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For flows in microchannels, a slip on the walls may be efficient in reducing viscous
dissipation. A related issue, addressed in this article, is to decrease the effective viscosity
of a dilute monodisperse suspension of spheres in Poiseuille flow by using two parallel
slip walls. Extending the approach developed for no-slip walls in Feuillebois et al.
(J. Fluid Mech., vol. 800, 2016, pp. 111–139), a formal expression is obtained for
the suspension intrinsic viscosity [μ] solely in terms of a stresslet component and a
quadrupole component exerted on a single freely suspended sphere. In the calculation of
[μ], the hydrodynamic interactions between a sphere and the slip walls are approximated
using either the nearest wall model or the wall-superposition model. Both the stresslet
and quadrupole are derived and accurately calculated using bipolar coordinates. Results
are presented for [μ] in terms of H/(2a) and λ̃ = λ/a ≤ 1, where H is the gap between
walls, a is the sphere radius and λ is the wall slip length using the Navier slip boundary
condition. As compared with the no-slip case, the intrinsic viscosity strongly depends
on λ̃ for given H/(2a), especially for small H/(2a). For example, in the very confined
case H/(2a) = 2 (a lower bound found for practical validity of single-wall models) and
for λ̃ = 1, the intrinsic viscosity is three times smaller than for a suspension bounded by
no-slip walls and five times smaller than for an unbounded suspension (Einstein, Ann.
Phys., vol. 19, 1906, pp. 289–306). We also provide a handy formula fitting our results for
[μ] in the entire range 2 ≤ H/(2a) ≤ 100 and λ̃ ≤ 1.
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1. Introduction

A rapidly increasing number of applications involve flows in confined microscale
channels, that is, in the field of microfluidics (Stone, Stroock & Adjari 2004). Among
other phenomena, attention is paid to hydrodynamic dispersion (Ng 2011) and field-flow
fractionation (Giddings, Yang & Myers 1976, 1977).

At these small scales, viscous dissipation becomes preponderant, requiring a
high-pressure head for liquids to flow in microchannels. This is also a key issue for
transporting suspensions of particles in such confined geometries. This is the domain of
microrheology. In this field, non-optical microrheology is developing rapidly in search of
technical solutions (Vleminckx & Clasen 2014). The so-called microcapillary rheometer
is related to the problem considered here.

The effective viscosity of a confined flowing suspension is the relevant quantity to
consider for this energy budget problem (see, for example, the experiments of Peyla
& Verdier (2011)). A suspension effective viscosity depends on the volume fraction
magnitude and distribution and also on the ambient flow field when the suspension flows in
a confined geometry. Assuming a dilute suspension (i.e. a small particle volume fraction),
Navardi & Bhattacharya (2010) derived the effective viscosity of a suspension of spherical
particles in a cylindrical no-slip conduit. Then, Feuillebois et al. (2015) and Feuillebois
et al. (2016) derived the effective viscosity of a dilute suspension bounded by parallel
no-slip walls for a Couette flow and a Poiseuille flow, respectively. Their results were
obtained in terms of singularities on individual particles, i.e. the classical stresslet for
Couette flow, to which a quadrupole is added for Poiseuille flow. The particles considered
had various shapes. As for the particle distribution between walls, they considered a
high-frequency ambient flow field, in the sense that all particles occupy all possible
positions and orientations with equal probability.

The energy cost for transporting suspensions in microchannels may be reduced by
using slipping walls. This issue motivates the present article. We are concerned here
with the Poiseuille flow for a dilute monodisperse suspension of solid, no-slip, spherical
particles between two solid, impermeable, slip, parallel plane walls. On each wall the
impermeability condition reads u · n = 0, where u is the fluid velocity and n is the unit
vector normal to the wall and pointing into the liquid. The usual Navier (1823) slip
boundary condition is applied on each wall where it reads

u = λ
∂u
∂n

, (1.1)

where λ ≥ 0 is the wall slip length, assumed to be uniform and identical for both walls,
and n is the normal coordinate along n. Using a simple classical interpretation of (1.1)
boundary condition on an impermeable wall, it is equivalent to the no-slip boundary
condition on a fictitious no-slip wall that would be shifted away from the liquid by a
distance λ. In the light of this simple model one could think of directly applying the results
of Feuillebois et al. (2016) for spheres and to a wider channel (with width increased by 2λ)
in order to predict the suspension effective viscosity in the presence of slip. It will be seen
later in the article that this naive concept is not sufficient.

In Feuillebois et al. (2015, 2016) the hydrodynamic interactions with both no-slip
walls were taken into account exactly using the proper Green velocity tensor obtained
by Liron & Mochon (1976) and revisited for numerical implementation by Jones (2004).
Unfortunately, no such Green tensor exists, to our knowledge, for slip walls. To circumvent
this problem, following Pasol et al. (2011), each slip wall contribution is here taken into
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account separately. In practice, two different approaches are used: the nearest-wall model
(denoted as nw) and the wall-superposition model (denoted as ws). These two models,
which will be made more precise later on when necessary, only require the solutions for
flows around a sphere near a slip plane wall. These solutions were obtained using bipolar
coordinates which have a long history (see e.g. Pasol, Sellier & Feuillebois (2009) and
references therein). Here we will use the results of Loussaief, Pasol & Feuillebois (2015)
and Ghalia, Feuillebois & Sellier (2016) for a sphere suspended in linear and quadratic
ambient shear flows, respectively.

This article is organized as follows. Formal expressions of the effective and associated
intrinsic viscosities of a dilute suspension of solid spheres in Poiseuille flow between two
parallel solid slip impermeable walls are first defined and derived in § 2. The intrinsic
viscosity is expressed in terms of one Cartesian component of the stresslet tensor and
one component of the quadrupole tensor (see Feuillebois et al. 2016). These two key
quantities are obtained in § 3 from the nw and ws approximations. Both approximations
reduce the problem to the hydrodynamic interaction of a single sphere with one plane slip
wall. This latter problem is accurately solved using bipolar coordinates. The calculation
of the quadrupole term is presented in § 3.3 and benchmarked against a boundary element
method in § 3.4. The results for the intrinsic viscosity are presented in § 4 for different
values of the gap between walls and of the wall slip length λ ≤ a, where a denotes the
sphere radius (this upper bound on λ being satisfied for most encountered applications).
A handy interpolation formula is derived therefrom in § 4.4. Finally, a discussion and
conclusion are presented in § 5.

2. Formal expression of the effective viscosity of a dilute suspension

This section starts with the expression of the ambient Poiseuille flow between parallel
slip walls (§ 2.1). The definition of the effective viscosity of the suspension of no-slip
particles for this geometry and flow field is given in § 2.2. The approach to the derivation
of a formal expression of the effective viscosity goes along the lines used for the case of
a Poiseuille flow between parallel no-slip walls by Feuillebois et al. (2016) (that article
is denoted below as (I)) and is presented in § 2.3. It is shown that the approach using the
Lorentz reciprocal theorem for no-slip walls carries over to the case of slip walls. Only the
main intermediate formulae which differ from those of that earlier article are displayed
here. The final formula for the effective viscosity is specialized for the case of a dilute
monodisperse suspension of spheres in § 2.4.

2.1. The ambient Poiseuille flow
Consider (figure 1) a channel between two parallel walls W1, W2 separated by a
distance H. We use a Cartesian coordinate system (x, y, z) with axes (x, y) along the
walls and z perpendicular to the walls, such that the walls W1 and W2 are in the planes
z = 0 and z = H, respectively.

The Poiseuille fluid flow is driven by an imposed constant pressure gradient Δp0/L
along the x direction, where L is a length along x that is large compared with H (but
small compared with a characteristic channel dimension in the y direction) and Δp0 =
p0(L/2) − p0(−L/2) is the negative pressure drop between the far away upstream and
downstream sections.

In this article, we consider slip walls with equal slip lengths λ on both walls. The
expression for the Poiseuille flow velocity along x is easily found to be (Feuillebois, Bazant
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W1
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z
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0

H

u0(z)

O¢a

FIGURE 1. Sketch of a single sphere with centre O′ and radius a freely suspended in a
Poiseuille flow between two parallel solid slip walls W1 and W2.

& Vinogradova 2009; Ng 2011)

u0(z) = k1(z + λ) + k2z2 (2.1)

and the corresponding pressure may be written as

p0(x) = 2μ0k2x (2.2)

with the constant coefficients

k1 = − H
2μ0

Δp0

L
, k2 = −k1

H
, (2.3a,b)

which are independent of the slip length. The local shear rate at a position z between the
planes

γ̇ (z) = k1 + 2k2z (2.4)

is thus also independent of λ.
The volume flow rate ū0H (per unit channel length in the transverse direction y) is

expressed in terms of the fluid velocity averaged across the channel width:

ū0 = 1
H

∫ H

z=0
u0(z) dz. (2.5)

By inserting (2.1) and (2.3a,b) into (2.5) we obtain the expression

Δp0

L
= − 12

H(6λ + H)
μ0ū0 (2.6)

for the pressure drop per unit length of the channel.

2.2. Definition of the effective viscosity of the suspension
Consider now that the channel contains a dilute suspension of solid no-slip particles of
typical length scale a. The suspension is entrained along x by a constant pressure gradient
that is, by comparison with the pure fluid, affected by the presence of particles.

Similarly to (2.9) in (I), the effective viscosity of the suspension is defined from the
linear relationship between the volume flow rate ū0H and the average pressure gradient
that is necessary to drive the flow field on a distance L such that L/H → ∞ with H/a
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x

z

0

H
u0(z)

SL

Si

W2

W1

FIGURE 2. Control volume for the application of the Lorentz reciprocal theorem.

fixed. Like in (I), there are no effects of the far away container walls in the y direction at
distances large compared with L. Then, taking an average (denoted by 〈·〉) over all possible
positions and orientations of the particles

〈
lim

L→∞
ΔP
L

〉
= − 12

H(6λ + H)
μeff ū0 (2.7)

defines the effective viscosity μeff, the search for which is the goal of this article.

2.3. Application of Lorentz reciprocal theorem
The flow field perturbed by the presence of particle i is sought as the sum of the
unperturbed flow (indicated by subscript 0) and a perturbation (indicated by a prime).
Accordingly, the perturbed flow velocity, stress tensor and pressure are written as

u = u0 + u′, σ = σ 0 + σ ′, p = p0 + p′. (2.8a–c)

It will not be necessary to calculate the perturbed flow field in full detail. Indeed, the
method of solution uses the Lorentz reciprocal theorem, as in (I) (3.1a,b):

∫
(Si∪SL∪Swidth∪W)

u0 · σ ′ · n dS =
∫

(Si∪SL∪Swidth∪W)

u′ · σ 0 · n dS, (2.9)

where (see the control volume in figure 2) Si is the surface of a given particle labelled i,
SL is the set of surfaces tending to infinity upstream and downstream, Swidth is the set of
surfaces tending to infinity in the y direction (not shown in figure 2) and W = W1 ∪ W2.

The derivation is as in (I):

(i) Integrals over Si take into account the no-slip boundary condition on the particle
and their calculation is the same as in (I). They involve the force, torque, stresslet
and quadrupole components Si,xz and Qi,xzz. These quantities Si,xz and Qi,xzz are,
respectively, the (x, z) component of the second-order stresslet tensor Si and the
(x, z, z) component of the third-order quadrupole tensor Qi on particle i. These
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tensors are defined as

Si =
∫

Si

[
1
2(ri f + f ri) − 1

3(ri · f )I
]

dS, (2.10)

Qi =
∫

Si

f riri dS. (2.11)

Here, f is the stress of the perturbed flow field on particle i and ri is a vector pointing
from the centre of particle i to a point on its surface Si.

(ii) Integrals on SL give the supplementary force difference Δ f ′ (between the upstream
and downstream far away sections) that is necessary to drive the particle i.

(iii) Integrals on Swidth (in the y direction) vanish.

The main difference from (I) is in the calculation of the integrals on the slip walls W1

and W2 in (2.9), which cancel out, as we will see now.
For this purpose, we rewrite the integrands in terms of their components in the (x, y, z)

directions. The unperturbed flow velocity u0 on the wall is in the x direction and so is the
stress of the unperturbed flow field on the wall:

u0 = u0 ex , σ 0 · n = f0 ex , (2.12a,b)

where u0 and f0 are, respectively, the velocity (2.1) and stress components in the x
direction. The perturbed flow velocity u′ on the wall has components in the x and y
directions since the wall is impermeable; now, the stress of the perturbed flow may have
all its components ( f ′

x , f ′
y, f ′

z ):

u′ = u′
x ex + u′

yey, σ ′ · n = f ′
x ex + f ′

yey + f ′
z ez. (2.13a,b)

The integral on W1 on the left-hand side of (2.9) is then written∫
W1

u0 f ′
x dS (2.14)

and the integral on W1 on the right-hand side of (2.9) is written∫
W1

u′
x f0 dS. (2.15)

The slip conditions on the wall W1 are written for the unperturbed and perturbed flow
fields in the x direction as

u0 = λ

μ
f0, u′

x = λ

μ
f ′
x , (2.16a,b)

where λ is the slip length on W1. Substituting these conditions into (2.14) and (2.15) shows
that these integrals are equal. Thus they compensate in (2.9). Likewise, it can be shown that
the integrals on W2, where the same slip length λ applies, compensate in (2.9). Therefore,
even though the integrals on the walls do not vanish as in the no-slip case in (I), the same
formal approach may be carried out here for the slip walls.
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Effective viscosity of suspension between parallel slip walls 899 A13-7

Finally, from (2.9) the supplementary necessary force difference Δ f ′ between the
upstream and downstream far away sections that is necessary to drive the particle i is
(as in (3.20a,b) in (I))

u0(zi)Fi,x + γ̇ (zi)Ci,y + γ̇ (zi)Si,xz + k2Qi,xzz + Δf ′ ū0 = 0. (2.17)

Here, Fi,x and Ci,y are, respectively, the force in direction x and the torque in direction y
on particle i.

As in (I), (2.17) is generalized to a suspension of N particles (i = 1 . . . N) contained in
a control volume V . We then obtain the supplementary force difference ΔF′ = ∑N

i=1 f ′

that is necessary to drive the suspension. Dividing ΔF′ by the volume V containing the
N particles and taking the thermodynamic limit for L → ∞ (with N → ∞ and n = N/V
kept finite) yields the following result (like (3.22) in (I)):

lim
L→∞

ΔP′

L
= − 1

ū0
lim

L→∞
1
V

N∑
i=1

[
u0(zi)Fi,x + γ̇ (zi)Ci,y + γ̇ (zi)Si,xz + k2Qi,xzz

]
. (2.18)

From (2.7), the average 〈.〉 over all possible positions and orientations of the particles of
this quantity provides the effective viscosity μeff. For force-free and torque-free particles,
Fi,x = Ci,y = 0, the result is

μeff = μ0 + H(H + 6λ)

12ū2
0

〈
lim

L→∞
1
V

N∑
i=1

[
γ̇ (zi)Si,xz + k2Qi,xzz

]〉
. (2.19)

This formula is quite general, in the sense that it applies to any particle shape in any
polydisperse dilute suspension.

2.4. Dilute monodisperse suspension of spheres
The considered suspension is monodisperse. It is also assumed to be dilute in the sense
that its volume fraction φ = Nv/V is small compared with unity, where v is the volume of
one particle. It is standard for this suspension to introduce the intrinsic viscosity defined
as [μ] = (μeff − μ0)/(μ0φ).

In a monodisperse suspension all particle contributions are statistically equivalent, so
that (2.19) yields the intrinsic viscosity:

[μ] = H(H + 6λ)

12ū2
0vμ0

〈γ̇ (z)Sxz + k2Qxzz〉 . (2.20)

Here the index i has been dropped for a test particle that is identical to the other ones.
The centre of this particle is denoted zc. Equation (2.20) replaces (4.5) in (I); H there is
replaced here by H(H + 6λ) in the numerator of the prefactor; moreover, the stresslet Sxz
and quadrupole Qxzz components both depend on the slip length λ on the walls. Recalling
(2.3a,b) and writing all constants in terms of k1, the final result is

[μ] = 3
μ0vk1(1 + 6λ/H)

〈(
1 − 2

zc

H

)
Sxz − Qxzz

H

〉
. (2.21)

This equation replaces the result (4.6) for no-slip walls in (I).
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Consider now spherical particles of radius a and volume v = 4
3πa3. We define the

dimensionless channel width, particle centre coordinate and slip length as

H̃ = H
a

, z̃c = zc

a
, λ̃ = λ

a
(2.22a–c)

and the dimensionless stresslet and quadrupole as

S̃xz = Sxz

μ0a3k1
, Q̃xzz = Qxzz

μ0a4k1
. (2.23a,b)

Equation (2.21) can then be recast in dimensionless form as

[μ] = 9

4π(1 + 6λ̃/H̃)

〈(
1 − 2

z̃c

H̃

)
S̃xz − 1

H̃
Q̃xzz

〉
. (2.24)

As in (I) and in Navardi & Bhattacharya (2010), a uniform distribution of spherical
particles is considered in the channel, in the sense that particle centres occupy all
possible positions (excluding overlap with walls) with an equal probability. In (I) that was
concerned with elongated particles, it was assumed that a ‘high-frequency’ flow field is
applied to the suspension, so that the orientation angle of each elongated particle relative to
the flow field is practically kept constant during the period of the external flow oscillation.
Now for spheres, the orientation problem is irrelevant and for a particle distribution to
stay unmodified, it is permissible for particles to move a significant distance along the
flow field provided their centre stays at the same position z. In that case, a uniform
particle distribution set in a steady Poiseuille flow field stays as such later on. A possible
migration of particles across streamlines (across z) would be attributed to either lift forces
due to fluid inertia, concentration effects or Brownian motion. All these phenomena are
out of the scope of the present article, provided: (i) the Reynolds number responsible
for migration (Ho & Leal 1974) is low enough and also the distance travelled along the
flow field is not large (otherwise a low migration velocity across streamlines could give
a significant migration distance); (ii) the volume fraction is low enough for interactions
between particles to be negligible; and (iii) the particles are non-Brownian, that is, larger
than a few micrometres. The average 〈·〉 then only amounts to calculating an integral over
all possible positions of the test particle across the channel, excluding the possible overlap
of the sphere with walls:

[μ] = 9

4π

(
1 + 6

λ̃

H̃

)(
H̃ − 2

)
∫ H̃−1

1
J (z̃c) dz̃c, (2.25)

where the integrand J (z̃c) contains a stresslet part JS(z̃c) and a quadrupole part JQ(z̃c):

J (z̃c) = JS(z̃c) + JQ(z̃c), (2.26a)

JS(z̃c) =
(

1 − 2
z̃c

H̃

)
S̃xz, JQ(z̃c) = − 1

H̃
Q̃xzz. (2.26b,c)
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3. Expressions of stresslet and quadrupole

This section is concerned with the contributions of interactions with walls in the
calculation of the intrinsic viscosity and then in the calculation of the stresslet component
Sxz and quadrupole component Qxzz for a freely moving sphere in the ambient flow field
(2.1) with coefficients (2.3a,b).

3.1. Interactions based on individual walls
In general, the hydrodynamic interactions of the sphere with both slipping walls should be
taken into account. As stated in the introduction, this is a difficult task. Indeed, for various
calculation methods such as the boundary element method (BEM) (see Pozrikidis 1992;
Sellier 2010) and the method of multipoles (see Bhattacharya, Bławzdziewicz & Wajnryb
2005a,b; Ekiel-Jeżewska & Wajnryb 2009) it would first require the derivation of the
Green tensor between two parallel slip walls. This very challenging issue is left for future
works.

For a large enough gap H̃ between walls, in the case of no-slip walls, the earlier
calculation by (I) has shown that the interactions of particles with the nearest wall give
a good approximation to the effective viscosity, by comparison to the accurate multipole
method which takes both walls simultaneously into account. For the case of a freely
moving particle between no-slip parallel walls, the earlier study by Pasol et al. (2011)
showed that the nearest wall approximation and the wall superposition approximation both
gave excellent results for the particle velocity for a wide range of parameters. Based on
these experiences, we consider here the following.

(i) The zero wall approximation, denoted as 0w, in which the stresslet and quadrupole
in (2.26b,c) are calculated ignoring the interactions of the particle with the walls,
that is (see (I))

S̃xz,0w = 10π

3

(
1 − 2z̃c

H̃

)
, Q̃xzz,0w = − 8π

3H̃
, (3.1a,b)

and injected into the expression (2.26) for the integrand, to be denoted as J0w; the
result for the intrinsic viscosity calculated with (2.25) is then denoted as [μ]0w.

(ii) The nearest wall approximation, denoted as nw, in which the stresslet and quadrupole
in (2.26b,c) are calculated by considering interactions with the nearest wall only; the
integrand is then denoted as Jnw and the intrinsic viscosity [μ]nw is calculated by
integration using (2.25). By symmetry of Jnw with respect to the channel mid-plane,
a simpler formula is

[μ]nw = 9

2π

(
1 + 6

λ̃

H̃

)(
H̃ − 2

)
∫ H̃/2

1
Jnw(z̃c) dz̃c. (3.2)

(iii) The wall superposition approximation, denoted as ws. In this case, consider first
the influence of the wall at z̃c = 0 over the whole gap (note that J1w = Jnw only
for 1 ≤ z̃c ≤ H̃/2). The integrand, denoted as J1w(z̃c), here takes into account the
interactions with the wall at z̃c = 0. Integrating J1w(z̃c) for z̃c from 1 to H̃ − 1
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provides the resulting contribution to the intrinsic viscosity:

[μ]1w = 9

4π

(
1 + 6

λ̃

H̃

)(
H̃ − 2

)
∫ H̃−1

1
J1w(z̃c) dz̃c. (3.3)

The calculation of the contribution of the second wall at z̃c = H̃ − 1 to the intrinsic
viscosity is carried out in the same way. Without entering into detail, it is clear that
both walls will give equal contributions. These contributions are then added. In this
process, the common part for large distance from the wall should not be counted
twice, thus we subtract the 0w case. Finally, the formula for the wall superposition
approximation is

[μ]ws = 2 [μ]1w − [μ]0w (3.4)

in which [μ]0w is calculated with (3.1a,b) and (2.25) as explained above. The
integrand for this case is

Jws = 2J1w − J0w. (3.5)

In any case (either nw or ws), the quantities required for averaging are the stresslet and
quadrupole on a freely suspended sphere in the ambient flow (2.1) in the presence of
a single slip wall. The bipolar coordinates method (BCM) will be used in this article to
obtain very accurate results for these quantities. This borrows results from previous papers
to be quoted below and also provides novel derivations for the quadrupole, for four basic
flow fields presented in § 3.2. Then § 3.3 presents the new calculation of the quadrupole
for a sphere held fixed in ambient linear and quadratic shear flows.

3.2. Relevant normalized quantities
The vector ri in the stresslet operator (2.10) and quadrupole operator (2.11) is now for
a single particle (dropping the i subscript) denoted as r = x − xC, where x is a current
point on the sphere and xC is the position of the sphere centre C as measured from a point
located on the lower wall W1.

The translational and rotational velocities of a freely moving sphere in the flow field
(2.1) are, by linearity of Stokes equations, respectively along x , say Ux , and along y,
say Ωy . By linearity of Stokes equations, they are obtained as the superposition of the
corresponding freely moving velocities in a laminar shear flow k1z (see Loussaief et al.
2015) and in a quadratic shear flow k2z (see Ghalia et al. 2016):

Ux = Us
x + Uq

s , Ωy = Ω s
y + Ωq

y (3.6a,b)

Us
x

k1(zc + λ)
= us

x =
1

2(z̃c + λ̃)
f r
xycs

yx + f s
xx cr

yy

f t
xx cr

yy − f r
xyct

yx

, (3.6c)

Ω s
y

k1/2
= ωs

y = 2(z̃c + λ̃)f s
xx ct

yx + f t
xx cs

yx

f t
xx cr

yy − f r
xyct

yx

, (3.6d)
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Effective viscosity of suspension between parallel slip walls 899 A13-11

Flow field S̃xz Q̃xzz

Translation 6π(Ux/(k1a))st
xz −2π(Ux/(k1a))qt

xzz (see (3.7))
Rotation 6π(Ωy/k1)sr

xz 8π(Ωy/k1)qr
xzz (see (3.8))

Linear shear flow (10π/3)ss
xz 2π(z̃c + λ̃)qs

xzz

Quadratic shear flow (20π/3)(k2zc/k1)s
q
xz 2π(k2a/k1)z̃cqq

xzz

TABLE 1. Normalized stresslet and quadrupole (defined in (2.23)) for elementary flow fields: a
translating sphere, a rotating sphere in a fluid at rest and a sphere held fixed in linear shear and
quadratic shear flows.

Uq
x

k2

(
zc + a2

3

) = uq
x = z̃2

ccr
yy f q

xx + z̃c f r
xycq

yx

[z̃2
c + 1

3 ][cr
yy f t

xx − f r
xyct

yx ]
, (3.6e)

Ωq

k2zc
= ωq

y = cq
yx f t

xx + z̃c f q
xx ct

yx

cr
yy f t

xx − f r
xyct

yx

. (3.6 f )

We here also define dimensionless velocities. The ‘f ’s and ‘c’s on the right-hand sides are
dimensionless friction coefficients which either have the limit of unity (when subscripts
are identical) or vanish (when subscripts are different) when the sphere is infinitely far
from the wall. The results (3.6c) and (3.6d) were obtained (in Loussaief et al. 2015) by
writing that the sums of forces and torques for a sphere translating and rotating in a fluid
at rest and a sphere held fixed in a linear shear flow k1z vanish. Likewise, (3.6e) and (3.6d)
were obtained (in Ghalia et al. 2016) from vanishing total force and torque for the quadratic
shear flow k2z. Adding the results in (3.6a) and (3.6b) amounts to expressing the condition
that the total force and torque in the flow field (2.1) vanish. By total force and torque, we
mean those due to translation and rotation in a fluid at rest and particle held fixed in the
flow fields k1z and k2z.

Expressions for the normalized stresslet and quadrupole defined in (2.23) are displayed
in table 1, in terms of dimensionless stresslet coefficients s•

xz and quadrupole coefficients
q•

xzz, where the superscript bullet (•) represents t, r, s and q for translation, rotation,
ambient linear shear flow and ambient quadratic shear flow, respectively. The coefficients
s•

xz and q•
xzz for (t, s, q) tend to unity for z̃c → ∞ whereas sr

xz and qr
xzz vanish (the

coefficients 6π and 8π in the definitions of these last quantities are chosen arbitrarily).
In the last column of table 1, the normalized quadrupoles qt

xzz due to translation and
qr

xzz due to rotation were obtained by applying the Lorentz reciprocity theorem (see
appendix A):

qt
xzz = 3z̃c

(
z̃c + 2λ̃

)
f t
xx − 6z̃c

(
z̃c + λ̃

)
f s
xx + 3z̃2

c f q
xx , (3.7)

qr
xzz = 3

4
z̃c

(
z̃c + 2λ̃

)
f r
xy + z̃ccs

yx − z̃ccq
yx . (3.8)

All dimensionless coefficients, in these formulae and in table 1, except qs
xzz and qq

xzz, have
been calculated previously using bipolar coordinates for a sphere interacting with a slip
plane wall. The results of Loussaief et al. (2015) and Ghalia et al. (2016) will be used here.
For instance, the dimensionless stresslet coefficient fortranslation, st

xz, is obtained from
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earlier results as follows:

(i) From (2.23a) and the first line, first column in table 1, the stresslet component due
to translation is St

xz = 6πμ0aUx st
xz, which is the original definition of st

xz in Ghalia
et al. (2016) (see (66) there).

(ii) In Ghalia et al. (2016), (B 4a–c) gives st
xz in terms of coefficients Bt

n, Ct
n, Er

n .
(iii) These coefficients appear in the expressions of harmonics (describing the flow field)

as series in bipolar coordinates (see (3.3) in Loussaief et al. (2015)); Bt
n, Ct

n are for
the translation problem and Er

n is for the rotation problem. These coefficients are
calculated accurately in bipolar coordinates in Loussaief et al. (2015).

The determination of the novel coefficients qc
xzz and qq

xzz is the topic of the next
subsection.

The expressions of the stresslet and quadrupole for translation and rotation in table 1
are valid for any translation velocity Ux and rotational velocity Ωy , respectively. Consider
now a freely moving sphere in the flow field (2.1) (with (2.3a,b)). Its translational and
rotational velocities are obtained by adding the contributions of the linear and quadratic
shear flows shown in (3.6):

Ux = k1(zc + λ)us
x + k2

(
z2

c + a
3

)
uq

x , Ωy = k1

2
ωs

y + k2zcω
q
y. (3.9a,b)

These expressions are then introduced in table 1. The stresslet and quadrupole for a freely
moving sphere in the flow field (2.1) are obtained as superpositions of those for a sphere
translating and rotating in a fluid at rest and those for a sphere held fixed in the shear flows
k1z and k2z:

S̃xz = 6π

[(
z̃c + λ̃

)
us

x − 1

H̃

(
z̃2

c + 1
3

)
uq

x

]
st

xz,

+ 6π

[
1
2
ωs

y − z̃c

H̃
ωq

y

]
sr

xz + 10π

3
ss

xz − 20π

3
z̃c

H̃
sq

xz, (3.10)

Q̃xzz = −2π

[(
z̃c + λ̃

)
us

x − 1

H̃

(
z̃2

c + 1
3

)
uq

x

]
qt

xzz

+ 8π

[
1
2
ωs

y − z̃c

H̃
ωq

y

]
qr

xzz + 2π
(

z̃c + λ̃
)

qs
xzz − 2π

z̃2
c

H̃
qq

xzz. (3.11)

3.3. Determination of the normalized quadrupoles qs
xzz and qq

xzz

The reader only interested in the results for the effective viscosity may skip this subsection
and go directly to § 3.4.

We derive here the normalized quadrupoles qs
xzz and qq

xzz (recall table 1) for a sphere,
with radius a and centre O′, held fixed near the z = 0 plane slip wall in an ambient linear
or quadratic shear flow (ua, pa) with stress tensor σ a. The disturbance flow (u′, p′) about
the sphere has stress tensor σ ′ and it is recalled that the sphere distance to the wall is
zc > a while the wall slip length is λ̃a. The quadrupole Qxzz, exerted by the disturbed flow

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

42
9

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 In

st
yt

ut
 P

od
st

aw
ow

yc
h 

Pr
ob

le
m

ow
 T

ec
hn

ik
i P

AN
, o

n 
07

 A
ug

 2
02

0 
at

 0
9:

49
:5

7,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

https://doi.org/10.1017/jfm.2020.429
https://www.cambridge.org/core
https://www.cambridge.org/core/terms
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on the sphere, is Qxzz = Qa
xzz + Qd

xzz with

Qa
xzz =

∫
[ex · σ a · n](z − zc)

2 dS, Qd
xzz =

∫
[ex · σ ′ · n](z − zc)

2 dS. (3.12a,b)

From the definitions (2.23) and table 1, it follows that the dimensionless quadrupoles qs
xzz

and qq
xzz are defined by

Qxzz = 2πμ0k1a4(z̃c + λ̃)qs
xzz for ua = us := k1(z + aλ̃)ex and pa = 0, (3.13)

Qxzz = 2πμ0k2a3z2
cqq

xzz for ua = uq := k2z2ex and pa = 2μ0k2x . (3.14)

Let us now derive the integrals in (3.12a,b). Following the original idea suggested by Dean
& O’Neill (1963) for a sphere rotating parallel to a no-slip wall, it is convenient to use
spherical polar coordinates (r, θ, ϕ) with the sphere centre as the origin and r = O′M, x =
r sin θ cos ϕ, y = r sin θ sin ϕ, z = zc + r cos θ. Here θ and ϕ run in [0,π] and [0, 2π],
respectively. In addition, the disturbance velocity u′ polar components are (u′

r, u′
θ , u′

ϕ). On
the r = a sphere surface S, with unit normal n = O′M/a, we write for convenience of
calculation ex · σ ′ · n = μ0(T1 + T2) with

aT1 = cos θ cos ϕ

[(
∂u′

r

∂θ

)
− u′

θ

]
+ sin ϕ[u′

ϕ] − sin ϕ

sin θ

(
∂u′

r

∂ϕ

)
, (3.15)

T2 =
[

2
(

∂u′
r

∂r

)
− p′

μ0

]
sin θ cos ϕ + cos θ cos ϕ

(
∂u′

θ

∂r

)
− sin ϕ

(
∂u′

ϕ

∂r

)
. (3.16)

The contribution of Te for e = 1, 2 to the quadrupole Qd
xzz is denoted Qd,e

xzz. On the sphere
boundary (z − zc)

2 dS = a4[cos θ ]2 sin θ dθ dϕ and u′ = −ua. Using (3.15) easily gives

Qa
xzz = Qd,1

xzz = 0 if ua = us, (Qa
xzz, Qd,1

xzz) = 8πμ0k2a5

5

(
2
3
,

1
7

)
if ua = uq. (3.17)

The calculation of Qd,2
xzz is tricky. It employs the cylindrical coordinates (ρ, z, ϕ) with

ρ = {x2 + y2}1/2 being the distance to the (O, ez) axis. The cylindrical components,
(vρ, vz, vϕ), of the disturbance velocity u′ satisfy

u′
r = sin θ [vρ] + cos θ [vz], u′

θ = cos θ [vρ] − sin θ [vz], u′
ϕ = vϕ. (3.18a–c)

The relations (3.18a–c) provide the following expressions for the radial derivatives of
(u′

r, u′
θ , u′

ϕ), required in (3.16) (note that θ is kept constant in these derivatives):

∂u′
r

∂r
= sin θ

(
∂vρ

∂r

)
+ cos θ

(
∂vz

∂r

)
, (3.19a)

∂u′
θ

∂r
= cos θ

(
∂vρ

∂r

)
− sin θ

(
∂vz

∂r

)
,

∂u′
ϕ

∂r
= ∂vϕ

∂r
. (3.19b,c)

For each considered ambient velocity field, either us
a (linear shear) or uq

a (quadratic shear),
the disturbance flow (u′, p′) about the sphere is written (see e.g. Ghalia et al. 2016)

vρ = 1
2

{
ρQ1

c
+ U0 + U2

}
cos φ, vφ = 1

2
(U2 − U0) sin φ, (3.20a,b)

vz = 1
2

{
zQ1

c
+ 2W1

}
cos φ, p′ = μ0Q1 cos φ, c = (z2

c − a2)1/2, (3.21a–c)
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with functions W1, U0, U1 and U2 solely depending upon (ρ, z) (or equivalently upon
(r, θ )). Injecting (3.19a–c)–(3.21a–c) into (3.16) provides, by elementary manipulations
not detailed here for conciseness,

Qd,2
xzz = μ0

∫
S

a2T2[cos θ ]2 dS = πμ0a4
∫ π

0
T̃2[cos θ ]2 sin θ dθ, (3.22)

T̃2 = sin θ

sinh α

[
1 + cosh α cos θ

2

](
∂Q1

∂r

)
+ sin θ cos θ

(
∂W1

∂r

)
+
[

1 + sin2 θ

2

](
∂U0

∂r

)
+ sin2 θ

2

(
∂U2

∂r

)
. (3.23)

In finding the disturbance flow, it is more convenient to determine the functions W1, U0, U1
and U2 in terms of the bipolar coordinates (ξ, η) which are related to (ρ, z) as follows (see
e.g. Happel & Brenner 1973):

ρ = c sin η

cosh ξ − cos η
, z = c sinh ξ

cosh ξ − cos η
, c = (z2

c − a2)1/2. (3.24a–c)

For each angle ϕ the liquid domain above the slip wall is obtained taking 0 ≤ η ≤ π and
0 ≤ ξ ≤ α with α > 0 given by cosh α = z̃c. In the (ξ, η, ϕ) coordinates the ξ = 0 and
ξ = α surfaces are the slip z = 0 plane wall and the sphere boundary, respectively. It is
then found (see Ghalia et al. 2016) that

W1(ξ, η) = klcl(cosh ξ − t)1/2 sin η
∑
n≥1

An sinh(γnξ)P′
n(t), (3.25)

Q1(ξ, η) = klcl(cosh ξ − t)1/2 sin η
∑
n≥1

[Bn cosh(γnξ) + Cn sinh(γnξ)]P′
n(t), (3.26)

U0(ξ, η) = klcl(cosh ξ − t)1/2
∞∑

n≥0

[Dn cosh(γnξ) + En sinh(γnξ)]Pn(t), (3.27)

U2(ξ, η) = klcl(cosh ξ − t)1/2 sin2 η
∑
n≥2

[Fn cosh(γnξ) + Gn sinh(γnξ)]P′′
n(t), (3.28)

with c = a sinh α, γn = n + 1/2, t = cos η, Pn the usual Legendre polynomial of order n
and primes designating differentiations. In (3.25)–(3.28) the superscript l that is either l =
1 or l = 2 refers to either the ambient linear shear flow or quadratic shear flow, respectively.
The dimensionless coefficients An, Bn, Cn, Dn, En, Fn and Gn in (3.25)–(3.28) are required
to vanish as n becomes infinite. They are obtained by enforcing the condition ∇ · u′ = 0
in the 0 ≤ ξ ≤ α liquid domain, the Navier slip and impermeability conditions on the
ξ = z = 0 slip wall and the no-slip condition u′ = −ua on the ξ = α sphere surface (see
details in Loussaief et al. (2015) and Ghalia et al. (2016)).

Recall that in (3.23) the partial derivatives with respect to r are to be performed at
constant angle θ. Then (see also Dean & O’Neill 1963), on the ξ = α sphere boundary(

∂f
∂r

)
= t − cosh α

c

(
∂f
∂ξ

)
, dθ = sin θ dη

sin η
, (3.29a,b)

sin θ = sinh α sin η

cosh α − t
, cos θ = t cosh α − 1

cosh α − t
, (3.29c,d)
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Effective viscosity of suspension between parallel slip walls 899 A13-15

with t = cos η and ∂f /∂ξ to be taken at constant value of η for f (r, θ) = f (ξ, η). Appealing
to (3.29a–d) when using (3.22)–(3.23) then finally yields

Qd,2
xzz/μ0 =

∫
S

a2T2[cos θ ]2 dS = −πkla2cl+1

4
{SA + SB + SC + SD + SE + SF + SG},

(3.30)

where SL designates a sum involving the coefficients L introduced in (3.25)–(3.28). Each
sum SL is expressed in terms of 10 integrals Im(n, α) in appendix B. For example,

SA = sinh α
∑
n≥1

{
sinh α[1 − e−2γnα]I4(n, α) + 2γn[1 + e−2γnα]I3(n, α)

}
An (3.31)

with the definitions

Im(n, α) = eγnα

∫ 1

−1

(1 − t2)[(cosh α)t − 1]3P′
n(t) dt

(cosh α − t)m+3/2
for m = 3, 4. (3.32)

Appendix B both defines and explains how to calculate analytically all 10 integrals Im.
Since they are too lengthy to be reproduced in this article, formulae are displayed only
for I3 and I4 in appendix B while the analytical results for the other integrals Im are given
in the supplementary material available at https://doi.org/10.1017/jfm.2020.429. Finally,
combining (3.17) with (3.30) provides the quadrupole Qxzz = Qa

xzz + Qd,1
xzz + Qd,2

xzz for the
ambient linear and quadratic shear flows. Using (3.13) and (3.14) then gives the desired
coefficients qs

xzz and qq
xzz.

3.4. Accuracy issues and comparisons against a BEM approach
The BCM is known to be very accurate provided its numerical implementation is
adequately handled. The encountered series, as in (3.25)–(3.28), are truncated beyond
a given integer Nt. Of course, the value of Nt required to ensure a given accuracy
level depends on (zz/a, λ̃). Moreover, while coding in Fortran double precision (D) was
sufficient for some domains of parameters (see Ghalia et al. 2016), it has been found
here necessary to code in Fortran quadruple precision (Q) (as in Loussaief et al. 2015)
to accurately compute the new terms qs

xzz or qq
xzz when z̃c becomes large whatever λ̃ ≥ 0.

Moreover, the quadruple precision code uses another numerical method, i.e. the Thomas
algorithm (as in Loussaief et al. 2015), instead of the classical LU factorization (as in
Ghalia et al. 2016) to invert the tridiagonal matrix providing the series coefficients. The
interest of the Thomas algorithm is that it allows the calculation of more terms in the
series at a reduced cost in memory and CPU calculation time. Displaying results using
these two different methods also provides here a supplementary check for the validity
of the numerical results. The comparison is illustrated for qq

xzz in table 2 taking zz/a =
1.005, 1.5, 100 and λ̃ = 0, 1, 10. Clearly, for zz/a = 100 the calculations in quadruple
precision are more accurate and efficient (smaller required value of Nt) whatever λ̃. For
instance, taking Nt = 2000 in quadruple precision is sufficient to reach an eight-digit
accuracy when zz/a = 100 even for the large slip case λ̃ = 10. When the sphere is very
close to a wall with large slip length it is necessary to take Nt large for computations in
both double and quadruple precision.

In view of the great amount of calculations (see the previous subsection, appendix B
and the supplementary material), it is useful for validation to compare the BCM
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z̃c λ̃ (D, 2000) (Q, 2000) (D, 20 000) (Q, 20 000) (Q, 50 000)

1.005 0 3.01645877 3.01645877 3.01645877 3.01645877 3.01645877
1.5 0 2.18020474 2.18020474 2.18020474 2.18020474 2.18020474
100 0 −5.64719626 1.00582327 −15.5563090 1.00582327 1.00582327

1.005 1 2.76577913 2.76577907 2.76811980 2.76811966 2.76811966
1.5 1 1.98802007 1.98802007 1.98802007 1.98802007 1.98802007
100 1 −5.64725779 1.00576748 −15.5567979 1.00576748 1.00576748

1.005 10 −21805.1074 −21805.1078 2.05547977 2.05412850 2.52253581
1.5 10 1.71596085 1.71596084 1.72894416 1.72872275 1.72872275
100 10 −5.64750511 1.00533636 −15.5597524 1.00533636 1.00533636

TABLE 2. Normalized quadrupole qq
xzz computed with the BCM using either Fortran double

precision (D) or quadruple precision with the Thomas algorithm (Q) and truncating the series in
(3.25)–(3.28) beyond Nt. For example, the column (D, 2000) gathers the values of qq

xzz computed
in Fortran double precision taking Nt = 2000.

z̃c λ̃ qs
xzz (BCM) qs

xzz (BEM) qq
xzz (BCM) qq

xzz (BEM)

1.1 0 1.73822 1.73833 2.92583 2.92630
3 0 1.22498 1.22502 1.40323 1.40331
10 0 1.05951 1.05954 1.07604 1.07608
100 0 1.00566 1.00569 1.00582 1.00586

1.1 1 1.31700 1.31709 2.66233 2.66278
3 1 1.16678 1.16682 1.34664 1.34673
10 1 1.05415 1.05419 1.07069 1.07073
100 1 1.00560 1.00564 1.00577 1.00580

TABLE 3. Computed normalized quadrupoles qs
xzz and qq

xzz using either the BCM with
Nt = 20 000 or the BEM spreading 1058 collocation nodal points on the sphere surface.

predictions, for both dimensionless quadrupoles qs
xzz and qq

xzz, with the ones obtained
by the quite different BEM implemented in Ghalya, Sellier & Feuillebois (2012) for a
solid arbitrary-shaped particle interacting with the z = 0 slip wall. This method uses the
Green tensor fulfilling the boundary conditions on the wall and implements six-node (P2
quadratic approximation) isoparametric curved triangular meshes on the particle surface.
More details can also be found in Sellier (2010). Some numerical comparisons for qs

xzz

and qq
xzz are displayed in table 3 for a few settings (zz/a, λ̃) and taking Nt = 20 000 for

the BCM (with quadruple precision) and 1058 nodal points on the sphere boundary for
the BEM. Since the BEM requires much more refined meshes on the sphere surface as
z̃c − 1 vanishes the results in table 3 are given for z̃c ≥ 1.1. As observed in table 3, a very
good agreement (up to a four-digit accuracy) is found between the BEM and the quadruple
precision BCM (with the Thomas algorithm). Finally, comparisons between the BCM and
BEM techniques are given in table 4 for the key quantities S̃xz and Q̃xzz taking H = 5a.
Again, a good agreement is observed.
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z̃c λ̃ (�): S̃xz (a): S̃xz (b): S̃xz (�): Q̃xzz (a): Q̃xzz (b): Q̃xzz

1.1 0 10.496 10.497 10.497 −3.6703 −3.6677 −3.6678
1.3 0 7.0867 7.0870 7.0870 −2.4149 −2.4142 −2.4142
1.5 0 5.2942 5.2944 5.2944 −2.0293 −2.0286 −2.0286
2.0 0 2.3536 2.3536 2.3536 −1.7446 −1.7441 −1.7441
2.5 0 0.0211 0.0208 0.0208 −1.6834 −1.6829 −1.6829

1.1 0.3 8.5894 8.5904 8.5904 −2.5726 −2.5719 −2.5719
1.3 0.3 6.4272 6.4274 6.4274 −2.1124 −2.1118 −2.1118
1.5 0.3 4.9826 4.9827 4.9827 −1.9045 −1.9040 −1.9040
2.0 0.3 2.2921 2.2921 2.2921 −1.7242 −1.7237 −1.7237
2.5 0.3 0.0159 0.0159 0.0159 −1.6811 −1.6806 −1.6806

1.1 1 7.7521 7.7529 7.7529 −2.1098 −2.1093 −2.1093
1.3 1 6.0575 6.0577 6.0576 −1.9402 −1.9397 −1.9397
1.5 1 4.7894 4.7894 4.7894 −1.8269 −1.8263 −1.8263
2.0 1 2.2480 2.2480 2.2479 −1.7101 −1.7096 −1.7096
2.5 1 0.0120 0.0121 0.0121 −1.6794 −1.6789 −1.6789

TABLE 4. Computed normalized quantities S̃xz and Q̃xzz using the BEM (� symbol) or the BCM
taking either Nt = 2000 (a) or Nt = 20 000 (b). Here H = 5a and 1058 collocation nodal points
are distributed on the sphere surface for the BEM.

4. Numerical results

This section presents the numerical results obtained for the intrinsic viscosity and
its dependence in terms of the slip length when attention is restricted, as discussed in
the introduction, to the widely encountered range λ̃ ≤ 1. It contains four subsections.
First, a comparison with earlier results obtained in (I) for the case of no-slip walls is
presented in § 4.1. Then, for a slip wall, values of the integrands (see § 3.1) appearing in
the expressions for the intrinsic viscosity are presented in detail in § 4.2. Comprehensive
results for the intrinsic viscosity are displayed in § 4.3. Finally, numerical results for the
intrinsic viscosity are fitted with a polynomial and the resulting interpolation formula is
displayed in § 4.4.

Throughout this section, calculations were performed in quadruple precision Fortran,
using, as in Loussaief et al. (2015), the Thomas algorithm for the calculation of the terms
of series in bipolar coordinates. The number Nt of terms of the truncated series is adjusted,
depending on (z̃c, λ̃), to obtain a 15-digit accuracy.

4.1. Comparison and validation for no-slip walls
The intrinsic viscosity for no-slip walls was calculated in (I) using the accurate multipole
method which fully takes into account the interactions with both walls. That method was
corrected for lubrication to speed up the convergence rate. Plots in (I) were in terms of
the dimensionless ratio H/d = H̃/2. We use also H/d in this article for comparison with
(I) and also for all further plots. This choice is also motivated by possible comparisons
with experiments in which the particle diameter is provided rather than the radius. A
comparison was made in (I) with a ‘simplified model’ which took into account only the
stresslet term and in this case only the nearest wall. That comparison clearly showed that
both models match for H/d ≥ 10 while the behaviour is quite different for H/d down to
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H/d

Einstein
tw
ws
nw
0w
tw, stresslet only
nw, stresslet only
0w, stresslet only

1.0

1

2.0

2 3 4 5 6 7 8 9 10
0

0.5

1.5

2.5

[μ]

FIGURE 3. Comparison and validation for no-slip walls. Results for two walls (tw) are from (I)
and were calculated for two parallel walls with the multipole method. The wall superposition
(ws, dash-dotted line, red) and nearest wall (nw, lines with larger dots, blue) results are obtained
with the present bipolar coordinates calculations. The no wall (0w, lines with circles) curves are
obtained from the analytical equations (3.1a,b). Dashed lines for the various models (see legend)
are for stresslet only. The horizontal dotted line at [μ] = 2.5 recalls the result of Einstein (1906)
for the intrinsic viscosity in unbounded fluid.

unity. Indeed, the intrinsic viscosity predicted by the ‘simplified model’ drops down to
zero for H/d → 1.

The calculation of the quadrupole term in bipolar coordinates, presented in § 3.3, will be
used here. First, the full nearest-wall model nw which takes into account both the stresslet
and the quadrupole is employed. The comparison is shown in figure 3. It is observed that
the curves for the two-walls exact model (say tw) and the nw model have the same shape
for small H/d, which is not the case when only stresslet is taken into account (compare
with figure 2 in (I)). It is also observed that the value of [μ] for the nw model is smaller
than that for the two-walls model. This is expected, since some friction effects from both
walls at the same time are discarded by the nw model, especially in the middle of the
gap. For comparison, figure 3 also displays the results for the no-wall (0w) approximation
already shown in (I).

Results for the wall-superposition (ws) model, taking into account both the stresslet and
quadrupole in the interaction with each wall separately, are also plotted in figure 3. Curves
for the nw and ws models are remarkably close together in the range H/d ≥ 1.2.

The ability of the nw and ws models to predict the effective viscosity is quantified by
considering their relative ‘error’ (Δ[μ])/[μ] by comparison with the exact tw model. For
instance for the nw model, (Δ[μ])/[μ] = |1 − [μ]nw/[μ]tw|. These errors are plotted in
figure 4. They are small and of comparable magnitude, the ws approximation being a
little better that the nw one in the range 1.5 ≤ H/d ≤ 6. In the same figure, we plot the
horizontal dashed line which indicates the 5 % error level. It is remarkable that for both
nw and ws approximations the relative error remains below that level in the wide range
H/d ≥ 2. For H/d ≥ 3, both relative errors are even less than 2 %.

In conclusion, both nw and ws models are validated in the range H/d ≥ 2, this lower
bound being represented as a vertical dash-dotted line in figure 4.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

42
9

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 In

st
yt

ut
 P

od
st

aw
ow

yc
h 

Pr
ob

le
m

ow
 T

ec
hn

ik
i P

AN
, o

n 
07

 A
ug

 2
02

0 
at

 0
9:

49
:5

7,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

https://doi.org/10.1017/jfm.2020.429
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Effective viscosity of suspension between parallel slip walls 899 A13-19
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FIGURE 4. Comparison and validation for no-slip walls: relative differences between the nw and
ws models and the exact two-walls (tw) results of Feuillebois et al. (2016), i.e. |1 − [μ]nw/[μ]tw|
and |1 − [μ]ws/[μ]tw|.

It is expected that the influences of walls decrease with increasing normalized slip length
λ̃. Consequently, for λ̃ > 0 the accuracy of both nw and ws models for slip walls is likely
to be even better than 5 % in the whole range of distances H/d ≥ 2.

The counterpart to restricting the domain to H/d ≥ 2 because of accuracy issues is
that the interesting increase of [μ] for small gaps due to lubrication (see figure 3) will
not be reconsidered for slip walls. This is unavoidable in this article, since considering
interactions with both walls at the same time would be compulsory for the range of small
gaps H/d < 2; that is, using only lubrication with individual walls for H/d close to unity
would not be sufficient.

To make this idea more precise, consider first no-slip walls. For H/d close to unity,
lubrication interactions with separate walls are of order log(H/d − 1) and the next order
term for small gaps (numerically very close to the first one) would include interactions with
both walls, as pointed out in Ekiel-Jeżewska et al. (2008). Using the precise multipole
method (see Bhattacharya et al. 2005a,b), it was shown there that the second-order
lubrication terms (constant and of the same order as the leading logarithmic terms) are
essentially different from the superposition of the corresponding single-wall terms.

This problem carries over to slip walls. When calculating the force on a sphere near
a single slip wall, Davis, Kezirian & Brenner (1994) found a weak log-singularity in
the lubrication regime at low slip and no singularity for other values of the slip. A
similar behaviour is expected for the stresslet and quadrupole. These quantities are actually
calculated in this lubrication regime from our accurate bipolar coordinates results. As for
the next order lubrication terms, they are expected to be numerically very close to the
first-order ones and to involve both slip walls. These terms cannot be calculated at the
present time.

4.2. Integrands in the expressions of the effective viscosity for slip walls
This subsection is concerned with the variations of the integrands J0w,Jnw and Jws
(defined in § 3.1) in the expressions for the intrinsic viscosity and is motivated by
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J

FIGURE 5. (a) Integrands J0w, Jnw and Jws (represented by circles, dots and solid lines,
respectively) for the very confined case H/d = 2. The sphere is in contact with a wall at
zc/H = 0.25 and zc/H = 0.75. The integrands Jnw and Jws look practically superimposed.
Values of the normalized slip length λ̃ = 0, 0.3 and 1 correspond to the upper, middle and lower
solid lines (black, green and red), respectively. (b) Relative contribution of the quadrupole JQ/J
for the cases 0w, nw and ws, with the same notation as in (a). (c) Zoom of the preceding plots
near the wall, with the same notation as in (a).

two issues:

(i) It is expected on physical grounds that the regions close to the slip walls would
have a larger contribution than the region in the bulk of the channel and that these
contributions would be more sensitive to variations in the slip length λ̃.

(ii) It was noticed for the no-slip case in figure 3 that the quadrupole term significantly
contributes to the shape of the curve for the effective viscosity in the range H/d ≤ 5.
This is an incentive for studying the relative contribution of the quadrupole to the
integrand for the case of slip walls.

The integrands J0w, Jnw and Jws depend on H/d, λ̃ and zc/H. We consider first the very
confined case H/d = 2. The integrands are plotted together versus zc/H in figure 5(a)
for λ̃ = 0, 0.3, 1. It is observed that they are positive, symmetric with respect to the
channel mid-plane and monotonic over each half-channel. Such a smooth behaviour
allows calculation of the integral for the intrinsic viscosity by a standard Gauss–Legendre
quadrature with 16 points on a half-channel. The smallest Gauss–Legendre integration
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FIGURE 6. (a) Variation of the integrand J0w,Jnw,Jws. (b) Zoom of (a) near the wall at
zc = 0. Curves are for the moderately confined case H/d = 5. The sphere is in contact with
a wall at zc/H = 0.1 and zc/H = 0.9. Values of the normalized slip length λ̃ = 0, 0.3 and
1 correspond to the upper, middle and lower solid lines (black, green and red), respectively.
(c) Ratios J0w,Q/J0w,Jnw,Q/Jnw,Jws,Q/Jws. (d) Zoom of (c) near the wall at zc = 0.

point is at zc/H = 0.2513, not too close to the contact with wall at zc/H = 0.2500, i.e.
higher than the lowest point z̃c = 1.005 considered in table 2, so that using Nt ≤ 20 000 in
the bipolar coordinates calculations is sufficient for accuracy.

Note that this integration procedure was already applied for the no-slip λ̃ = 0 case in
§ 4.1.

The zero-wall integrand J0w (see figure 5a) is independent of λ̃ and always smaller than
the other integrands. As expected, the contribution of the wall regions is larger than that
of the bulk (say, of the domain |z̃c/H − 0.5| ≤ 0.15). In the bulk region, each integrand is
practically insensitive to λ̃. By contrast, Jnw and Jws significantly decrease with increasing
λ̃ in the wall regions. Moreover, Jnw and Jws are very close together in the whole domain
for all values of λ̃.

The relative contribution of the quadrupole term JQ/J (recall (2.26b,c)) is displayed in
figure 5(b), still for H/d = 2 and λ̃ = 0, 0.3, 1. It is larger than 15% and nearly insensitive
to λ̃ in the bulk region. It varies slightly with λ̃ in the wall regions, as shown by the zoom
in figure 5(c).

The influence of increasing the normalized channel width H/d is investigated in figure 6
for H/d = 5 (moderately confined case) and in figure 7 for H/d = 50 (widely separated
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FIGURE 7. (a) Variation of the integrand J0w,Jnw,Jws. (b) Zoom of (a) near the wall at
zc = 0. Curves are for widely separated walls, H/d = 50. The sphere is in contact with a
wall at zc/H = 0.01 and zc/H = 0.99. Values of the normalized slip length λ̃ = 0, 0.3 and
1 correspond to the upper, middle and lower solid lines (black, green and red), respectively.
(c) Ratios J0w,Q/J0w,Jnw,Q/Jnw,Jws,Q/Jws. (d) Zoom of (c) near the wall at zc = 0. (e) Zoom
of the peak near the channel mid-plane.

walls), for comparison with figure 5 for H/d = 2. The bulk region referred to above
increases with H/d. Near the walls, the sensitivity of J to λ̃ is about the same for
all values of H/d. The quadrupole part JQ/J decays significantly as H/d increases,
except in the very vicinity of the channel mid-plane. Note that JQ/J = 1 at mid-channel,
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2 4 6 8 10 12 14 16 18 20
0

0.5

1.0

1.5

2.0

2.5

H/d

[μ]

FIGURE 8. Intrinsic viscosity [μ] versus H/d. The nearest wall (nw) and wall superposition (ws)
models are represented by dots and solid lines, respectively; they are practically superimposed.
The top (black) dots and solid lines are for λ̃ = 0. The middle (blue) dots and solid lines are for
λ̃ = 0.3 when taking into account the actual slip walls. The bottom (red) dots and solid lines
are for λ̃ = 0.3 using the displaced no-slip walls model. The circle symbols (◦) represent the
zero-wall model (0w): top (black), for λ̃ = 0; bottom (blue), for λ̃ = 0.3. The horizontal dotted
line at 2.5 represents Einstein’s result.

i.e. zc/H = z̃c/H̃ = 1/2, because the local shear rate 1 − 2z̃c/H̃ and thus also JS, see
(2.26b,c), vanishes there. On the other end, as H/d increases, the sensitivity of JQ/J to
λ̃ is enhanced near walls.

4.3. Results for the effective viscosity for slip walls
We now present results for the effective viscosity of a dilute suspension of spheres bounded
by two parallel impermeable slip walls, in the ranges H/d ≥ 2 and 0 ≤ λ̃ ≤ 1.

Recall from (2.25) that the suspension intrinsic viscosity depends both on an integral
and on the prefactor

9

4π

(
1 + 6

λ̃

H̃

)(
H̃ − 2

) .

Consequently, the intrinsic viscosity for the zero-wall model varies with λ̃ as (1 +
6λ̃/H̃)−1. This variation is illustrated for λ̃ = 0.3 and compared with the nw and the ws
approximations in figure 8 (these approximations give very close results). Importantly, the
intrinsic viscosity varies significantly from no-slip walls to slip walls in the whole range of
H/d represented here, even for this relatively small value λ̃ = 0.3. Moreover, comparing
the 0w results to either the nw or the ws results shows that the influence of walls decays
for increasing λ̃, as expected.

Since the predictions obtained by the nw and ws models are very close we only report
henceforth results given by the ws model.
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H/d [μ], displaced no-slip walls [μ], actual slip walls

2 0.580 0.906
8 1.841 1.921
14 2.115 2.155
20 2.229 2.254

TABLE 5. Comparison for λ̃ = 0.3 and H/d = 2, 8, 14, 20 (first column) of the intrinsic
viscosity [μ] obtained with the ‘displaced-walls’ model (second column) and for actual slip
walls using the ws model (third column).

At this stage the above results make it possible to discuss the validity of the
‘displaced-walls’ model (see the introduction) if applied to the intrinsic viscosity
[μ] = [μ](λ̃, H/d). Let Ĥ be the normalized distance between the two fictitious displaced
walls, that is, Ĥ = H̃ + 2λ̃. The model for the intrinsic viscosity is obtained by

(i) first using (2.25) for no-slip walls separated by Ĥ; let then ẑc denote the normalized
position of a sphere centre with respect to the lower fictitious no-slip wall and J0(ẑc)

denote the value of the integrand (2.26) for the no-slip case;
(ii) then restricting the integration range to the possible positions of particles in the gap

Ĥ − 2λ̃ between actual walls.

The resulting expression is

[μ] = 9
4π
(
Ĥ − 2

) ∫ Ĥ−1−λ̃

1+λ̃

J0(ẑc) dẑc. (4.1)

Consider the example case λ̃ = 0.3. From figure 8 it is observed that the lower dots (for
nw) and line (for ws) (both red) representing the results of the ‘displaced-walls’ model are
below the dots and line (both blue) results when actual slip walls are taken into account.
The ‘displaced-walls’ model is very approximate for small gaps but becomes close to the
correct result for large gaps. This feature is quantified in table 5 for a few values of H/d.

Thus, the ‘displaced-walls’ model is insufficient for predicting the intrinsic viscosity for
small gaps.

Figure 9, which represents the main result of this article, provides plots of the intrinsic
viscosity for a comprehensive set of values of the normalized slip length in the range
0 ≤ λ̃ ≤ 1 (even more data are provided in figure 13). For the largest slip length considered
here, λ̃ = 1, in the very confined case H/d = 2 the intrinsic viscosity [μ] is divided by 3
compared with the no-slip case and divided by 5 compared with Einstein’s result for the
unbounded suspension. These ratios decrease only slowly with increasing H/d. Even for
a very small slip length λ̃ = 0.01, there is a significant decrease of [μ] in a large range of
H/d compared with the no-slip case. For given H/d, the intrinsic viscosity decreases with
increasing slip length λ̃, as expected.

The dependence on λ in (2.25) comes on the one hand from the 1/(1 + 6 λ/H) factor
and on the other hand from the dependences on λ of the stresslet and quadrupole in the
average. Figure 10 shows a plot of (1 + 6 λ/H)[μ] versus H/d for various values of λ. It is
observed that all curves are significantly closer together than in figure 9. This proves that
the factor 1/(1 + 6 λ/H) is responsible for the largest part of the dependence on λ.
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FIGURE 9. Variations of the intrinsic viscosity [μ] calculated with the ws model versus H/d
for various values of λ̃: from top to bottom, λ̃ = 0, 0.01, 0.1, 0.3, 0.5, 1.0.
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FIGURE 10. Variations of the product (1 + 6 λ/H)[μ] calculated with the ws model versus
H/d for various values of λ̃: from top to bottom, λ̃ = 0, 0.01, 0.1, 0.3, 0.5, 1.0.

In figure 11, the variations of the intrinsic viscosity are plotted versus the slip length
λ̃ for the very confined case (H/d = 2), for the moderately confined case (H/d = 5) and
for separated walls (H/d = 20). It is observed that for a given dilute suspension, the same
intrinsic viscosity may be obtained with different sets of values (λ̃, H/d) (see also the
contour plot in figure 14a).

Finally, for comparison with figure 3 we plot for λ̃ = 0, 0.3, 1 in figure 12 the
contribution of the quadrupole term to the intrinsic viscosity [μ] as the ratio [μ]Q/[μ],
where [μ]Q is obtained by switching off the stresslet contribution in (2.24). This
contribution is quite significant for small gaps, say 2 ≤ H/d ≤ 4. For λ̃ = 0, it becomes
less than 5 % for H/d > 4.4. It appears that the ratio [μ]Q/[μ] is practically insensitive to
the slip length λ̃, in the range considered here.
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FIGURE 11. Variations of the intrinsic viscosity [μ] with λ̃ for H/d = 2, 5, 20, calculated with
the ws model (calculated points shown as symbols are here connected by straight lines).
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FIGURE 12. Relative contribution of the quadrupole term to the intrinsic viscosity versus H/d
for λ̃ = 0, 0.3, 1.0 (as calculated with the ws model).

4.4. An interpolation formula for the effective viscosity
The preceding numerical results were obtained from a lengthy quadruple precision Fortran
code enforcing the bipolar coordinates calculations. Building this code required substantial
efforts. For a practical prediction of the effective viscosity, we therefore propose a handy
and accurate formula interpolating our results obtained with the ws model.

Considering that [μ] has the Einstein limit of 5/2 at H/d → ∞ for any λ̃, it is
convenient to fit, in the sense of least squares, the numerical results for [μ] − 5/2 with
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FIGURE 13. Variations of the intrinsic viscosity [μ] (as predicted with the ws model) with H/d
from 2 to 100, for (from top to bottom): λ̃ = 0, 0.01, 0.05 and 0.1 to 1 in steps of 0.1. Crosses:
exact results; solid lines: fitting formula (4.2).

a polynomial in d/H and λ̃ as follows:

[μ]fit = 5
2

−
5∑

i=0

8∑
j=0

ci,j

(
d
H

)5−i

λ̃8−j. (4.2)

The selected upper bounds (5 for i and 8 for j) were chosen as a compromise between a
reasonable number of coefficients ci,j and a sufficient relative accuracy of at most 0.5 %
(see later in figure 15). This value is consistent with expected accuracy of the nw and ws
approximations.

We used (4.2) for fitting the numerical results for [μ], given by the ws model, up to
H/d = 100 and added, from physical considerations, the value [μ] = 5/2 at d/H = 0 for
all values of λ̃. Moreover, even though the range of slip lengths λ̃ ≤ 1 was kept for physical
reasons (see above), calculated values of [μ] in the range 1 < λ̃ ≤ 2 were used to improve
the fitting precision of the polynomial in the range 0 ≤ λ̃ ≤ 1. The coefficients ci,j of the
fitting polynomial are displayed in table 6.

Results for [μ] using the fitting formula (4.2) are displayed as solid lines and compared
to the exact results displayed as crosses in figure 13. Values for [μ] are also shown as
a contour plot in figure 14(a) and a zoom in the range 2 ≤ H/d ≤ 10 is provided in
figure 14(b). Values of the relative error between the fitted and exact results are displayed
in figure 15. Only values H/d ≤ 5 are represented in this latter figure in order to show
details of the relative error contour lines (for H/d from 5 to 100 the contour lines become
nearly parallel to the λ̃ = 0 vertical axis). It is remarked that, as discussed after (4.2), the
error is mostly smaller than 0.4 %, except for small λ̃ and H/d close to 2 where it is less
than 0.5 % (this contour line is very close to H/d = 2 in figure 15). For H/d > 3.5, the
error is smaller than 0.2 % for all values of λ̃.

Finally, note that for the particular case λ̃ = 0, the fitting formula (4.2) complements
the results of (I) in the case of a suspension of spheres.
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2.
45

FIGURE 14. (a) Contour plot of the variations of the intrinsic viscosity [μ] with λ̃ and
H/d extracted from the exact results displayed in figure 13 (crosses). (b) Zoom plot for
2 ≤ H/d ≤ 10.

5. Discussion and conclusion

Two different models have been considered to apply the hydrodynamic interactions
with one wall to the two-walls problem: the nearest-wall approximation and the
wall-superposition approximation. These two approximations are consistent within 1 %
(recall figure 4). For the no-slip case, they are within 5 % of the earlier exact results of
Feuillebois et al. (2016) for two walls, when the gap is larger than two particle diameters.

The main result of the article is that the effective viscosity of a suspension μeff, presented
here in terms of the intrinsic viscosity [μ] = (μeff − μ0)/(μ0φ), is very sensitive to the
slip length on the walls. In the range of parameters considered here, a maximum decrease
of the intrinsic viscosity by a factor of 3 is expected when the slip length λ is equal to
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FIGURE 15. Contour plot of the relative error between the exact results and the fitted formula
for [μ].

j = 0 j = 1 j = 2

i = 0 4.6268989 × 101 −4.0135295 × 102 1.4428027 × 103

i = 1 −6.3365587 × 101 5.4885224 × 102 −1.9692112 × 103

i = 2 3.1620267 × 101 −2.7333218 × 102 9.7824504 × 102

i = 3 −6.8657889 × 100 5.9196327 × 101 −2.1126563 × 102

i = 4 −6.0759836 × 101 5.3994902 × 100 −2.0088635 × 101

i = 5 5.5285441 × 103 −4.8641428 × 102 1.7850316 × 101

j = 3 j = 4 j = 5

i = 0 −2.7745127 × 103 3.0654492 × 103 −1.9486497 × 103

i = 1 3.7774915 × 103 −4.1642924 × 103 2.6560113 × 103

i = 2 −1.8714980 × 103 2.0610315 × 103 −1.3278276 × 103

i = 3 4.0327617 × 102 −4.4490362 × 102 2.9172510 × 102

i = 4 4.0713228 × 101 −4.9099069 × 101 3.6305665 × 101

i = 5 −3.5465339 × 101 4.1466791 × 101 −2.9077632 × 101

j = 6 j = 7 j = 8

i = 0 7.8158793 × 102 −1.7804170 × 102 7.0841596 × 100

i = 1 −1.0945655 × 103 2.4162692 × 102 −3.8556859 × 100

i = 2 5.7020708 × 102 −1.0741273 × 102 −5.1320538 × 100

i = 3 −1.2879862 × 102 6.3507167 × 100 2.8461516 × 100

i = 4 −1.7163601 × 101 1.3410230 × 101 1.7684552 × 100

i = 5 1.2434390 × 101 −3.4676032 × 102 1.0061634 × 102

TABLE 6. Coefficients ci,j of the polynomial in formula (4.2) fitting the numerical results
obtained with the ws model.
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one particle radius and the gap between walls is equal to two particle diameters. Even for
a small slip length of 0.01 particle radius, a significant decrease of a few percent of the
viscosity is already predicted for the same gap. It has been shown that the quadrupole term
has a significant contribution to the intrinsic viscosity [μ], compared with the classical
stresslet term, for narrow gaps (say H/d ≤ O(3)). Moreover, the relative contribution of
the quadrupole term is very weakly dependent upon the normalized slip length λ̃ ≤ 1
(see figure 12). An outcome of our lengthy calculations is also a useful fitting formula
(4.2) allowing a fast and accurate calculation of the intrinsic viscosity in the domain 2 ≤
H/d ≤ 100 and λ̃ ≤ 1. Our results also show that the simple ‘displaced-walls’ model is
not sufficient for predicting the effective viscosity.

From an experimental point of view, an appropriate set-up for measuring the effective
viscosity of a dilute suspension would be the so-called microcapillary rheometer (see
Vleminckx & Clasen (2014) and references therein). For comparing our predictions to
experiment, the value of the wall slip length λ has to be known beforehand. If λ is not
known, a simple approach using (2.6) would be to first measure the head loss Δp0 and
the volume flow rate u0H for the pure liquid (i.e. without particles) and then derive λ.

Then in a second step the experiment would be repeated for the dilute suspension thereby
obtaining from (2.6) the experimental value of the effective viscosity μeff. This latter value
could then be compared to the one predicted using formula (4.2).

The nw and ws approximations have been found here to be quite appropriate for a dilute
suspension of spheres; their results are also close together. These approximations might
be relevant for non-spherical particles for some settings of the gap between walls and
of the slip length. An essential ingredient is the calculation of the interaction between a
non-spherical particle and a plane slip wall. An article reporting a study using a boundary
formulation is presently in preparation, following the preliminary results of Ghalya et al.
(2012).

Taking into account both slip walls at the same time is more difficult. This is especially
true for narrow gaps. Our results are limited here to gaps H such that H/d ≥ 2, because of
our approach taking only single walls into account. Considering the proper effect of both
walls would first require derivation of the Green tensor between two parallel slip walls.
This result is presently not available. As discussed above, considering chains of spheres
or other non-spherical particles, as was done by Feuillebois et al. (2015, 2016) for no-slip
walls, is also presently a challenge. Indeed, the Green tensor between two parallel slip
walls is also needed here.

Finally, the present approach may be extended for a dilute suspension of spheres flowing
between two parallel slip plane walls of unequal slip lengths. This topic, which requires
substantial additional efforts, is postponed to future work.
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Appendix A. Determination of the normalized quadrupoles due to translation and
rotation, i.e. qt

xzz and qr
xzz

Consider a Stokes flow, with velocity u and stress tensor σ , about a sphere translating at
a velocity Ux ex and rotating at an angular velocity Ωyey. Since (z − zc)

2 = zc(zc + 2λ) −
2zc(z + λ) + z2, the quadrupole component Qxzz (see (2.11)) exerted on the sphere surface
becomes Qxzz = zc(zc + 2λ)I0 + 2zcI1 − I2 with the integrals

I0 =
∫

S
(σ · n) · ex dS, I1 =

∫
S
(σ · n) · [−(z + λ)ex ] dS, I2 =

∫
S
(σ · n) · [−z2ex ] dS.

(A 1)

Both integrals I1 and I2 are determined using the Lorentz reciprocal identity (see Happel
& Brenner 1973) and introducing the stresses σ s and σ q for the flow disturbances about the
sphere when held fixed in the ambient either linear shear velocity ks(z + λ)ex or quadratic
shear velocity kqz2ex , respectively. It follows that

I1 =
∫

S
(σ s · n) · u dS/ks, I2 =

∫
S
(σ q · n) · u dS/kq (A 2a,b)

in which on the sphere boundary S we have the condition u = Ux ex + Ωyey ∧ x ′, where
x ′ is the vector pointing from the sphere centre to a point on its surface S. Hence, (A 2a,b)
yields

I0 = 6πμ0[aΩyf r
xy − Ux f t

xx ], I1 = 2πμ0a[2a2Ωycs
yx − 3(zc + λ)Ux f s

xx ], (A 3a,b)

I1 = 2πμ0a[4a3Ωycq
yx − 3z2

cUx f q
xx ] (A 4)

with the dimensionless friction coefficients f and c introduced in Ghalia et al. (2016).
Noting that, from (2.23) and table 1,

Qxzz = −2πμ0Ux a3qt
xzz for Ωy = 0, Qxzz = 8πμ0Ωya4qr

xzz for Ux = 0 (A 5a,b)

finally establishes the identities (3.7) and (3.8).

Appendix B. Some among various integrals for the calculation of the quadrupole in
linear and quadratic shear flows

The sums SL occurring in (3.30) are expressed in terms of 10 integrals Im(n, α) for
positive integers n ≥ 0 and m = 1, . . . , 10. Setting γn = n + 1/2, X = cosh α − t and g =
[cosh α]t − 1, these integrals are defined as follows:

Im(n, α) = eγnα

∫ 1

−1
fm(t) dt, (B 1)

where

f1 = (1 − t2)g2P′
n(t)

X7/2
, f2 = (1 − t2)g2P′

n(t)
X9/2

, f3 = (1 − t2)g3P′
n(t)

X9/2
, (B 2a–c)

f4 = (1 − t2)g3P′
n(t)

X11/2
, f5 = g2Pn(t)

X5/2
, f6 = g2Pn(t)

X7/2
, f7 = (1 − t2)g2Pn(t)

X9/2
,

(B 3a–d)

f8 = (1 − t2)g2Pn(t)
X11/2

, f9 = (1 − t2)2g2P′′
n(t)

X9/2
, f10 = (1 − t2)2g2P′′

n(t)
X11/2

. (B 4a–c)
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Then, in addition to (3.31) for the sum SA, is has been found that

SB =
∑
n≥1

{
sinh α(1 + e−2γnα)[I2(n, α) + cosh αI4(n, α)/2]

+ γn(1 − e−2γnα)[2I1(n, α) + cosh αI3(n, α)]
}

Bn, (B 5)

SC =
∑
n≥1

{
sinh α(1 − e−2γnα)[I2(n, α) + cosh αI4(n, α)/2]

+γn(1 + e−2γnα)[2I1(n, α) + cosh αI3(n, α)]
}

Cn, (B 6)

SD =
∑
n≥0

{
sinh α(1 + e−2γnα)[I6(n, α) + (sinh α)2I8(n, α)/2]

+γn(1 − e−2γnα)[2I5(n, α) + sinh2 αI7(n, α)]
}

Dn, (B 7)

SE =
∑
n≥0

{
sinh α(1 − e−2γnα)[I6(n, α) + (sinh α)2I8(n, α)/2]

+γn(1 + e−2γnα)[2I5(n, α) + sinh2 αI7(n, α)]
}

En, (B 8)

SF = [sinh2 α]
∑
n≥2

{
sinh α(1 + e−2γnα)I10(n, α)/2 + γn(1 − e−2γnα)I9(n, α)

}
Fn, (B 9)

SG = [sinh2 α]
∑
n≥2

{
sinh α(1 − e−2γnα)I10(n, α)/2 + γn(1 + e−2γnα)I9(n, α)

}
Gn. (B 10)

The integrals Im are expressed in terms of 27 auxiliary integrals using the identity g =
[cosh α]t − 1. These new integrals are defined for integer n ≥ 0 as

Mv
q(n, α) = eγnα

∫ 1

−1

tqPn(t) dt
X5/2+v

for v = 0, 1 and q = 0, 1, 2; (B 11)

Mv
l (n, α) = eγnα

∫ 1

−1

tlPn(t) dt
X5/2+v

for v = 2, 3 and l = 0, 1, 2, 3, 4; (B 12)

N1
q(n, α) = eγnα

∫ 1

−1

tq(1 − t2)P′
n(t) dt

X5/2+v
for q = 0, 1, 2; (B 13)

Nv
p (n, α) = eγnα

∫ 1

−1

tp(1 − t2)P′
n(t) dt

X5/2+v
for v = 2, 3 and p = 0, 1, 2, 3. (B 14)

From Dean & O’Neill (1963) it appears that for n ≥ 0 and α > 0

M0
0(n, α) = 2

√
2(2n + 1 + 2 coth α)

3(sinh α)2
, N1

0(n, α) = 4
√

2n(n + 1)

15(sinh α)2
[2n + 1 + 2 coth α].

(B 15a,b)

Exploiting the identities (B 15a,b) and, for n ≥ 1, the usual relations

tPn(t) = (n + 1)Pn+1(t)
2n + 1

+ nPn−1(t)
2n + 1

, tP′
n(t) = (n + 1)P′

n−1(t)
2n + 1

+ nP′
n+1(t)

2n + 1
(B 16a,b)

make it possible to determine analytically the previous auxiliary integrals. Although
elementary, the required manipulations are lengthy and the final results are given in the
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supplementary material. However, this appendix details the employed procedure for N2
q

and N3
q and also thereby (recall the definition g = [cosh α]t − 1) provides the integrals I3

and I4 from the relations

Im+1(n, α) = (cosh α)3Nm
3 (n, α) − 3(cosh α)2Nm

2 (n, α)

+ 3(cosh α)Nm
1 (n, α) − Nm

0 (n, α) for m = 2, 3 and n ≥ 1. (B 17)

The integral Nm
0 in (B 17) is immediately obtained by differentiating the second identity

(B 15a,b) with respect to α. The results are

N2
0(n, α) = 4

√
2n(n + 1)

105(sinh α)5

{
[(cosh α)2](4n2 + 4n + 9)

+ cosh α sinh α(12n + 6) − 4n2 − 4n + 3
}
, (B 18)

N3
0(n, α) = 4

√
2n(n + 1)

945(sinh α)7

{
(cosh α)3](48n2 + 48n + 60) − cosh α(48n2 + 48n − 60)

+ sinh α[(cosh α)2](8n3 + 12n2 + 94n + 45)

− sinh α(8n3 + 12n2 − 26n − 15)
}
. (B 19)

Using (B 18) and (B 19) and the second identity (B 16a,b) also first gives for n = 1

N2
2(1, α) = −8e3α/2

{
96(cosh α)4 + 336(cosh α)3 + 422(cosh α)2 + 217 cosh α + 35

105(cosh α + 1)7/2

−96(cosh α)4 − 336(cosh α)3 + 422(cosh α)2 − 217 cosh α + 35
105(cosh α − 1)7/2

}
, (B 20)

N2
3(1, α) = −8e3α/2

{
320(cosh α)5 + 1120(cosh α)4 + 1388(cosh α)3

105(cosh α + 1)7/2

+ 658(cosh α)2 + 35 cosh α − 35
105(cosh α + 1)7/2

+ 658(cosh α)2 − 35 cosh α − 35
105(cosh α − 1)7/2

−320(cosh α)5 − 1120(cosh α)4 + 1388(cosh α)3

105(cosh α − 1)7/2

}
, (B 21)

N3
2(1, α) = 8e3α/2

{
32(cosh α)4 + 144(cosh α)3 + 250(cosh α)2 + 201 cosh α + 63

115(cosh α + 1)9/2

−32(cosh α)4 − 144(cosh α)3 + 250(cosh α)2 − 201 cosh α + 63
115(cosh α − 1)9/2

}
, (B 22)

N3
3(1, α) = 8e3α/2

{
320(cosh α)5 + 1440(cosh α)4 + 2524(cosh α)3

315(cosh α + 1)9/2

+ 2118(cosh α)2 + 819 cosh α + 105
315(cosh α + 1)9/2

+ 2118(cosh α)2 − 819 cosh α + 105
315(cosh α − 1)9/2

−320(cosh α)5 − 1440(cosh α)4 + 2524(cosh α)3

315(cosh α − 1)9/2

}
(B 23)
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and also for n = 2 the identities

N2
3(2, α) = −24e5α/2

{
256(cosh α)6 + 896(cosh α)5 + 1088(cosh α)4 + 448(cosh α)3

35(cosh α + 1)7/2

− 70(cosh α)2 + 77 cosh α + 7
35(cosh α + 1)7/2

+ 70(cosh α)2 − 77 cosh α + 7
35(cosh α − 1)7/2

−256(cosh α)6 − 896(cosh α)5 + 1088(cosh α)4 − 448(cosh α)3

35(cosh α − 1)7/2

}
, (B 24)

N3
3(2, α) = 8e5α/2

{
1280(cosh α)6 + 5760(cosh α)5 + 1048(cosh α)4 + 8256(cosh α)3

105(cosh α + 1)9/2

+ 2898(cosh α)2 + 105 cosh α − 105
105(cosh α + 1)9/2

− 2898(cosh α)2 − 105 cosh α − 105
105(cosh α − 1)9/2

−1280(cosh α)6 − 5760(cosh α)5 + 1048(cosh α)4 − 8256(cosh α)3

105(cosh α − 1)9/2

}
.

(B 25)

The same procedure finally provides for m = 2, 3 the following recursion relationships:

Nm
1 (n, α) =

(
n + 1
2n + 1

)
Nm

0 (n − 1, α)eα +
(

n

2n + 1

)
Nm

0 (n + 1, α)e−α for n ≥ 1,

(B 26)

Nm
2 (n, α) = onNm

0 (n − 2, α)e2α + pnNm
0 (n, α) + qnNm

0 (n + 2, α)e−2α for n ≥ 2,
(B 27)

Nm
3 (n, α) = rnNm

0 (n − 3, α)e3α + snNm
0 (n − 1, α)eα

+ tnNm
0 (n + 1, α)e−α + unNm

0 (n + 3, α)e−3α for n ≥ 3, (B 28)

on = n(n + 1)

(2n − 1)(2n + 1)
, pn = 1

2n + 1

[
n2 − 1
2n − 1

+ n(n + 2)

2n + 3

]
, (B 29a,b)

qn = n(n + 1)

(2n + 1)(2n + 3)
, (B 29c)

rn = (n − 1)on

2n − 3
, sn = (n − 2)on

2n − 3
+ (n + 1)pn

2n + 1
, (B 30a,b)

tn = npn

2n + 1
+ (n + 3)qn

2n + 5
, un = (n + 2)qn

2n + 5
. (B 31a,b)
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Supplementary material

First the integrals Im defined by (B 1)-(B 4) are related to the auxiliary integrals M v
q

and Nv
q , introduced by (B 11)-(B 14). While the integrals I3 and I4 are given in Appendix

B it is also found that, for m = 1, 2

Iv(n,α) = (coshα)2Nv
2 (n,α)− 2 coshαNv

1 (n,α) +Nv
0 (n,α), (C 1)

Iv+4(n,α) = (coshα)2Mv−1
2 (n,α)− 2 coshαMv−1

1 (n,α) +Mv−1
0 (n,α), (C 2)

Iv+6(n,α) = −(coshα)2Mv+1
4 (n,α) + 2 coshαMv+1

3 (n,α)

+(sinhα)2Mv+1
2 (n,α)− 2 coshαMv+1

1 (n,α) +Mv+1
0 (n,α), (C 3)

Iv+8(n,α) = (coshα)2{anNv+1
2 (n− 1,α)eα + bnN

v+1
2 (n+ 1,α)e−α}

−2 coshα{anNv+1
1 (n− 1,α)eα + bnN

v+1
1 (n+ 1,α)e−α}

+anN
v+1
0 (n− 1,α)eα + bnN

v+1
0 (n+ 1,α)e−α (C 4)

an =
(n+ 1)(n+ 2)

(2n+ 1)
, bn = −n(n− 1)

(2n+ 1)
. (C 5)

Each integral Nv
q occurring in (C 1) and (C 4) has been given in Appendix B except the

integrals N1
1 and N1

2 . Using one time or twice the second identity (B 16) easily gives

N1
1 (n,α) =

n+ 1

2n+ 1
N1

0 (n− 1,α)eα +
n

2n+ 1
N1

0 (n+ 1,α)e−α for n ≥ 1, (C 6)

N1
2 (1,α) = 8e1.5α{32(coshα)

4 + 80(coshα)3 + 58 cosh2 α+ 5 coshα− 5

15(coshα+ 1)5/2

−32(coshα)4 − 80(coshα)3 + 58(coshα)2 − 5 coshα− 5

15(coshα− 1)5/2
}, (C 7)

N1
2 (n,α) = onN

1
0 (n− 2,α)e2α + pnN

1
0 (n,α) + qnN

1
0 (n+ 2,α)e−2α for n ≥ 2 (C 8)

with coefficient on, pn and qn already defined in Appendix B by (B 29).
The determination of each integral M v

q uses differentiations with respect to α of the
analytical result (B 15) for M 0

0 and the first relation (B 16) expressing tPn(t) in terms
of Pn+1(t) and Pn−1(t). After elementary but lengthy algebra one then analytically gets
each desired integral Mv

q . The obtained results are listed below.
(i) Results for the integrals M 0

q when q = 1, 2 are

M0
1 (0,α) = eα/2{ 2 coshα+ 3

(coshα+ 1)3/2
− 2 coshα− 3

(coshα− 1)3/2
}, (C 9)

M0
1 (n,α) =

n+ 1

2n+ 1
M0

0 (n+ 1,α)e−α +
n

2n+ 1
M0

0 (n− 1,α)eα for n ≥ 1, (C 10)

M0
2 (0,α) = 2eα/2{8(coshα)

2 + 12 coshα+ 3

3(coshα+ 1)3/2
− 8(coshα)2 − 12 coshα+ 3

3(coshα− 1)3/2
}, (C 11)

M0
2 (1,α) = 2e3α/2{16(coshα)

3 + 24(coshα)2 + 6 coshα− 1

3(coshα+ 1)3/2

−16(coshα)3 − 24(coshα)2 + 6 coshα+ 1

3(coshα− 1)3/2
}, (C 12)

M0
2 (n,α) = cnM

0
0 (n+ 2,α)e−2α + dnM

0
0 (n,α) + enM

0
0 (n− 2,α)e2α for n ≥ 2, (C 13)



with the following coefficients

cn =
(n+ 1)(n+ 2)

(2n+ 1)(2n+ 3)
, en =

n(n− 1)

4n2 − 1
, dn =

(n+ 1)2(2n− 1) + n2(2n+ 3)

(2n− 1)(2n+ 1)(2n+ 3)
. (C 14)

(ii) Results for the integrals M 1
q when q = 0, 1, 2 are

M1
0 (n,α) =

2
√
2

15(sinhα)5
[(coshα)2(4n2 + 4n+ 9)

+ coshα sinhα(12n+ 6)− 4n2 − 4n] for n ≥ 0, (C 15)

M1
1 (0,α) = 2eα/2{ 2 coshα+ 5

15(coshα+ 1)5/2
− 2 coshα− 5

15(coshα− 1)5/2
}, (C 16)

M1
1 (n,α) =

n+ 1

2n+ 1
M1

0 (n+ 1,α)e−α +
n

2n+ 1
M1

0 (n− 1,α)eα for n ≥ 1, (C 17)

M1
2 (0,α) = −2eα/2{8(coshα)

2 + 2 coshα+ 15

15(coshα+ 1)5/2
− 8(coshα)2 − 2 coshα+ 15

15(coshα− 1)5/2
}, (C 18)

M1
2 (1,α) = −2e3α/2{16(coshα)

3 + 40(coshα)2 + 30 cosh(α) + 5

5(coshα+ 1)5/2

−16(coshα)3 − 40(coshα)2 + 30 cosh(α)− 5

5(coshα− 1)5/2
}, (C 19)

M1
2 (n,α) = cnM

2
0 (n+ 2,α)e−2α + dnM

2
0 (n,α) + enM

2
0 (n− 2,α)e2α for n ≥ 2. (C 20)

(iii) Results for the integrals M 2
q (taking q = 0, 1, 2, 3, 4) are given by the relations

M2
3 (0,α) = M2

2 (1,α)e
−α,M2

4 (0,α) = M2
3 (1,α)e

−α and the formulae

M2
0 (n,α) =

2
√
2

105(sinhα)7
[(coshα)3(48n2 + 48n+ 60)

+(coshα)2 sinhα(8n3 + 12n2 + 94n+ 45)− coshα(48n2 + 48n− 60)

− sinhα(8n3 + 12n2 − 26n− 15)} for n ≥ 0, (C 21)

M2
1 (0,α) =

2

35
(eα/2){ 2 coshα+ 7

(coshα+ 1)7/2
− 2 coshα− 7

(coshα− 1)7/2
}, (C 22)

M2
1 (n,α) =

n+ 1

2n+ 1
M2

0 (n+ 1,α)e−α +
n

2n+ 1
M2

0 (n− 1,α)eα for n ≥ 1, (C 23)

M2
2 (0,α) = −2eα/2{8(coshα)

2 + 28 coshα+ 35

105(coshα+ 1)7/2
− 8(coshα)2 − 28 coshα+ 35

105(coshα− 1)7/2
}, (C 24)

M2
2 (1,α) = 2e3α/2{16(coshα)

3 + 56(coshα)2 + 70 coshα+ 35

35(coshα+ 1)7/2

−16(coshα)3 − 56(coshα)2 + 70 coshα− 35

35(coshα− 1)7/2
}, (C 25)

M2
2 (n,α) = cnM

2
0 (n+ 2,α)e−2α + dnM

2
0 (n,α) + enM

2
0 (n− 2,α)e2α for n ≥ 2, (C 26)

M2
3 (1,α) = 2e3α/2{128(coshα)

4 + 448(coshα)3 + 560(coshα)2 + 280 coshα+ 35

35(coshα+ 1)7/2

−128(coshα)4 − 448(coshα)3 + 560(coshα)2 − 280 coshα+ 35

35(coshα− 1)7/2
}, (C 27)



M2
3 (2,α) =

2

35
(e5α/2){640(coshα)

5 + 2240(coshα)4 + 2792(coshα)3

(coshα+ 1)7/2

−640(coshα)5 − 2240(coshα)4 + 2792(coshα)3

(coshα− 1)7/2

+
1372(coshα)2 + 140 coshα− 35

(coshα+ 1)7/2
+

1372(coshα)2 − 140 coshα− 35

(coshα− 1)7/2
}, (C 28)

M2
3 (n,α) = fnM

2
0 (n+ 3,α)e−3α + gnM

2
0 (n+ 1,α)e−α

+hnM
2
0 (n− 1,α)eα + inM

2
0 (n− 3,α)e3α for n ≥ 3, (C 29)

fn =
cn(n+ 3)

(2n+ 5)
, gn =

cn(n+ 2)

(2n+ 5)
+

dn(n+ 1)

(2n+ 1)
, (C 30)

hn =
dnn

(2n+ 1)
+

en(n− 1)

(2n− 3)
, in =

en(n− 2)

(2n− 3)
. (C 31)

It is recalled that the coefficients cn, dn and en appearing in (C 30)-(C 31) are defined in
(C 14). Finally, the integral M 2

4 (n,α) is computed from the relations

M2
4 (1,α) = 2e3α/2{256(coshα)

5 + 896(coshα)4 + 1120(coshα)3

21(coshα+ 1)7/2

+
560(coshα)2 + 70 coshα− 7

21(coshα+ 1)7/2
+

560(coshα)2 − 70 coshα− 7

21(coshα− 1)7/2

−256(coshα)5 − 896(coshα)4 + 1120(coshα)3

21(coshα− 1)7/2
}, (C 32)

M2
4 (2,α) =

2

35
(e5α/2){1536(coshα)

6 + 5376(coshα)5 + 6656(coshα)4 + 3136(coshα)3

(coshα+ 1)7/2

+
140(coshα)2 − 182 coshα− 7

(coshα+ 1)7/2
− 140(coshα)2 + 182 coshα− 7

(coshα− 1)7/2

−1536(coshα)6 − 5376(coshα)5 + 6656(coshα)4 − 3136(coshα)3

(coshα− 1)7/2
}, (C 33)

M2
4 (3,α) =

2

7
(e7α/2){1024(coshα)

7 + 3584(coshα)6 + 4352(coshα)5

(coshα+ 1)7/2

+
1792(coshα)4 − 280(coshα)3 − 308(coshα)2 − 28 coshα+ 1

(coshα+ 1)7/2

−1024(coshα)7 − 3584(coshα)6 + 4352(coshα)5

(coshα− 1)7/2

+
1792(coshα)4 + 280(coshα)3 − 308(coshα)2 + 28 coshα+ 1

(coshα− 1)7/2
}, (C 34)

M2
4 (n,α) = jnM

2
0 (n+ 4,α)e−4α + knM

2
0 (n+ 2,α)e−2α + lnM

2
0 (n,α)

+mnM
2
0 (n− 2,α)e2α + nnM

2
0 (n− 4,α)e4α for n ≥ 4, (C 35)

jn =
fn(n+ 4)

(2n+ 7)
, kn =

fn(n+ 3)

(2n+ 7)
+

gn(n+ 2)

(2n+ 3)
, ln =

gn(n+ 1)

(2n+ 3)
+

nhn

(2n− 1)
, (C 36)

mn =
hn(n− 1)

(2n− 1)
+

in(n− 2)

(2n− 5)
, nn =

in(n− 3)

(2n− 5)
. (C 37)

The coefficients fn, gn, hn and in involved in (C 36)-(C 37) have been defined by (C 30)-
(C 31). In summary, the integrals M 2

q for q = 1, ..., 4 are deduced from M2
0 .



(iv) Results for the integrals M 3
q (taking q = 0, 1, 2, 3, 4) are given by M 3

3 (0,α) =
M3

2 (1,α)e
−α and the following formulae

M3
0 (n,α) =

2
√
2

945(sinhα)9
{(coshα)4(16n4 + 32n3 + 584n2 + 568n+ 525)

+(coshα)3 sinhα(160n3 + 240n2 + 920n+ 420)

−(coshα)2(32n4 + 64n3 + 448n2 + 416n− 1050)

− coshα sinhα(16n3 + 240n2 − 760n− 420)

+16n4 + 32n3 − 136n2 − 152n+ 105} for n ≥ 0, (C 38)

M3
1 (0,α) =

2

63
(eα/2){ 2 coshα+ 9

(coshα+ 1)9/2
− 2 coshα− 9

(coshα− 1)9/2
}, (C 39)

M3
1 (n,α) =

n+ 1

2n+ 1
M3

0 (n+ 1,α)e−α +
n

2n+ 1
M3

0 (n− 1,α)eα for n ≥ 1, (C 40)

M3
2 (0,α) = −2eα/2{8(coshα)

2 + 36 coshα+ 63

315(coshα+ 1)9/2
− 8(coshα)2 − 36 coshα+ 63

315(coshα− 1)9/2
},(C 41)

M3
2 (1,α) = 2e3α/2{16(coshα)

3 + 72(coshα)2 + 126 coshα+ 105

315(coshα+ 1)9/2

−16(coshα)3 − 72(coshα)2 + 126 coshα− 105

315(coshα− 1)9/2
}, (C 42)

M3
2 (n,α) = cnM

3
0 (n+ 2,α)e−2α + dnM

3
0 (n,α) + enM

3
0 (n− 2,α)e2α for n ≥ 2, (C 43)

M3
3 (1,α) = −2e3α/2{128(coshα)

4 + 576(coshα)3 + 1008(coshα)2 + 840 coshα+ 315

315(coshα+ 1)9/2

−128(coshα)4 − 576(coshα)3 + 1008(coshα)2 − 840 coshα+ 315

315(coshα− 1)9/2
}, (C 44)

M3
3 (2,α) = − 2

315
(e5α/2){1920(coshα)

5 + 8640(coshα)4 + 15128(coshα)3

(coshα+ 1)9/2

+
12636(coshα)2 + 4788 coshα+ 525

(coshα+ 1)9/2
+

12636(coshα)2 − 4788 coshα+ 525

(coshα− 1)9/2

−1920(coshα)5 − 8640(coshα)4 + 15128(coshα)3

(coshα− 1)9/2
}, (C 45)

M3
3 (n,α) = fnM

3
0 (n+ 3,α)e−3α + gnM

3
0 (n+ 1,α)e−α

+hnM
3
0 (n− 1,α)eα + inM

3
0 (n− 3,α)e3α for n ≥ 3. (C 46)

In addition, M3
4 (0,α) = M3

3 (1,α)e
−α while the integral M3

4 (n,α) is obtained for n ≥ 1
using the identities

M3
4 (n,α) = jnM

3
0 (n+ 4,α)e−4α + knM

3
0 (n+ 2,α)e−2α + lnM

3
0 (n,α)

+mnM
3
0 (n− 2,α)e2α + nnM

3
0 (n− 4,α)e4α for n ≥ 4, (C 47)

M3
4 (1,α) = −2e3α/2{256(coshα)

5 + 1152(coshα)4 + 2016(coshα)3

63(coshα+ 1)9/2

+
1680(coshα)2 + 630 coshα+ 63

63(coshα+ 1)9/2
+

1680(coshα)− 630 coshα+ 63

63(coshα− 1)9/2

−256(coshα)5 − 1152(coshα)4 + 2016(coshα)3

63(coshα− 1)9/2
}, (C 48)



and also

M3
4 (2,α) = −2e5α/2{7680(coshα)

6 + 34560(coshα)5 + 60416(coshα)4 + 50112(coshα)3

155(coshα+ 1)9/2

+
18396(coshα)2 + 1470 coshα− 315

155(coshα+ 1)9/2
− 18396(coshα)2 − 1470 coshα− 315

155(coshα− 1)9/2

−7680(coshα)6 − 34560(coshα)5 + 60416(coshα)4 − 50112(coshα)3

155(coshα− 1)9/2
}, (C 49)

M3
4 (3,α) = − 2

63
(e7α/2){7168(coshα)

7 + 32256(coshα)6 + 56064(coshα)5

(coshα+ 1)9/2

+
45312(coshα)4 + 14616(coshα)3 − 756(coshα)2 − 1092 coshα− 63

(coshα+ 1)9/2

−7168(coshα)7 − 32256(coshα)6 + 56064(coshα)5

(coshα− 1)9/2

+
45312(coshα)4 − 14616(coshα)3 − 756(coshα)2 + 1092 coshα− 63

(coshα− 1)9/2
}. (C 50)
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