 

2.4. Dissipation inequality 

By the first law of thermodynamics (for isothermal and quasi-static processes) we have 

_F þ _D ¼ Pext; (20)  

where F ¼
R

Vψ dV is the Helmholtz free energy and _D is the dissipation rate which is non-negative by the second law of thermody-
namics. Based on this and using Eq. (16), the following frequently used local form of dissipation inequality is obtained 

pint � _ψ � 0: (21) 

On taking the time derivative of Eq. (5) in the form (10) but without making use of Eq. (8), it follows that 
�

σ � ∂ψ
∂εe

�

� _εe
�

∂ψp

∂ξ
� _ξ �

�

sþ
∂ψ
∂ep

�

� _ep þ

�

M �
∂ψ
∂Γp

�

� _Γp
þ ðσ þ sÞ � _Hp

� 0: (22) 

Eq. (8)1, (8)3 and (8)4 are recovered if the inequality is required to hold identically, by the usual argument assuming that _εe
; _ep and 

_Γp are unconstrained. On substituting Eqs. (7) and (10) into inequality (22), the intrinsic dissipation rate inequality is expressed in the 
reduced form 

ðσþ sÞ � _Hp
�
X

α
pα _γα ¼

X

α
ðτα � xα � pαÞ _γα ¼

X

α
πα _γα � 0: (23)  

2.5. An alternative approach 

Instead of assuming the form of both internal and external power densities (13) and (14) in advance, one can calculate the 
dissipation rate from Eq. (20) without using Eq. (16). In analogy to (Ry�s and Petryk, 2018), for every subdomain Π ⊆ V the external 
power is taken in the form 

Pext ¼ Pext
0 þ P

ext
m Pext

0 ¼

Z

∂Π
t � _u dS; Pext

m ¼

Z

∂Π
pext

m dS; (24)  

obtained by replacing the last term in Eq. (14) with a yet unspecified micromorphic extension pext
m of the standard mechanical power of 

contact tractions. It is the external power expression which enables classification of continuum theories in a manner separated from 
constitutive assumptions (Del Piero, 2014a,b). On substituting Eqs. (10) and (24) into Eq. (20), the total dissipation rate in the state of 
mechanical equlibrium reads 

_D ¼ Pext
m þ

Z

Π

�X

α
πα _γα � s � _κp � M � curl _κp

�
dV: (25) 

By using the divergence theorem to split the total dissipation rate into the bulk and surface terms, it follows that 

_D ¼ Pext
m þ

Z

Π

 
X

α
πα _γα �

�
sij þ ϵjklMik;l

�
_κp

ij

!

dV �
Z

∂Π
Mijϵjklnl _κp

ikdS: (26) 

The last integrand can be of either sign for any given Mijϵjkl _κp
ik 6¼ 0 since Π and hence the direction of an external normal n to 

boundary ∂Π of Π are arbitrary. This statement for a point on a short boundary segment ∂Π* can be extended, by employing a known 
argument, to the sum of the last two integrals for a sufficiently thin disk Π adjacent to ∂Π* when _κp ¼ 0 on ∂Π \ ∂Π*, so that the 
contribution of the volume integral becomes negligible. To ensure that _D � 0 for all Π ⊆ V and for every field of _κp, the term Pext

m must 
cancel out the above surface dissipation term over ∂Π. This is so if 

pext
m :¼ m � _κp and m :¼ Mϵ �n (27)  

which is in agreement with Eq. (19)2 but has been obtained on another route than in (Cordero et al., 2010). 
On substituting Eq. (27) into Eq. (26), we arrive at the following expression for the dissipation rate 

_D ¼

Z

Π

�X

α
πα _γα � ðsþ curlMÞ � _κp

�
dV: (28) 
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Finally, equality s þ curlM ¼ 0 is obtained if an arbitrary field of _κp is assumed not to affect the dissipation rate. 

Remark 1. The right-hand equations in Eqs. (18) and (19) have been derived above without assuming the specific form (13) of the 
internal power density, and consequently without the need to appeal to the principle of virtual power (16) once the free energy density 
rate has been expressed by Eq. (10). Eq. (18)2 and (19)2 have been obtained instead by using thermodynamic arguments: equation m ¼
Mϵ ⋅n by requiring the surface dissipation term to be always non-negative (and thus to be cancelled out by the external power term), 
and s þ curlM ¼ 0 by assuming that the micromorphic variable rate _κp is not associated with the dissipation rate. Hence, these basic 
equations of the microcurl model (Cordero et al., 2010) have been recovered on another route. 

3. The plastic flow and hardening laws 

3.1. The condition for plastic flow 

Following Ry�s and Petryk (2018), the condition for plastic flow can be derived using the compatibility of the actual and virtual 
dissipation rates. They are distinct in general since the value of the actual one follows from the entropy imbalance while the virtual one 
is defined by a constitutive assumption, cf. (Petryk, 2005). Here, Eq. (23) is treated as an expression for the actual dissipation rate 
density. The virtual dissipation rate is defined pointwise by introducing a dissipation function D of _γα, assumed to be independent of _κp, 

D ¼
X

α
πv

α _γα � 0: (29) 

To encompass both the rate-independent and rate-dependent dissipation, it is assumed that 

πv
α :¼

�
τc

α � jpαj
�
�
�
�
�
_γα
_γ0

�
�
�
�

m

sign _γα τc
α � jpαj; m � 0; (30)  

where τc
α is the critical resolved shear stress on the α-th slip system, strain-rate sensitivity coefficient m > 0 corresponds to rate- 

dependent dissipation and m ¼ 0 to rate-independent dissipation, and pα appears in expression (7) for _ψp. If _ψp describes free en-
ergy increase due to statistical multiplication of dislocations then it is natural to identify _ξα with ð _ραÞS discussed in the next section. 
Accordingly, 

_ξα :¼ ð _ραÞS ¼
1

bλα
j_γαj � 0

∂ψp

∂ξα
� 0 pα :¼

1
bλα

∂ψp

∂ξα
sign _γα pα _γα ¼ jpαk_γαj: (31) 

A field of slip rate _γα is called admissible if it satisfies the requirement 

_D ¼

Z

Π
D dV (32)  

of compatibility of the actual and virtual dissipation rates, separately for each α and for every Π ⊆ V. In view of Eqs. (23) and (29), this 
is equivalent to imposing the pointwise condition. 

πα _γα ¼ πv
α _γα; (33)  

which on substituting Eq. (11) yields the condition for plastic flow 

τα � xα ¼ πv
α þ pα if _γα 6¼ 0: (34) 

On using Eqs. (30) and (31)4, it can be rewritten as follows 

τα � xα ¼ τc
α

�
�
�
�
_γα
_γ0

�
�
�
�

m

sign _γα þ

�

1 �
�
�
�
�
_γα
_γ0

�
�
�
�

m �

pα if _γα 6¼ 0: (35) 

In the limit as m → 0, the last term becomes negligible, and the resulting condition for plastic flow takes the familiar form 

τα � xα ¼ τc
α sign _γα if _γα 6¼ 0 and m ¼ 0: (36) 

Recall that xα is the micromorphic back-stress defined by Eq. (9)2. Eq. (36) is complemented with the inequality constraint 

jτα � xαj � τc
α if _γα ¼ 0 and m ¼ 0: (37) 

The evolution equation for τc
α (i.e. the hardening law) is addressed in the next section. 

Remark 2. The rate-independent condition (36) for plastic flow has not been assumed a priori by analogy to the Schmid law but has 
been derived using the thermodynamic condition (32) of compatibility of the actual and virtual dissipation rates under assumption 
(29). Remarkably, condition (36) is independent of pα, in analogy to the non-gradient case (Petryk and Kursa, 2015), hence pα may be 
left unspecified in calculations. On the other hand, pα is needed in a consistent thermodynamic framework that includes statistical 
storage of dislocations, especially if rate-sensitivity is also encompassed. 
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3.2. The hardening law with slip-rate gradient effect 

This section follows closely Petryk and Stupkiewicz (2016), with the distinction that the role of the effective slip-rate gradient will 
be played by a norm of the micromorphic variable curl _κp. According to the (generalized) Taylor formula (Taylor, 1934), which is one of 
the basic phenomenological laws in the materials science literature on plasticity of metals, an isotropic flow stress τc is a function of the 
total dislocation density ρ, 

τc ¼ τρðρÞ ¼ aμb
ffiffiffiρp ; (38)  

where coefficient a, elastic shear modulus μ and Burgers vector modulus b are given material constants. To determine the rate of τc, the 
rate _ρ (and not ρ itself) is decomposed into the sum of the average density rate ð _ρÞS of statistically generated dislocations, and the average 
density rate ð _ρÞG of dislocations induced by the current slip-rate gradients, 

_ρ ¼ ð _ρÞS þ ð _ρÞG: (39) 

It means that in distinction to the approach by Ashby (1970), Fleck et al. (1994), Nix and Gao (1998) and others, not the existing 
dislocations themselves but rather their current sources are split according to their statistical or geometrical character. Hence, a time 
integral of ð _ρÞG need not define the current density of existing GNDs (geometrically necessary dislocations). 

By adopting the known formula for the rate of statistical accumulation of dislocations (Kocks and Mecking, 2003) in its simplest 
form, it is postulated that 

ð _ρÞS ¼
1
bλ

_γ ¼
1
bλ
X

α
j_γαj or ð _ραÞS ¼

1
bλα
j_γαj; (40)  

where λ denotes the dislocation mean free path, specialized as λα for the α-th slip system, whose inverse is defined as the incremental 
mean length of dislocation stored per area swept. Since the analysis in this paper is limited to small plastic strain with respect to an 
annealed state, annihilation of dislocations and their transport are not included in formulae (40). However, formula (44) below for the 
internal length scale remains valid also if Eq. (40)1 is extended to include another term that corresponds to dislocation annihilation 
(Petryk and Stupkiewicz, 2016). 

The geometrically induced dislocation density rate is postulated in another simple form, 

ð _ρÞG ¼
1
b

_χ; _χ ¼ kcurl _κpk; (41)  

where _χ is the effective slip-rate gradient, assumed here to be represented by the Euclidean norm of a curl of the micromorphic rate- 
variable _κp. In case of cyclic loadings, a time integral of _χ scaled by b cannot be interpreted as the current GND density, rather, as 
the non-decreasing contribution to a total dislocation density coming from the history of incompatible plastic distortion rate. 

Combination of Eq. (39)–(41) with the time derivative of formula (38) defines the contribution of _χ to the rate of the isotropic flow 
stress τc, 

_τc ¼
τ0ρ
bλ
ð _γþ λ _χÞ; τ0ρ :¼

dτρðρÞ
dρ ; (42)  

that is missing in the conventional incremental hardening law. Consistency with the standard formula _τc ¼ θ _γ, where θ is the scalar 
hardening modulus in the non-gradient case, requires that 

_τc ¼ θð _γþℓ _χÞ; where ℓ ¼
τ0ρ
bθ
¼ λ for θ 6¼ 0: (43) 

If function τρ is specified by the Taylor formula (38)2 then the evolving internal length scale ℓ is expressed by 

ℓ ¼ a2μ2

2τcθ
b: (44) 

It is pointed out that only the standard quantities of a non-gradient hardening law appear on the right-hand side of Eq. (44), so that 
no additional assumption is needed to determine ℓ. Moreover, ℓ has a physical interpretation through its direct link to the dislocation 
mean free path λ which is a well-known length-scale parameter in the physically-based dislocation theory of plasticity. 

The conventional incremental hardening law can be expressed as follows 

_τc
α ¼

X

β
hαβj_γβj ¼ _τc þ

X

β
ðhαβ � θδαβÞj _γβj if ​ _χ ¼ 0: (45) 

Assuming that only the isotropic part _τc is influenced by nonzero _χ and substituting Eq. (43), the gradient-enhanced anisotropic 
hardening law is obtained 
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_τc
α ¼

X

β
hαβj_γβj þ θℓ _χ

|{z}
P� S ​ term

¼
X

β
hαβj _γβj þ

a2μ2b
2τc

_χ
|fflfflfflffl{zfflfflfflffl}
P� S ​ term

: (46) 

The last term that includes a ‘natural’ length scale ℓ defined by Eq. (44) will be referred to as ’P–S term’ (Petryk and Stupkiewicz, 
2016). It provides a ‘minimal’ gradient-enhancement of the incremental hardening law as a consequence of Eqs. (38)–(41). Note that 
the coefficient θℓ at _χ varies in time inversely proportional to τc. 

Hardening moduli hαβ are frequently taken in the form 

hαβ ¼ ðϰαβ þ qð1 � ϰαβÞÞθβ; (47)  

with 

ϰαβ ¼

�
1 if mα �mβ ¼ 0;
0 otherwise: (48)  

Here, q is a latent hardening parameter, and θα is a self-hardening parameter for the α-th slip system, defined by (Anand and Kothari, 
1996) 

θα ¼

8
><

>:

θ0

�

1 �
τc

α
τmax

�p

for τc
α � τmax

0 for τc
α > τmax;

(49)  

where θ0, τmax and p are constant parameters, the same for all slip systems. For isotropic counterparts θ and τc the index α is omitted, so 
that 

θ ¼ θτðτcÞ ¼

8
><

>:

θ0

�

1 �
τc

τmax

�p

for τc � τmax

0 for τc > τmax:

(50)  

4. Numerical and analytical 1D examples 

4.1. Shearing of a strip 

In the following section we consider two typical examples of shearing of a strip. The first example concerns plastic simple shear of a 
single crystal with the slip direction and slip plane normal collinear with global x-y ⇔ 1–2 coordinate system as in (Cordero et al., 
2010) and (Aslan et al., 2011). The second example addresses shearing of a constrained strip with two symmetric slip systems as in 
Stupkiewicz and Petryk (2016). The sketches of the problems under consideration are shown in Fig. 1. In the following 1D examples, 
500 elements of a regular mesh and quadratic shape functions for both fields are used. 

4.1.1. Single slip 
In the first example the strip consists of soft phase (s) in the middle and hard phase (h) on both sides imitating hard elastic inclusions 

which form obstacles to dislocation movement (Fig. 1a). Such a two-phase laminate is subjected to plastic simple shear γ(x) by applying 
a mean shear strain γ in the x direction. The periodic boundary condition along x-axis is imposed on the displacement u2 in y direction 

Fig. 1. Schematic of the shearing problem: (a) shearing of a periodic single-slip single crystal composed of soft (s) and hard (h) phases, and (b) 
shearing of a double-slip single crystal. 
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and microdeformation κp. We consider displacement and microdeformation fields of the form: 

u1 ¼ γy; u2ðxÞ; u3 ¼ 0; κp
12ðxÞ; κp

21ðxÞ: (51) 

For so-defined problem there is only one resolved shear stress τ ¼ σ12 ¼ μðγ � γ þ u2;xÞ, one component of the generalized couple 
stress tensor M13 ¼ � Aκp

12;x and two components of the microstress tensor s12 ¼ � Hκðγ � κp
12Þ and s21 ¼ Hκκp

21. However, from the 
balance equation s ¼ � curlM ¼ � A curl (curlκp), we obtain 

κp
21 ¼ 0; γ � κp

12 ¼ � ℓ2
micκ

p
12;xx ;where ℓmic :¼

ffiffiffiffiffiffi
A
Hκ

r

(52)  

and thus s21 ¼ 0. Hence, the plastic flow criterion is obtained in the following form 

jτ þ s12j ¼
�
�τ þ Aκp

12;xx

�
� ¼ τc: (53) 

So far the analysis coincides with that in (Cordero et al., 2010) and (Aslan et al., 2011). Now, we extend it by including the P–S term 
as in Eq. (46), which in the single slip case reads 

_τc ¼ θj _γj þ θℓ _χ; θℓ ¼ a2μ2b
2τc ; (54)  

_χ ¼ kcurl _κpk ¼
�
� _κp

12;x

�
�: (55) 

From the above equations, it is clear that size effects in the current model stem from two internal length scales ℓmic and ℓ, where the 
former is related to curl (curlκp) and the latter to curl _κp. An analytical solution of the above problem, in the case when the P–S term is 
absent (ℓ ¼ 0) and for linear hardening (p ¼ 0 in Eq. (49)), was derived in Aslan et al. (2011). The main equations of the analytical 
solution are provided in Appendix A. If the P–S term is included then the rate equation resulting from Eq. (53) involves a variable 
coefficient θℓ that varies both in time and space. The authors have not found a way to solve that equation analytically. 

Fig. 2. (a) Profiles of plastic microdeformation κp at 0.002 overall plastic strain obtained for Hκ ¼ 500 GPa and the set of material parameters given 
in Table 1 (with annotation a), and (1) for the same value of the moduli, Ah ¼ As ¼ 0.05 GPa⋅μm2, (2) with a smaller difference, Ah ¼ 0.05 GPa⋅μm2 

and As ¼ 1 GPa⋅μm2, and (3) with a bigger difference Ah ¼ 0.05 GPa⋅μm2 and As ¼ 50 GPa⋅μm2. (b) The value of κp at x ¼ 0 as a function of the 
parameter As. 

Table 1 
Material parameters.  

Elastic shear modulus μ 35a or 40.3b GPa 
Poisson’s ratio ν 0.3 – 
Constant hardening rate θ0 5000a or 180b MPa 
Initial slip resistance τ0 40a or 16b MPa 
Burgers vector magnitude b 0.256 nm 
Coefficient in Taylor’s formula a 0.33 – 
Coupling modulus Hκ case study GPa 
Gradient modulus in the soft phase As case study GPa⋅μm2 

Gradient modulus in the hard phase Ah 0.05 or 0.0005 GPa⋅μm2  

a After Aslan et al. (2011). 
b After Ry�s and Petryk (2018). 
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In the analysis it is assumed that soft (s) and hard (h) phases have different parameters Hκ and A specified by the corresponding 
superscripts. The 1D results, shown below, are calculated for l ¼ 1 μm and the soft phase fraction fs ¼ 0.7. Importantly, the value of 
penalty parameter Hκ was taken such that profiles of microdeformation variable κp

12 and plastic slip γ nearly coincide in the soft phase. 
In Fig. 2, analytical and numerical results are presented for the plastic microdeformation variable κp

12 for different values of As ¼

0.05, 1, 50 GPa⋅μm2 (i.e. millinewtons) and the same value of Hκ ¼ 500 GPa (thus in the soft phase ℓmic ¼ 0.01, 0.045, 0.32 μm), while 
the other parameters were fixed and are given in Table 1 (with annotation a). The results computed without the P–S term coincide with 
the analytical results of Aslan et al. (2011). For smaller values of parameter As the parabolic profile of microdeformation is observed 
while for larger values the profile is almost flat in the soft phase. This is related to the dislocation pile-up at the interfaces. In the case of 
small difference in the material paramater A in two phases (As � Ah) the GNDs pile up at the interfaces but they can also be smoothly 
distributed within the soft phase. On the other hand, when increasing the difference between the parameters (but keeping As > Ah), 
GNDs tend to concentrate in the close vicinity of the interfaces. Including P–S term in the model increases the maximum value of 
microdeformation variable in the soft phase. This is more noticeable for smaller values of As (Fig. 2b). 

The effect of the P–S term (Eq. (46)) depends on the evolving length scale, ℓ, which is not adjustable as it is uniquely expressed 
through standard parameters of a non-gradient hardening law. However, the relative strength of this effect depends on the strip size l 
and is also influenced by other parameters, cf. (Stupkiewicz and Petryk, 2016) and (Ry�s and Petryk, 2018). For this reason, for some 
range of parameters values, the P–S term may play a significant role in the model or not. In the above results, the hardening parameter 
θ0 is quite large and despite the difference in microdeformation profiles that are noticeable, the differences in stress-strain plots, which 
are not shown here, are negligible. To show how the P–S term affects the stress-stain response we compute the same example but with 
parameters taken from (Ry�s and Petryk, 2018) (Table 1 with annotation b). 

Fig. 3. (a) Macroscopic stress Σ12|γ¼0.05 at 0.05 average plastic shear strain as a function of the microstructure length scale l, computed for Hκ ¼ 1, 
10 and 100 GPa and As ¼ 0.05 GPa⋅μm2 (Ah ¼ As/100), (b) values of micromorphic variable κp

12 at the center (x ¼ 0) of the two-phase laminate. 

Fig. 4. Relative difference Σ12ðwith PSÞ� Σ12ðno PSÞ
Σ12ðno PSÞ in macroscopic stress at 0.05 average plastic strain in the cases when the P–S term is included or 

disregarded for (a) various Hκ and fixed As ¼ 0.05 GPa⋅μm2, and (b) various values of As and fixed Hκ ¼ 100 GPa. 
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In Fig. 3a the macroscopic stress Σ12|γ¼0.05 at 0.05 average plastic strain as a function of the length l of the two-phase microstructure 
is presented in a log-log diagram. The following results are for a constant value of As ¼ 0.05 GPa⋅μm2 (Ah ¼ As/100) and different 
values of coupling modulus Hκ ¼ 1, 10 and 100 GPa. Analytical results are compared with numerical ones in the case where P–S term 
was not included, i.e. ℓ _χ ¼ 0, and perfect coincidence was obtained. In the case where P–S term was included in the model, a sig-
nificant increase in macroscopic stress is observed for the range of l values between 0.1 and 100 μm, with the maximal difference for l 
� 2 μm (Fig. 4a). It should be noted, however, that the range and significance of the effect of P–S term may change with the value of As 

(Fig. 4b). On the other hand, the difference (γ � κp
12) is sensitive to the value of Hκ at small l. 

The influence of P–S term on the maximum value of microdeformation κp
12, which is in the middle of the structure, has been shown 

in Fig. 3b. The maximum values are not only higher when P–S term is included but also shifted to the range of higher values of l 
(Fig. 4a). 

4.1.2. Double slip 
In the second 1D example we consider monotonic shear of a constrained strip of thickness H as shown in Fig. 1b. For this problem, a 

semi-analytical solution has been derived by Stupkiewicz and Petryk (2016) by using the ’minimal gradient-enhancement’ of the 
classical model, i.e. when in the present formulation the terms ψmicro and ψcurl in the Helmholtz free energy are not included. Then 
there is no length-scale effect related to the second gradient of plastic slip, but there is another length-scale effect due to the first 
gradient of plastic slip rate, accounted for in the P–S term. The ’minimal’ gradient-enhanced model was originally formulated within 
the classical continuum theory, in which no additional actions except the standard ones are included in the external power. In 
(Stupkiewicz and Petryk, 2016) it was also indicated that it required some regularization in order to obtain numerical solutions 
effectively, and non-local slip-rates were introduced as additional global unknowns that average and smoothen the local slip-rates. An 
averaging equation inspired by the so-called implicit-gradient model was used, which in 1D case is basically analogical to Eq. (52)2 but 
with an element scale parameter lh rather than ℓmic ¼

ffiffiffiffiffiffiffiffiffiffiffi
A=Hκ

p
. Such an algorithmic approach was also used more recently in (Lew-

andowski and Stupkiewicz, 2018), where in certain circumstances oscillations in numerical solutions for the wedge indentation 
problem were reported. Similarly, spurious oscillations can occur when the so-called dual-mixed method is used and the regularization 
is insufficient in vicinity of a kink in the analytical solution (Ry�s and Petryk, 2018). Since the P–S term may have a crucial impact on 
predicting correctly the experimentally observed indentation size effect at the micron scale (Stupkiewicz and Petryk, 2016), it is of 
interest to check whether a micromorphic model can be more suitable for regularization purposes. It can be expected that the smaller 
the value of ℓmic (while keeping Hκ sufficiently high) the closer the solution to the semi-analytical one obtained in Stupkiewicz and 
Petryk (2016). 

In this example, the strip with two symmetric slip planes (α ¼ 1, 2), of the orientation specified by ϕ ¼ π/3, is subjected to shearing 
in plane strain conditions (Fig. 1b). Plastic slips are constrained at the boundaries by applying κp ¼ 0 at y ¼ 0 and y ¼H. Only isotropic 
hardening is considered here, thus q ¼ 1, so that hαβ ¼ θ1 ¼ θ2 ¼ θ (with p ¼ 1 and τmax ¼ 148 MPa), cf. Eqs. (47) and (49). Symmetry 
implies γ1 ¼ γ2 and τ1 ¼ τ2 which are both negative for σxy > 0 and ϕ ¼ π/3. Denoting τ ¼ τ1 ¼ τ2, we obtain 

τ ¼ σxy cos2ϕ; where σxy ¼ μ
�
ux;y � 2γ1 cos2ϕ

�
(56) 

There is one non-zero component of the generalized couple stress tensor M23 ¼ Aκp
21;y and two components of the microstress tensor 

Fig. 5. Comparison of the semi-analytical solution of Stupkiewicz and Petryk (2016) (solid lines) with the present FE solution for A ¼ 0.1 GPa⋅μm2 

and Hκ ¼ 1000 GPa (broken lines): (a) overall stress-strain response, (b) shear strain profiles for overall shear strain 〈γxy〉 ¼ 0.05. 
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s12 ¼ � HκðHp
12 � κp

12Þ and s21 ¼ � HκðHp
21 � κp

21Þ. The balance equation s ¼ � curlM results in 

Hp
12 � κp

12 ¼ 0; HκðHp
21 � κp

21Þ ¼ � Aκp
21;yy: (57) 

Since Hp
12 ¼ κp

12, the component s12 does not appear in the flow condition. Note also that κp
12 does not contribute to the dislocation 

density tensor. The plastic flow criterion takes the form 
�
�σ21cos2ϕ � s21sin2ϕ

�
� ¼

�
�σ21cos2ϕ � Aκp

21;yysin2ϕ
�
� ¼ τc; (58)  

where 

_τc
1 ¼ _τc

2 ¼ _τc ¼ θð _γþℓ _χÞ; _γ ¼ j _γ1j þ j _γ2j; θℓ ¼ a2μ2b
2τc ; _χ ¼

�
� _κp

21;y

�
�: (59) 

In the calculations of this example, the penalty parameter Hκ ¼ 1000 GPa is adopted which has been found sufficiently high for the 
fields of Hp

21 and κp
21 to be practically coincident. The value of parameter A ¼ 0.1 GPa⋅μm2 has been taken small so that the influence of 

the microstress s21 be small, but on the other hand, A cannot be too small to provide the required numerical regularization. Other 
parameters are as in Table 1, annotation b. Comparison of the analytical and numerical results is presented in Fig. 5, where solid lines 
correspond to analytical results for A ¼ 0 while dashed lines represent numerical results. In Fig. 5a the overall response in terms of the 
normalized shear stress, σxy ¼ σxy=σxy;0 (with σxy,0 ¼ | cos 2ϕ|τ0) versus the overall shear strain is plotted, and in Fig. 5b the shear strain 
profiles, γxy(y) at the overall shear strain 〈γxy〉 ¼ 0.05, are shown for different values of strip thickness H. The size effect, driven almost 
solely by the length scale ℓ, is clearly visible in both figures. The kink in γxy profiles, resulting from the analytical solution for γ, is more 
noticeable for the smaller strip thickness. The kink in γ1 solution results in the jump in γ1,y. In Figs. 5b and 6 it can be seen that the kink 
as well as the jump were properly smoothed by the finite element solution. Importantly, a better agreement between numerical and 
experimental results has been obtained than in the previous work where the dual-mixed method was used (Ry�s and Petryk, 2018). In 
particular, no oscillations were observed on γ1,y and γ1,yy profiles, neither for local variable γ1 nor for its global counterpart 
κp

21=
�
2sin2ϕ

�
. It can be concluded that the micromorphic approach provides a better reqularization technique in this particular case. 

However, it is worth mentioning that if a linear shape function for κp
21 was used instead of the quadratic one then some oscillations 

occurred in vicinity of the kink. 

5. Numerical 2D examples 

In this section, we consider shearing of a square under plane strain conditions. First, a single crystal is considered and then a square 
composed of four differently oriented grains. In both cases, each grain deforms plastically on two slip systems rotated relative to each 
other by an angle 2ϕ ¼ 2π/3. In the first case the systems are oriented symmetrically to the direction of shear (Fig. 7a), and in the 
second case, the slip system pairs are rotated relative to each other as shown in Fig. 7b. In the single crystal, displacement in the vertical 
direction is forbidden at all nodes on the external edges of the square, and zero displacement in the horizontal direction is also pre-
scribed on the bottom edge, while uniform horizontal displacement is prescribed on the upper edge. Plastic slips are indirectly con-
strained by κp ¼ 0 at the external edges of the single crystal. In the case of the square with four grains, periodic boundary conditions for 
the displacement and micromorphic variable κp are imposed over the external boundary, the shear is enforced at the corner points, 
while on the grain interfaces continuity of fields u and κp is assumed (cf. Sec. 5.3). The mesh of a crystal or grain is built with 100 � 100 
regular square finite elements with 9 Gauss points in each element, and quadratic shape functions are used for both fields. The 

Fig. 6. Profiles of the (a) first and (b) second gradient of (local) plastic slip γ1, and global counterparts κp
21;y=

�
2sin2ϕ

�
and κp

21;yy=
�
2sin2ϕ

�
.  
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computations have been carried out using the AceFEM package. 
The material parameters used here, listed in Table 2, correspond to properties of Cu single crystals and are taken partially from 

(Anand and Kothari, 1996; Sauzay and Kubin, 2011; Stupkiewicz and Petryk, 2016) following (Ry�s and Petryk, 2018). For material 
parameters as in Table 2 and p ¼ 1, the internal length scale ℓ decreases from an initial value of 8.8 μm to a minimum value of 3.4 μm as 
τc increases from τ0 to 12τmax, and then ℓ starts to increase. The rate-dependent version of the model is used, specified by Eq. (30) with pα 
¼ 0. The adopted value of parameter A corresponds to an energetic length scale Len ¼ 0.2 μm, see below. 

5.1. Comparison of energy functions of different GND measures 

In this section, we compare numerical results for two free energy density functions in which different GND measures are used. The 
present model with the energy function as in Eq. (6) is compared with the gradient plasticity model with the following form of the free 
energy part dependent on GND densities ρG

α (Bargmann et al., 2014), 

ψd ¼
1
2
h0b2L2

en

X

α;β
ðϰαβ þ ιαβÞρG

α ρG
β ; ρG

α ¼
1
b
sα � rγα: (60) 

Coupling between slip systems is represented by the sum of the coplanarity moduli ϰαβ, Eq. (48), and interaction moduli ιαβ defined 
via (Gurtin and Reddy, 2014) 

ιαβ ¼ jsα � sβkmα �mβj: (61) 

In the present model, in the limit case as κp → Hp, the defect free energy can be written as 

ψcurlðΓÞ ¼ 1
2

Γ �AΓ; Γ :¼ curlHp: (62) 

The curl of the tensor Hp, with the sign convention as in Eq. (4), can be rewritten in the form 

Fig. 7. Schematic of shearing of a square element of dimension H: (a) single crystal and (b) idealized polycrystal.  

Table 2 
Material parameters for a Cu single crystal.  

Elastic shear modulus μ 40.3 GPa 
Poisson’s ratio ν 0.3 – 
Initial hardening rate θ0 180 MPa 
Initial slip resistance τ0 16 MPa 
Saturation of slip resistance τmax 148 MPa 
Hardening exponent p 0, 1 or 2 – 
Ratio of latent-hardening to self-hardening q 1.4 – 
Burgers vector magnitude b 0.256 nm 
Coefficient in Taylor’s formula a 0.33 – 
Rate sensitivity parameter m 0.02 – 
Reference slip rate _γ0  10–3 s� 1 

Coupling modulus Hκ 100 GPa 
Gradient modulus A 0.288 GPa⋅μm2  
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curlHp ¼
X

α
sα � ðmα �rγαÞ

¼
X

α
ððsα � rγαÞsα � lα � ðlα � rγαÞsα � sαÞ; lα ¼ mα � sα:

(63) 

In the case of 2D numerical simulations it is sufficient to consider only edge dislocations, thus the second term in the above sum 
vanishes. Taking A ¼ A1 and substituting Eq. (60)2, we obtain 

ψcurlðΓÞ ¼
1
2

Ab2
X

α;β
ρG

α ρG
β ðsα � lαÞ �ðsβ � lβÞ: (64) 

In the case of two symmetric slip systems which are specified by ϕ ¼ π/3, full contraction of the last two terms in the above equation 
gives 1 for α ¼ β and � 0.5 for α6¼β, thus in this particular case, the free energy becomes 

ψcurlðΓÞ ¼ 1
2

Ab2
X

α;β
ðδαβ þ ςαβÞρG

α ρG
β ; (65)  

where δαβ is the Kronecker delta and ςαβ ¼ 0 for α ¼ β and ςαβ ¼ � 0.5 for α 6¼β. Taking that A ¼ h0L2
en and noting that ϰαβ ¼ δαβ in the 

present case, the two energies (60) and (62) differ only by the non-diagonal coefficients ςαβ and ιαβ of GND interaction between 
different systems, where ιαβ ¼ 0.43 for α 6¼β and 0 otherwise. In particular, taking h0 ¼

μ
8ð1� νÞ after (Evers et al., 2004) and Len ¼ 0.2 μm, 

the value A ¼ 0.288 GPa⋅μm2 given in Table 2 is obtained. A more general analysis regarding differences between various forms of the 
defect energy was presented in Mesarovic et al. (2015). 

In the example below, the square of side length H ¼ 10 μm is subjected to cyclic shear by prescribed displacement u ¼�H/10 on the 
upper edge. The rate dependent model was used with rate sensitivity parameter m ¼ 0.02, hardening parameters p ¼ 2, q ¼ 1.4 and 
other parameters listed in Table 2. In Fig. 8, the overall shear stress vs overall shear strain for the two types of defect free energies are 
plotted. Differences between the results are very small due to the relatively small value of Len ¼ 0.2 μm; it has been checked that for Len 

Fig. 8. Comparison of the overall stress - overall strain plots for two energy functions of different GND measures for cyclic shear of a square element, 
H ¼ 10 μm, A ¼ h0L2

en ¼ 0:288 GPa⋅μm2. Inner red plots refer to the case when P–S term is disregarded. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 9. Distribution of slips for H ¼ 10 μm, final 〈γxy〉 ¼ 0.1, P–S term included.  
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¼ 0.7 μm the differences are no longer negligible. Distributions of the plastic slips, |γα|, and effective plastic slip, γ ¼
R

t
P

αj _γαjdt, are 
presented in Fig. 9. The fields of components of curlκp as measures of the geometrically necessary dislocation density are presented in 
Fig. 10. Plastic slips and GND distributions are qualitatively and quantitatively similar to those given in (Ry�s and Petryk, 2018). The 
distribution of the GND measures, however, is smoother and more regular in comparison to the previous results, which confirms the 
advantages of the micromorphic approach in regularizing the numerical problem solved. 

5.2. Effect of the P–S term and the material sample size 

In the present work, the GND density tensor affects the material response in two ways, through Γp in the free energy function and 
through the P–S term in the hardening law. If pα ¼ 0 then the P–S term is dissipative in nature, leading to the increase of critical 
thermodynamic forces due to newly created GNDs whose density rate is proportional to the rate of plastic incompatibility tensor. For 
illustration, two examples of shearing of a square of side length H ¼ 10 and 1 μm are presented for a cycle up to the final overall shear 
strain of a small value 〈γxy〉 ¼ 0.01. Here, linear hardening is assumed with p ¼ 0 and q ¼ 1.4; the remaining parameters are listed in 

Fig. 11. The effect of the P–S term and sample size on the plot of overall shear stress vs overall shear strain in cyclic deformation.  

Fig. 12. Distribution of slips for H ¼ 10 μm, 〈γxy〉 ¼ 0.01, P–S term included.  

Fig. 10. Distribution of the components and norm of curlκp as the GND density tensor, in μm� 1, for H ¼ 10 μm, final 〈γxy〉 ¼ 0.1, P–S term included.  
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Table 2. 
In Fig. 11, overall shear stress vs overall shear strain is plotted for the two side lengths of the square. In both cases isotropic 

hardening is influenced by the P–S term, more significantly for smaller H as expected. On the other hand, the non-local back-stress 
effect due to the adopted free energy form is also clearly visible. Final distributions of plastic slips |γα| and of the effective slip γ ¼
R

t
P

αj_γαjdt are presented in Figs. 12–15. The maximum values of plastic slips and effective slip are higher for the model with the P–S 

Fig. 13. Distribution of slips for H ¼ 10 μm, 〈γxy〉 ¼ 0.01, P–S term disregarded.  

Fig. 14. Distribution of slips for H ¼ 1 μm, 〈γxy〉 ¼ 0.01, P–S term included.  

Fig. 15. Distribution of slips for H ¼ 1 μm, 〈γxy〉 ¼ 0.01, P–S term disregarded.  

Fig. 16. Distribution of the components and norm of curlκp as the GND density tensor, in μm� 1, for H ¼ 10 μm, 〈γxy〉 ¼ 0.01, P–S term included.  
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term included, but in the case of H ¼ 1 μm the difference is much smaller. 
Distributions of the components of the dislocation density tensor and its norm are presented in Figs. 16–19. Maximum values of 

GNDs are lower when the P–S term is included and the distributions are smoothed, i.e. the concentration of GNDs near the boundary is 
less significant. 

5.3. Idealized polycrystal 

The last example is devoted to the analysis of a square composed of four grains with the same set of two slip systems but rotated in 
each grain as shown in Fig. 7b. Periodic boundary conditions for the displacement and micromorphic variable are applied. Impor-
tantly, we do not use any additional conditions on grain interfaces. The interfacial conditions arise from the balance equations for 
continuous and piecewise smooth fields u, κp and related simple and double tractions t and m, i.e. any jumps of these fields across grain 
interfaces are excluded, cf. (Cordero et al., 2012). This might be a shortcoming since physically motivated interfacial conditions have 
been discussed in the literature and introduced in the micromorphic framework in the form of interface yield conditions by (Wul-
finghoff et al., 2013; Alipour et al., 2019). However, in this work our aim is to analyze the influence of the P–S term on plastic slip 
distribution and the GND pile up within the volume, and not on the dislocation movement across a grain interface. 

The parameters are as in the preceding section. The overall shear stress vs overall shear strain for the square H ¼ 20 μm is shown in 
Fig. 20. Similarly as previously, isotropic hardening that is significantly influenced by the P–S term and non-local back-stress effects are 
clearly visible. Differences in distributions of the plastic slips |γα| and the effective slip γ ¼

R

t
P

αj _γαjdt in the two cases considered are 
presented in Figs. 21 and 22. Again, the maximum values of plastic slips and the effective slip are higher for the model with included 
P–S term. The use of P–S term also results in more pronounced accumulation of the plastic slips in the middle of grains. Distributions of 

Fig. 18. Distribution of the components and norm of curlκp as the GND density tensor, in μm� 1, for H ¼ 1 μm, 〈γxy〉 ¼ 0.01, P–S term included.  

Fig. 19. Distribution of the components and norm of curlκp as the GND density tensor, in μm� 1, for H ¼ 1 μm, 〈γxy〉 ¼ 0.01, P–S term disregarded.  

Fig. 17. Distribution of the components and norm of curlκp as the GND density tensor, in μm� 1, for H ¼ 10 μm, 〈γxy〉 ¼ 0.01, P–S term disregarded.  
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Fig. 21. Distribution of slips for H ¼ 20 μm, P–S term included.  

Fig. 22. Distribution of slips for H ¼ 20 μm, P–S term disregarded.  

Fig. 20. Overall shear stress - overall shear strain plots for the idealized polycrystal.  

Fig. 23. Distribution of the components and norm of curlκp as the GND density tensor, in μm� 1, for H ¼ 20 μm, P–S term included.  

M. Ry�s et al.                                                                                                                                                                                                            



International Journal of Plasticity 128 (2020) 102655

19

the components of the dislocation density tensor and its norm are presented in Figs. 23 and 24. Interestingly, contrary to the single 
crystal examples, the maximum values of GNDs are higher and their concentrations are more localized when the P–S term is included. 

6. Conclusion 

A new version of the micromorphic model of crystal plasticity has been developed by combining the microcurl model (Cordero 
et al., 2010) with the minimal gradient-enhancement of the hardening law (Petryk and Stupkiewicz, 2016). The combination was not 
entirely straightforward because both component models required appropriate adjustments to achieve intrinsic consistency of the 
compound model. Among the modifications introduced, the condition for plastic flow has been derived, following Ry�s and Petryk 
(2018), using the assumed compatibility of actual and virtual dissipation rates, and the effective slip-rate gradient in the enhanced 
hardening law has been identified here with the curl of the micromorphic rate-variable. 

In result, the curl of the microdeformation tensor as a basic constitutive variable has entered the computational model in two 
complementary ways. First, it is an argument of the free energy density function, and its curl projected on a slip system defines the 
back-stress in the condition for plastic flow. Second, its rate enters the expression for the rate of critical resolved shear stresses, 
accompanied by a natural length scale ℓ whose value is evolving in a manner uniquely defined by standard parameters of a non- 
gradient hardening law. In general, the material behaviour is affected by plastic flow non-uniformity in both ways, although not 
necessarily to a similar extent. 

It has been shown by the analysed examples in which circumstances either one or another effect of the curl of the microdeformation 
tensor can be predominant. Since the internal length scale ℓ in the hardening law is not adjustable, the freely adopted values of the 
energetic length scale ℓmic and characteristic dimension l of the material sample can decide which effect is more substantial, although 
other material parameters also influence the results. More specific conclusions have been formulated in the preceding sections. 

If all other parameters are fixed then by taking a sufficiently small value of the energy parameter A, which is proportional to the 
square of the length scale ℓmic, the micromorphic approach can serve as a computational regularization tool. Its effectiveness for 
regularization purposes has been confirmed in the present paper, for instance, by eliminating spurious numerical oscillations which 
were present in certain solutions obtained using other regularization methods. Therefore, the micromorphic regularization with A 
small enough and Hκ high enough is well suited for exploring predictive capabilities of the numerical modelling based on the minimal 
gradient-enhancement of the hardening law in estimating size effects in crystal plasticity at the micron scale. Dependence of hardness 
on the normalized penetration depth in the 3D spherical indentation problem provides a good example of such capabilities (Stup-
kiewicz and Petryk, 2016). The progress in experimental measurements of GND density fields (Dahlberg et al., 2014; Sarac et al., 2016) 
offers other possibilities of validating the model, cf. (Lewandowski and Stupkiewicz, 2018). 

The proposed model has been presented and applied within the small strain framework. Extension of the approach to finite de-
formations is possible along the lines developed for strain gradient plasticity in (Gurtin, 2006; Kaiser and Menzel, 2019) and 
micromorphic crystal plasticity in (Aslan et al., 2011; Forest, 2016; Ling et al., 2018; Alipour et al., 2019). 

Declaration of competing interest 

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to 
influence the work reported in this paper. 

CRediT authorship contribution statement 

M. Ry�s: Software, Writing - original draft. S. Forest: Conceptualization, Methodology, Writing - review & editing. H. Petryk: 
Conceptualization, Methodology, Writing - original draft. 

Acknowledgement 

This work by MR and HP has been partially supported by the National Science Center (NCN) in Poland through Grant No. 2015/17/ 

Fig. 24. Distribution of the components and norm of curlκp as the GND density tensor, in μm� 1, for H ¼ 20 μm, P–S term disregarded.  

M. Ry�s et al.                                                                                                                                                                                                            



International Journal of Plasticity 128 (2020) 102655

20

B/ST8/03242. 

Appendix A. Analytical solution 

An analytical solution of Eq. (52) for κp profile, in the soft and hard phases, was derived in Aslan et al. (2011). Because of some 
misprints in the original work we provide here the main equations. 

The solution for κp in the soft and hard phases, respectively, is as follows 

κpðsÞ
12 ¼ CscoshðωsxÞ þ D; with ωs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Hs

κH
As
�
Hs

κ þ H
�

s
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The integration constants Cs, D and Ch are derived using continuity at the interface and periodicity conditions 
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where the average plastic slip is expressed in the following way 

〈γ〉 ¼ 〈κp;s
12 �

As

Hs
κ
κp;s

12;11〉 ¼
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ωsl
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2AsωsCs
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2

�
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Finally the solution for macroscopic stress takes the form: 

Σ12 ¼ τc þ HD; (A.7)  

where constants τc and H are denoted in the present paper by τ0 and θ0, respectively. 
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