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Abstract: Smart piezoelectric materials are of great interest due to their unique properties. Piezoelectric
materials can transform mechanical energy into electricity and vice versa. There are mono and
polycrystals (piezoceramics), polymers, and composites in the group of piezoelectric materials.
Recent years show progress in the applications of piezoelectric materials in biomedical devices
due to their biocompatibility and biodegradability. Medical devices such as actuators and sensors,
energy harvesting devices, and active scaffolds for neural tissue engineering are continually explored.
Sensors and actuators from piezoelectric materials can convert flow rate, pressure, etc., to generate
energy or consume it. This paper consists of using smart materials to design medical devices
and provide a greater understanding of the piezoelectric effect in the medical industry presently.
A greater understanding of piezoelectricity is necessary regarding the future development and
industry challenges.

Keywords: polymers; smart materials; piezoelectric materials; inorganic materials; organic materials;
biomedical devices

1. Introduction

Biomaterials, including those indicating piezoelectric effect, are a group of synthetic or natural
materials which can communicate effectively with biological structures for the therapeutic or diagnostic
purpose [1]. Considering such applications as tissue engineering [2,3], minimally invasive sensors [4–6],
actuators [7,8] drug delivery systems [9], energy harvesting [10–12], storage [13], etc. [14], biomaterials
should be biocompatible (nonimmunogenic), non-injurious, and nontoxic. Piezoelectric materials
are a class of inorganic and organic materials (mainly polymers) that can transform electricity into
mechanical force and vice versa. In crystals, piezoelectricity occurs along with the ions in the structures
of dielectric materials [15]. Polarization of the materials changes linearly with applied force, causing the
electrical field in the material. In organic materials, especially piezoelectric polymers, the piezoelectric
effect is invoked by the orientation and the molecular structure of the piezoelectric polymer [16].

Piezoelectricity occurs in different mammalian tissues consisting ofα-keratin with alignedα-helical
structures such as wool, hair, hooves, and horns. A lot of elements of the muscles and skeletal tissues
have a collagen structure. Collagen is characterized by helical fibrils and spiral structures. Along the
fibril axis, every collagen fibril exhibit a lateral piezoresponse. Consequently, many tissues in nature
are piezoelectric e.g., bones, ligaments, cartilage, and tendons.

The global demand for piezoelectric medical devices is valued at approximately 20 billion euros
per year, with a large share of piezoelectric sensors and actuators. Taking advantage of the mechanical
energy to support small scale devices is possible [17]. Piezoelectric applications, which include interfaces
with biological structures, represent a pioneering rapid development [17,18]. Actuators and sensors
also play a significant role in different practical applications [19,20], what is illustrated in Figure 1.
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Figure 1. Applications of actuators and sensors.

In general, sensors transform mechanical energy into electrical energy. Figure 2 shows typical
transformations of various quantities. Sensors can convert e.g., mechanical force to an electric voltage.
Reverse to sensors, actuators transform electrical quantities (e.g., electric voltage) into mechanical
measurands (e.g., mechanical force). Electrical quantities constitute the inputs, where mechanical
energy represent the outputs of actuators [21].
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Inorganic piezoelectric materials might be natively biocompatible e.g., barium titanate
(BaTiO3) [22], quartz [23], or can be biocompatibilized through processing—this includes materials
such as aluminum nitride (AlN) [24], lithium niobate (LiNbO3) [25], zirconate titanate (PZT) [26] and
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zinc oxide (ZnO) [27]. Pressure tuning, ultrashort laser pulses, or microwaves are used to increase the
biocompatibility of inorganic piezoelectric materials.

Organic polymers, e.g., polyvinylidene fluoride (PVDF), are piezoelectric and ferroelectric after
additional treatment, particularly after poling [28]. Poly-d-lactic acid (PDLA) and poly-l-lactic
acid (PLLA) are a group of optically active polymers showing piezoelectricity during uniaxial
elongation [29,30]. Medical devices from polymers, including the piezoelectric ones, are cheap in
processing and material costs [31]. Most of the piezoelectric polymers become the right candidates for
biomechanical devices, bioelectronics, and biological systems.

Although organic materials exhibit low piezoelectricity compared to inorganic materials, they are
the right candidates as functional materials for medical applications. Organic smart materials can be
applied in various types of devices, including micro- and nano-scaled medical devices [32,33].

This review provides thorough information on various piezoelectric materials, which can be
used in catheter applications, tissue engineering, healthcare monitoring, actuators, and biosensors.
We describe inorganic and organic piezoelectric materials and their development, biomedical
applications, and properties; we provide a comparison between different inorganic and organic
materials and their applications in biodevices summarizing the challenges and trends of piezoelectric
materials for medical applications.

2. Piezoelectric Materials—Mechanisms of Piezoelectricity

Piezoelectric materials are characterized by crystal or crystal-like structure with three-dimensional
order of atoms [34].

2.1. Inorganic Materials—Mechanisms of Piezoelectricity

Piezoelectric crystals can occur naturally (e.g., tourmaline) or be synthetic (e.g., lithium niobate).
Table 1 shows selected natural and synthetic piezoelectric materials [35].

Table 1. Selected natural and synthetic piezoelectric materials.

Material Chemical Formula

Natural
α-quartz SiO2
β-quartz SiO2

Tourmaline (Na, Ca)(Mg, Fe)3B3Al6Si6(O, OH, F)31

Synthetic

CGG Ca3Ga2Ge4O14
Lithium niobate LiNbO3

Lithium tantalate LiTaO3
Aluminum nitride AlN

Lead zirconate titanate PZT

Lead zirconate titanate (PZT) and aluminum nitride (AIN) are two representative materials
from the group of synthetic piezoelectric ceramics (Figure 3). The piezoelectric effect, in this case,
is described by movements of ions in the crystals under stress, resulting in changes in the balance of
ions and the creation of a non-zero crystal dipole moment. For a non-zero net polarization, the atomic
structure should be non-centrosymmetric. Several materials with centrosymmetry have symmetry in
nonequilibrium or nanoscale conditions, and they become piezoelectric [36].
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Figure 3. Scheme of mechanisms of piezoelectricity in inorganic materials.

2.2. Organic Materials—Mechanisms of Piezoelectricity

Organic materials are often hierarchically organized with rather low crystallographic symmetry.
Thus, the piezoelectric effect in organic materials is the movement of the dipoles in the bulk polymer.
It can be the effect of, for example, drawing (stretching) or the action of a high electrical field. The group
of piezoelectric materials such as silk and collagen have attracted attention in recent years [37].
Table 2 provides information about piezoelectric coefficients for different piezoelectric inorganic and
organic materials.

Table 2. Piezoelectric coefficients for different piezoelectric inorganic and organic materials.

Material Type Piezoelectric Constants
Refs.

d33 (pC/N) d31 (pC/N)

Inorganic

PMN-PT Single Crystal 2000–3000 - [38]
Quartz 2.3 −0.67 [39]

ZnO Crystal 6–13 −5 [40]
GaN 2–4 −1.5 [41]

AIN

Ceramic

3–6 −2 [42]
PZT-5H 593 −274 [43]
BaTiO3 190 −78 [44]
LiNbO3 16 −1 [45]

Organic PVDF Polymer −33 23 [46]
PLLA 6–12 - [47]

Polyvinylidene Fluoride (PVDF) and its copolymers are the most investigated materials due to their
high piezoelectricity, good chemical resistance, thermal stability, good processability, and mechanical
properties, as compared to other piezoelectric materials. Polyvinylidene fluoride (PVDF) can exist in
five piezoelectric crystal phases. β-phase has the highest piezoelectricity [48–50].



Polymers 2020, 12, 2754 5 of 19

PVDF molecular dipoles CH2-CH2 can arrange various chain conformations. The strong electric
moment is connected with the strongest electro-negativity of fluorine atoms; the crystal can exhibit a
non-zero dipole moment [51–53]. Such a molecular arrangement appears in the β, γ, and δ phases,
the first one showing the strongest dipole moment due to the all-trans conformation. In the case of
other chain conformations (TGTG-, T3GT3G-), parallel dipole moment arrangement, as in the δ and γ

phases, respectively, leads to lower polarity; in the case of the same conformations, antiparallel chain
dipole arrangement leads to the zero net dipole moment as in the α [54,55].

PLLA is characterized by lower piezoelectricity than inorganic piezoceramics (e.g., PZT); however,
in the shape of a film, it has a large piezoelectric shear constant. Figure 4 (right) shows polylactic
acid (PLLA) chain in thermodynamic equilibrium corresponding to α-crystal form. Dipoles of CO
are statistically distributed in the main chain. α-crystalline form can transform to piezoelectric
β-crystal modification during stretching through an arrangement of the dipoles along the stretching
direction [56]. The process of fiber electrospinning may also lead to aligning of the CO bonds resulting
in piezoelectricity of PLLA. PLLA is a flexible polymer suitable for mobile device applications [57].
This biodegradable and biocompatible polymer is highly potential in future applications such as
biosensors and actuators [58,59].
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3. Inorganic Piezoelectric Materials

3.1. Biosensors

Various molecules, microorganisms, or biological structures can be detected using piezoelectric
biosensors. Piezoelectric biosensors are made from materials with good acoustic velocity, for instance,
a highly sensitive and selective sensor for ethionamide guided by molecular modeling [60], aluminum
nitride (AlN) acoustic biosensors providing real-time response and quantified data [61], and highly
sensitive AlN biosensor for detecting pesticide residues [62]. Piezoceramic sensors exhibit good
reproducibility, good linear response and low detection limit. AlN piezoelectric biosensors can be
used to track multiple specific biological reactions, for example, genetic hybridizing, which could
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provide information on the reaction kinetics. Another application of AlN sensors is the detection of
protein-ligand interactions or antigen-antibody binding. Table 3 provides a comparison of inorganic
materials for different medical applications.

Table 3. Inorganic piezoelectric sensors for different medical applications.

Material Applications Device Characteristics Refs.

Inorganic

(Na0.5, K0.5)
NbO3 (NKN) films Mechano-electrical sensor 10 Hz resonance [63]

AlN Monitoring of respiration
and heartbeat Tested over 0.1–10 Hz [64]

PZT Eye fatigue - [65]

Ceramics
sensors—PZT Vision correction

Sensitivity 0.1 × 10−2 N
to 5 × 10−2 N

0.01–5 Hz
[66]

3.2. Energy Harvesting

Energy harvesting is the extraction of electrical energy from various sources and storing it for
small autonomous wireless devices. The energy can be harvested from multiple sources such as
thermal and mechanical sources. Natural and artificial ambient light and radio frequency can also
be harvested. The piezoelectric energy harvesting systems based on piezoelectricity seem the right
candidates for use in biomedical electronics [67,68].

Laterally, various groups of piezo-energy harvesters made from materials such as lead magnesium
niobate-lead titanate (PMN-PT), zinc oxide (ZnO), lead zirconate titanate (PZT), and barium
titanate (BaTiO3) have been used to store energy from heartbeats, body movements, and various
deformations [69].

For instance, it is reported on a lead zirconate titanate (PZT)-based energy harvester, which can
store energy from natural heart movements and other inner organs movements. In this specific device,
chromium (Cr) and gold (Au) layers are located on ribbons and act as an electrode. On the bottom of
PZT-ribbons titanium (Ti) and platinum (Pt) layers are deposited, which are formed using wet etching.
Polydimethylsiloxane (PDMS) stamp is used to seal whole medical harvester devices [70].

Another example may be an energy harvester for the protection of medical devices, in which gold
(Au) electrodes are placed on the lead magnesium niobate-lead titanate (PMN-PT) films. Additionally,
the epoxy-based photoresist (SU-8) coating layer serves as a protective film in devices and energy
harvesters. In vivo tests on the cardiac rat muscles show that electric power could be used to detect
heart deformations [71].

Nanogenerators from gallium nitride (GaN) and zinc oxide (ZnO) are piezoelectric and can be
used as harvesters the biomechanical energy [72]. Zinc oxide (ZnO) nanowires have attracted much
attention because of their various unique properties, e.g., flexibility and application as nanogenerators,
sensing, and energy-harvesting devices, and power supplies. Gallium nitride (GaN) nanorods can be
used as parts of biomedical devices due to its ability to deform and preserve performance under stress
and strain [73–76].

3.3. Tissue Engineering

Piezoelectric actuator-sensor systems for tissue engineering are widely tested and described in
the literature. Conventional actuators and sensors for tissue engineering should be occasionally
removed from the body because of insufficient flexibility. To avoid the need to remove the
device, transient electronic biomedical sensors with high mechanical properties can be applied [77].
Moreover, piezoelectric nanoparticles exposed to ultrasonic waves can change the viability of breast
cancer cells [78].
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It was shown that lead zirconate titanate (PZT) developed recently in the form of nanoribbons can
act as a skin sensor as well as a sensor of deformation of other internal tissues [79]. These medical
devices can detect tissue deformations and accumulate information about the mechanical properties
of the skin surface. Opposite to the conventional equipment, these sensors can contact underlying
topography with the skin surface. Tests on human models revealed the great need for non-invasive
devices to define the skin’s mechanical properties [80]. So far, PZT nanoribbons were also tested on
lung-stimulated respiration; thus, further investigations on humans are necessary [81].

4. Organic Piezoelectric Materials

4.1. Biosensors

Organic piezoelectric materials have different properties compared to inorganic piezoelectric
materials. Thanks to good flexibility and mechanical properties, they are susceptible to external
stimuli, crucial for various medical device applications [82]. In the case of medical sensors, which are
placed near internal organs, e.g., a heart, good flexibility is the main feature allowing them to use in
medicine [83–88].

Consequently, different layers for sensors made from textiles [89–92], hydrogels and soft
polymers [93–95], elastomers [96–98], nanofiber layers [99–101], or thin polymer layers [102–104]
are used. Additional piezoelectric, piezoresistive, triboelectric, thermoelectric properties of these
piezoelectric materials make them good candidates for smart sensing applications [105–107].
The characterization of organic piezoelectric sensors is provided in Table 4.

Table 4. Organic piezoelectric sensors with characteristic properties.

Structures Stability Sensitivity Defect Limit Sensing Refs.

PVDF/rGO nanohemispheres 5000 35 kPa−1 0.6 Pa 0.6 Pa–49.5 kPa [108]
PVDF/BaTiO3 nanopillars 12,000 0.0264 kPa−1 - 50–600 kPa [109]

PVDF/PANI nanofibers 10,000 1.84 kPa - 0–110% strain [110]
P(VDF–TrFE) nanofibers - 1.1 kPa−1 0.1 Pa 0.4–2 kPa [111]
P(VDF–TrFE) nanowires 36,000 0.046 kPa−1 - - [112]

P(VDF–TrFE) nanopyramids 5000 0.005 N−1 - - [113]
P(VDF–TrFE)/GO nanofibers 100,000 15.6 kPa−1 1.2 Pa - [114]

Smart medical sensors electrospun from polyaniline and polyvinylidene fluoride (PANI/PVDF)
were developed to detect the tissue tension [115]. Compared with electrospun polyaniline and
polyvinylidene fluoride (PANI/PVDF) mats, smart sensors can detect 11% strain and possess linear
response up to 85% strain. Other groups of electrospun sensors have excellent sensing performance
and high stretching in medical applications [116,117]. Nevertheless, the medical sensor response is
insufficient regarding horizontal polarization structure. To detect normal force efficiently, vertically
oriented polyvinylidene fluoride (PVDF) fibers have been fabricated to obtain new types of pressure
sensors [118]. Furthermore, with other nanowire-shaped piezoelectric sensors from highly aligned
polyvinylidene fluoride-trifluoroethylene P(VDF–TrFE) with excellent sensitivity (458.2 mVN−1),
basic life functions such as breath or pulse can be monitored [119].

Another group of piezoelectric sensors is being developed to monitor the incessant changes in the
environment. Sensors in the shape of a film made from polyvinylidene fluoride (PVDF) and reduced
graphene (rGO) can determine many external thermodynamic parameters, such as temperature
or pressure. Several tests conducted by researchers resulted in the improvement of the sensors’
properties [120].

Many groups work on the next generation of piezoelectric sensors for advanced biomolecules
detecting [121]. Biosensors work on the principle of specific reactions to detect molecules, enzymes,
or antibodies [122]. Moreover, some medical devices can determine the release of nitric oxide (NO) [123]
or other molecules [124]. A biosensor based on PVDF films can detect nucleic acid, which is important
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for a disease diagnosis [125]. As well, piezoelectric biosensors can capture the pathogens [126]. In some
cases, the placement of decomposable polylactic acid (PLLA) sensors inside the human body causes
faster wound healing. An excellent example of a PLLA sensor is the photolithographic sensor used
to determine specific physiological forces [127]. This PLLA sensor is made using an annealing or
stretching process at 90 ◦C at 8 h. The film of size 3 mm × 15 mm was cut at 45◦ angle to fabricate
the sensor. The ease of manufacture makes it very attractive. Table 5 provides a comparison of some
organic materials for different medical applications.

Table 5. Comparison of organic piezoelectric sensors for different medical applications.

Structures Applications Device Characteristics Refs.

Organic

Prawn cell Wrist pulse 100 Hz–10 MHz range [128]

Fish gelatin
Joint movement
Cord movement

Pulse

d33–20 pm/V
108,000 cycles [129]

PVDF
Human voice detection

Hand motion
Breathing

50–1000 Hz range [130]

PVDF Wrist pulse
Pressure pulse - [131]

PVDF Heartbeat and respiration
detection Tested 0.1–2 Hz [132]

PVDF Food detection by
swallowing pattern

Limit of detection: 1 Hz
Tested over 1–5 Hz [133]

Poly-L-lactic acid Pressures: brain, eye 108,000 cycles [134]

4.2. Catheter Applications

Catheters are essential medical devices. For example, the catheter can be used as a biomaterial for
drug delivery to collect information during surgeries or as stents or prostheses [135,136].

Polyvinylidene fluoride (PVDF) is the right material for sensing elements in biomedical catheters
because of its remarkable piezoelectric properties [137–139]. Electrospun PVDF sensors have been
used as part of the catheter to minimize complications after surgeries [140] and to define the real-time
flow in a medical catheter [141].

Medical sensors from PVDF copolymers, P(VDF–TrFE), fabricated in the shape of films, are used
for intravascular measurements. Biocompatible catheters with good mechanical properties exhibit
great adhesion. Piezoelectric polyvinylidene fluoride (PVDF) (shell) core-shell nanofibers with the
addition of polyethylenedioxythiophene (PEDOT) (core) can be used as an electrode, which is a part of
catheter devices. Highly aligned fibers were manufactured to boost the device. This electrode provides
information about the sensitivity of the structures [142].

4.3. Healthcare Monitoring

Piezoelectric sensors for healthcare monitoring can measure, in real time, the physiological
functions of human organisms via dynamic measurements. For disease diagnosis, non-invasive
biosensors transfer the data from, e.g., interstitial fluids, sweat, tears or saliva [143].

Furthermore, electronic skin (e-skin) used in healthcare monitoring systems have been developed.
Thanks to its remarkable properties, e-skin has been used in various medical applications, such as
wearable sensors and disease diagnosis [144]. Pressure biosensors can imitate chameleons’ skin
allowing the color change in some devices [145]. For example, another pressure sensor can interact
with e-skin [146]. Composite material from polyvinylidene fluoride (PVDF) and reduced graphene
was used to fabricate piezoelectric artificial skin. PVDF/GO films with high conductivity were cast
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and annealed to receive high content of β-phase and used to determine multiple stimuli, including
temperature or pressure. Solution casting was provided in 50 ◦C to crystallize polar phases in PVDF
and then annealed at 160 ◦C. [147].

PVDF/Au biosensors are used for different pressure sensing applications. Gold films perform
as electrodes, and a silicon substrate is used to enhance flexibility. These sensors can be placed
in different places in the human organism for healthcare monitoring and sensing, for example,
to measure respiration levels or monitor various physiological systems. To help patients with paralysis,
piezoelectric sensors can measure muscle movements [148–150].

Noteworthy are natural polymer-based healthcare monitoring systems made from
collagen [151,152], and silk [153,154]. Another group of flexible medical devices worth mentioning is
made from fish skin; they are used as individualized healthcare monitoring systems [155].

4.4. Actuators in Tissue Engineering and Devices

Medical actuators are an important group of piezoelectric devices used for motion control.
The designs of piezoelectric actuators are an effect of very advanced research [156].

However, piezoelectric forces are often very weak, and piezoelectric actuators have been adapted
to various applications characterized by small displacement. Piezoelectric tissue actuators are flexible
and biocompatible and can be used to promote tissue regeneration [157]. Certain smart actuators
are reported to have the potential to replace a damaged organ in human organisms [158–161].
Textile actuators can mimic the motion of the human body [162–165], whereas shape-memory polymers
(SMP) and shape-memory alloys (SMA) can be activated by stimulation [166–170].

In a series of papers, it is reported on PLLA tweezers for the treatment of thrombosis. In the
form of biodegradable fibers, the tweezers, inserted into a blood vessel, reveal the high potential to
grasp silica compounds. Fibers were produced by jet spinning and treated by alternating current (AC)
voltage. Thanks to the above-mentioned properties and high sensitivity, these piezoelectric tweezers
seem to be good candidates for nanomedicine and tissue engineering applications [171–174].

Piezoelectric materials can be produced using nanocomposites containing oriented polymer
fibers, which are responsible for actuation and sensing functions. Shells from polyvinylidene
fluoride/carbon nanotubes (PVDF/CNT) are reported to have better efficiency than standard
devices [175]. Polyvinylidene fluoride (PVDF)-based actuators were used in bone tissue engineering
applications. Osteoblasts were incubated on the piezoelectric ground. It was found that dynamic
conditions improve the cell proliferation [176,177].

Compact sensor-actuator devices with the addition of silver nanoparticles can be used for strain
sensing. These devices can be also used for transforming vibration into electrical energy and electrical
energy to mechanical energy, for producing signals and ultrasonic energy, and drilling equipment.
Piezoelectric actuators have many industrial applications, such as in musical instruments’ parts, phones,
or complex music systems. In medicine, piezoelectric actuators are widely investigated in endoscope
lenses, small pumps, and other applications [178].

Furthermore, 3D fibrous piezoelectric scaffolds can be used with stimulation during in-vitro
tests and to support osteogenic differentiation. However, piezoelectric materials with small voltage
output support chondrogenic differentiation. Finally, the test shows that electromechanical stimulation
improves chondrogenic differentiation. Electromechanical actuation is higher than under mechanical
actuation [179].

It is reported that the parameters of the electrospinning process can substantially affect the
properties of the nanofiber actuators. Optimization of the process allows the fabrication of smart
PVDF bio-actuators for energy harvesting. Results showed fibroblasts developed perfectly along the
fiber direction [180]. Such smart scaffolds, due to its electric effect, can be applied in neural tissue
engineering for nervous system regeneration [181]. Smart PVDF-based scaffolds, in the presence of
ultrasonic waves, display neurite proliferation in PC-12 cells [182]. In another work, piezoelectric films



Polymers 2020, 12, 2754 10 of 19

were subjected to high-intensity ultrawaves (>1 W/cm2). In these experiments, various physical effects,
such as radiation force, affected cells during ultrasonication [183].

Another nanocomposite system based on PVDF with the addition of barium titanate nanoparticles
has been tested in the presence of ultrasonic waves. The material was fabricated using the electrospinning
process. Results showed that stimulation promoted the viability of the cells [184].

Recently, the newest tests provided information on the effect of the application of smart PVDF
scaffolds in promoting cell communication. Electro-active cardiomyocytes were tested during
stimulation. Electrical stimulation affected the in-vitro cells differentiation and proliferation [185].

The effects of PVDF copolymerization on the stem cells were investigated using polycaprolactone
(PCL) films with PIEZO P(VDF–TrFE) layer [186], proving the improvement of the cell viability;
however, further investigations are still necessary. Fibers were investigated as PCL spin-coated
microfibers. Piezoresponse force microscopy (PFM) showed a high value of piezoelectric constant
d14 = 11.1 pmV−1. Finally, this type of scaffolds promotes rat and human cells proliferation [187].

5. Conclusion and Future Outlook

We have reviewed various applications of smart piezoelectric materials in medical devices and
electronics, such as earphones, telephones, and complex electrical systems. It may be clearly seen
that piezoelectric materials constitute a group of modern materials. They can effectively transform
energy from mechanical to electrical and vice versa, they can be biocompatible after particular
additional treatment giving them the status of piezoelectric biomaterials with an excellent perspective
for application in many medical devices.

We have summarized various principle inorganic and organic piezoelectric materials used in
sensors, actuators, catheters, healthcare monitoring, and tissue stimulators. We presented a comparison
between different inorganic and organic piezoelectric materials.

Although inorganic piezoelectric materials have been long and extensively explored, organic
biomaterials have emerged as a relatively new group of modern materials offering unique properties,
especially in sensing applications due to their flexibility. Therefore, piezoelectric materials are widely
investigated in applications such as actuators, sensors, and medical devices.

By describing the examples of the challenges, we hope to bring a greater understanding of how
vital to the industry, mostly medical, piezoelectricity is, and the opportunities in future development,
including brain machines, neurostimulators, smart interfaces, or in the auto-control smart systems.
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