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Abstract
This contribution presents the extensions of beam-to-beam and
beam-inside-beam contact schemes of the same authors towards frictional
interactions. Since the schemes are based on the beams’ true surfaces (instead
of surfaces implicitly deduced from the beams’ centroid lines), the presented
enhancements are not only able to account for frictional sliding in the beams’
axial directions, but also in the circumferential directions. Both the frictional
beam-to-beam approach as well as the frictional beam-inside-beam approach
are applicable to shear-deformable and shear-undeformable beams, as well
as to beams with both circular and elliptical cross-sections (although the
cross-sections must be rigid). A penalty formulation is used to treat unilateral
and frictional contact constraints. FE implementation details are discussed,
where automatic differentiation techniques are used to derive the implementa-
tions. Simulations involving large sliding displacements and large deformations
are presented for both beam-to-beam and beam-inside-beam schemes. All
simulation results are compared with those of the frictionless schemes.
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1 INTRODUCTION

Beams are widely used to describe the mechanical behavior of slender structures.1-7 The contact description between the
beams (with or without friction8,9) is often an essential part of these mechanical models.

Large-deformation frameworks to treat contact between beams with rigid cross-sections can be classified in dif-
ferent ways. Most of the schemes are formulated for shear-undeformable beams,10-13 whereas others can also treat
shear-deformable beams.14 Most schemes can only be used for beams with circular cross-sections,10-12 whereas a few can
also be used for beams with elliptical cross-sections.8,13,14-16 Most schemes can only be used for small contact areas8,15

(assuming point-wise contact interactions), whereas others are able to treat finite contact areas.9,10,14,16 Of all the frame-
works able to treat frictional contact between beams, only a few are capable to not only account for frictional sliding in
the beams’ axial directions, but also in the circumferential directions.8,17

Finally, all frameworks are beam-to-beam contact schemes, that is, they repel beams if they touch each other. Only
recently, we have proposed a beam-inside-beam contact approach that enforces one beam to remain inside another
beam.14 Its goal is the exact opposite of beam-to-beam contact schemes: to keep beams embedded inside each other.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
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To date, no frictional beam-to-beam contact scheme exists for the general case of shear-deformable beams, with
both circular and elliptical cross-sections, that experience finite contact areas (non-localized contacts). A frictional
beam-inside-beam contact scheme is also missing.

The aim of this contribution is to fill this gap by extending our previously developed contact frameworks14,16 towards
frictional interactions. Because the frameworks use the true beam surfaces to quantify penetration - instead of surfaces
implicitly deduced from the beams’ centroid lines - frictional sliding is not only quantified in the beams’ axial direction,
but also in the circumferential direction. To this end, the local problem to quantify penetration (or exclusion) does not
only involve the unknown surface parameters of the master beam. It also involves one unknown surface parameter of
the slave beam. This (circumferential) surface parameter describes the location of the (slave) contact point around the
cross-section’s perimeter for which penetration is quantified.

Although the aims of the beam-to-beam and beam-inside-beam contact frameworks are the exact opposite, their
methodology is similar. Both schemes follow a master-slave approach, and select cross-sections along one of the two beams
in contact (the slave). For each selected cross-section, the penetration between two beams is quantified (although arguably
for the beam-inside-beam scheme it may be a called a measure of exclusion, instead of a measure of penetration). This
measure is then used to establish a contact virtual work in order to repel beams from each other (for the beam-to-beam
scheme) or to keep them embedded (for the beam-inside-beam scheme). The similarities between the beam-to-beam and
the beam-inside-beam schemes also manifest when quantifying the amount of frictional sliding.

The structure of the article is the following. The penalty formulation for large deformation frictional contact in the
continuum setting is provided in Section 2. Section 3 details the spatial discretization of the finite-element framework
and provides implementation details. Section 4 presents a set of multibody numerical examples for beam-to-beam con-
tact and beam-inside-beam contact and compares the results of the frictional frameworks with those of the frictionless
frameworks. Conclusions are provided in Section 5.

2 SPACE- CONTINUOUS FORMULATION

2.1 Parametrization of the beams’ surface

We consider beams consisting of rigid cross-sections which are attached to the beam’s centroid lines at the cross-sectional
centers of gravity. The beams of interest can deform in two ways. First, their centroid lines can elongate, bend, and revolve.
Second, due to shear deformation, the normal vector to the cross-section’s plane is not necessarily aligned with the tangent
to the centroid line, see Figure 1.

In the following, we consider beam  and its surface denoted by 𝜕. We also consider a two-parameter vector
function, x = x(h), that maps any surface point on 𝜕, with surface coordinates h = [h1, h2]T , to its location in the global

F I G U R E 1 A typical cross-section (in gray) in the
undeformed (left) and deformed (right) configurations for
(A) a plain cross-section, (B) a hollow cross-section. The
centroid-line is presented with a dotted line in both
configurations. A surface point is represented with a red dot.
Surface basis vectors are presented with orange arrows. The
normal vector to the cross-sections’ plane is presented with a
blue arrow

(A)

(B)
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coordinate system. h1 ∈ [0,L] denotes the arc-length parameter of the beam’s undeformed centroid line x0c ∶ (0,L) → R3

and L denotes the length of the undeformed centroid line. h2 ∈ [0, 2𝜋] denotes a circumferential parameter of the
perimeter of the cross-section attached to x0c(h1) (see References 8, 14-16).

The location of a surface point in the undeformed configuration can be obtained from:

x0 = x0c(h1) + v0(h), (1)

where v0 denotes a vector in the plane of the cross-section attached to x0c(h1).
In the deformed configuration, the centroid line deforms according to:

xc = x0c(h1) + u(h1), (2)

where u ∶ (0,L) → R3 denotes the centroid-line’s displacement. The location of any surface point in the deformed
configuration with surface coordinates h is given by:

x = 𝜑(x0) = xc(h1) + v(h), (3)

where 𝜑 denotes the deformation mapping relating the location of a surface point in the deformed configuration to its
location in its undeformed configuration. As the beams’ cross-sections are assumed to be rigid, there exists a rotation
tensor 𝚲(𝜽, h1) ∈ SO(3), where SO(3) is the rotation group, such that:

v = 𝚲(𝜽, h1) ⋅ v0(h), (4)

where 𝜽 denotes the field of variables used to parametrize SO(3), for example, quaternions1,2 or the smallest rotation with
respect to a reference triad4 or rotation vectors3 as used in this work.

For further use, we define the local basis vectors at surface point x. For 𝛽 ∈ {1, 2}, the covariant tangent surface vectors
are given by:

𝝉𝛽 = 𝜕x
𝜕h𝛽

. (5)

Assuming proper orientation of 𝝉1 and 𝝉2, the outward-pointing normal unit vector to the surface is computed
from:

n(h) = 𝜉
𝝉1 × 𝝉2||𝝉1 × 𝝉2|| , (6)

where 𝜉 = −1 for the inner surface of the master body for the beam-inside-beam contact scheme (such that n points
towards the center of the hollow beam), and 1 otherwise. Note that local basis {𝝉1, 𝝉2,n} is not necessarily orthonormal
in the deformed configuration, meaning that in general 𝝉1 ⋅ 𝝉2 ≠ 0 and ||𝝉𝛽|| ≠ 1.

Remark: If a geometrically exact beam formulation is used, 𝚲 in Equation (4) is an element of the solution. Different
FE formulations exist to suitably treat the parametrization of 𝚲 (see References 7, 18), but are not discussed here in order
to not distract from the contact formulation. In our approach, we use the vector-like parametrization of three-dimensional
finite rotations provided in Reference 3.

2.2 Contact kinematics

In the present contribution, we focus on non-localized contact between beams, meaning that the contact area is finite.
This stands in contrast to localized contact, which occurs on a narrow area of the surface. In general, localized contact is
modeled with a point-wise contact interaction, see References 8, 11, 12, 15, which is not suitable for non-localized contact
cases.

Although the present framework is applicable for multibeam systems, for the sake of clarity we only discuss systems
of two beams, denoted by I and J. To repel these two beams in case of penetration (in the beam-to-beam scheme) or
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to keep them embedded (in the beam-inside-beam scheme), we integrate the contact virtual work along the centroid line
of I. I is therefore called the slave and J the master.19

2.2.1 Local problem and normal gap

In the following, we focus on a cross-section of I denoted by , that is attached to centroid point xIc (h),
where h denotes the (fixed) arc-length parameter locating  along the centroid line. The perimeter of  is
denoted 𝜕. We first quantify penetration of 𝜕 into 𝜕J, where 𝜕J denotes the surface of J. For that purpose,
we determine two surface points, one on 𝜕 and one on 𝜕J. These points are denoted by xI = xI(h

I
) and

xJ = xJ(h
J
), respectively, and will be used to quantify penetration and relative sliding of contacting surfaces.

xI and xJ map surface parameters to the location of the corresponding surface point in the global coordinate
system.

To determine the surface coordinates of these two points, denoted by h
I

and h
J
, we solve a set of equations.

This is usually referred to as the local problem or the projection problem.19 The local problem presented here involves
three surface parameters: the circumferential parameter of , hI2, and the two surface parameters of 𝜕J, hJ1 and
hJ2. hI1 does not need to be determined as  is fixed at xIc (hI1 = h). Three of the equations we solve for are
expressed as:

f1(q) = xJ − xI − gnI = 0, (7)

where:

q = [hI2, hJ1, hJ2, g]T , (8)

denotes the array of unknowns. q denotes the array solution of Equation (7). In the following, a bar over a quantity
indicates that this quantity is evaluated at the solution of the local problem.

Variable g denotes an unknown scalar, for which we can write at the solution of Equation (7):

gN = g = (xJ − xI) ⋅ nI = g ⋅ nI
, (9)

where g denotes the so-called “gap vector.” Hence, g = gN denotes the amount of penetration.
As the system of equations of Equation (7) is underdetermined, an additional equation is needed. Here, we impose

that at the solution of the local problem, nI and nJp must be orthogonal to 𝝉
J
2 (see Figure 2). nJp denotes the

(normalized) projection of nJ on the plane spanned by vectors 𝝉
I
2 and nI. This plane has the following normal

unit vector:

ñI =
𝝉
I
2 × nI||𝝉I2 × nI|| . (10)

nJp is then obtained from:

nJp = nJ − (nJ ⋅ ñI)ñI||nJ − (nJ ⋅ ñI)ñI|| . (11)

The additional equation to be added to the system reads:

f2(q) = 𝜅
(
nI ⋅ 𝝉J2 + nJp ⋅ 𝝉J2

)
= 0, (12)

where 𝜅 has the dimension of length and is used to ensure that components of f1 and f 2 have the same units (if  is
elliptical, we can for example set 𝜅 = a where a denotes the dimension of  along its largest semiaxis). The final set of
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(B)

(A)

F I G U R E 2 Solution of the local problem for (A) beam-inside-beam
contact; (B) beam-to-beam contact. The slave cross-section attached to
xIc (h ) is shown in red. The master surface is shown in gray

equations of the local problem is abbreviated as follows:

f (q) = [f1(q), f2(q)
]T = 0. (13)

Equation (13) is nonlinear and can be solved using Newton’s method for which the following Jacobian is
required:

H(q) =
𝜕f

𝜕q
. (14)

2.2.2 Sliding increment

The true novelty of this contribution lies in the treatment of frictional contact interactions. We introduce the formulation
directly in the time-discretized setting, that is, we assume that the simulation time is divided in numerous time incre-
ments. From here onward, subscript n refers to the previous time increment. If no subscript is present, the quantity refers
to the current time increment.

The particularity of the contact kinematics employed in this contribution prevents the use of conventional frictional
frameworks, as for instance developed for the node-to-surface (NTS) approach.20,21 In the NTS approach, it is sufficient to
measure the relative sliding of the slave node (that has fixed surface coordinates) over the master surface. In the present
contribution, however, also the circumferential coordinate of the slave contact point (h

I2
) generally varies between two

time increments.
In more detail, as hI2 is not fixed, xI can be located at a different surface point on 𝜕 in the previous and current

configuration. Thus, both slidings of xI and xJ must be incorporated. The change in the location of xI between two
increments can be approximated as (see Figure 3):

ΔxI = xIn
(

h
I)

− xIn
(

h
I

n

)
, (15)
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F I G U R E 3 Cross-sectional view of the
previous (left) and current (right) configuration
of (A) two cross-sections perfectly rolling at two
successive time increments; (B) Two
cross-sections rotating in opposite direction
causing relative displacement of contact points.
The plane  shown as a red line is spanned by
vectors 𝝉I1

n

(
h
I)

and 𝝉
I2
n

(
h
I)

used in the
projection of Equation (18). Contact points in
the current configuration are shown as red dots
and contact points in the previous configuration
as orange dots

(A)

(B)

where:

• xIn maps any surface coordinates to the location of the associated surface point in the previous configuration in the
global coordinate system,

• h
I

n denotes surface coordinates (part of the solution q
n

of the local problem) of the previously converged simulation
increment.

Similarly, we introduce ΔxJ as:

ΔxJ = xJn
(

h
J)

− xJn
(

h
J

n

)
. (16)

The fact that the position of the contact points are mapped to the previous configuration ensures that the sliding
distance is not affected by rigid body motions. Note that xIn

(
h
I

n

)
and xJn

(
h
J

n

)
are history variables stored at the end of

each simulation increment, while xIn
(

h
I)

and xJn
(

h
J)

are to be computed for every new configuration. Further on, in

the spatially discretized setting, the proposed measure is able to handle cases where xJn
(

h
J)

and xJn
(

h
J

n

)
are located on

different finite elements.
We express ΔgT , the increment of tangential sliding between two increments, as the following frame-indifferent

measure (see also Figure 3):

ΔgT = Δg𝛼T𝝉
I
𝛼

(
h
I)

, (17)

where the summation on repeated indices holds. Components Δg𝛼T are approximated by the following projection:

Δg𝛼T =
(
ΔxI − ΔxJ

)
⋅ 𝝉I𝛼n

(
h
I

n

)
, (18)

where 𝝉
I𝛼
n denotes the contravariant basis vector in the configuration from the previous time increment:

𝝉
I𝛼
n = MI𝛼𝛽

n 𝝉
I
n𝛽 . (19)

MI𝛼𝛽
n are contravariant components of the metric tensor of the surface of I in the previous configuration, 𝜕I

n:[
MI11

n MI12
n

MI21
n MI22

n

]
=

[
MI

n11 MI
n12

MI
n21 MI

n22

]−1

, (20)



1712 MAGLIULO et al.

where covariant components of the metric tensor of 𝜕I
n are given by:

MI
n𝛼𝛽 = 𝝉

I
n𝛼 ⋅ 𝝉

I
n𝛽 , (21)

and in Equation (21), 𝝉In𝛽 denotes a covariant surface tangent vector in the previous configuration at surface coordinates
hIn defined as:

𝝉n𝛽
(

hIn
)
=

𝜕xIn
(

hIn
)

𝜕hI𝛽n

. (22)

The measure of relative sliding proposed in Equation (17) is validated in a series of numerical examples presented in
the Appendix.

Remark: In Equation (18), we use tangent surface vectors at xIn
(

h
I

n

)
to project vector ΔxI − ΔxJ. Another possibility

would have been to use vectors of the tangent plane at xIn
(

h
I)

. However, the tangent surface vector at xIn
(

h
I)

are
deformation-dependent via the coupling between q and pIJ, see Section 2.3.4. Thus, the first solution is adopted in this
work.

Remark: If one assumes exact normal contact in the previous time increment such that:

xIn
(

h
I

n

)
= xJn

(
h
J

n

)
, (23)

then the right-hand side of Equation (18) reduces to:

Δg𝛼T =
(

xJn
(

h
J)

− xIn
(

h
I))

⋅ 𝝉I𝛼n

(
h
I

n

)
. (24)

In this case, no internal variables would need to be stored from the previous increment, while xIn
(

h
I

n

)
and xJn

(
h
J

n

)
are needed in Equation (18). In the present contribution, however, we use Equation (18) because the penalty method is
used (see below). Thus, condition (23) is not exactly fulfilled.

2.3 Contact constraints, their regularization and contact virtual work

2.3.1 Normal contact

For a given cross-section , the impenetrability of 𝜕 and 𝜕J is enforced via unilateral contact conditions:

gN ≥ 0 TN < 0 gN TN = 0. (25)

where:

TN = T ⋅ nI
, (26)

where T denotes the nominal traction vector, that is, the traction acting in the current configuration, yet integrated over
the contact area in the reference configuration.

Penalty regularization of the constraint
The penalty method is employed to enforce the constraints of Equation (25). Typical for the method is that after enforcing
the constraint, some residual penetration remains. This can be interpreted as some compliance of the otherwise rigid
cross-sections (see References 14, 16). Contact traction TN, acting between surface points xJ and xI, is given by:

TN = −𝜖N⟨−gN⟩, (27)

where 𝜖N > 0 denotes the penalty stiffness and ⟨⟩ denote the Macaulay brackets.
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Coulomb’s friction law
The Coulomb friction law19,21,22 is used in this work to describe the magnitude of the tangential forces. For two bodies in
contact, the corresponding constraints are specified by the limit friction condition, the slip rule and the complementarity
condition, respectively:20

Φ (TT) = ||TT|| + 𝜇TN ≤ 0, ||ΔgT||TT = ΔgT||TT||, Φ||ΔgT|| = 0, (28)

where TT denotes the nominal frictional contact traction vector, 𝜇 the static friction coefficient, and Φ the yield function.
Simply stated, Equation (28) implies that if ||TT|| < −𝜇TN , surfaces do not slide with respect to each other. If they slide,
the tangential traction, ||TT||, is equal to −𝜇TN .

2.3.2 Penalty regularization of Coulomb friction

The penalty regularization is applied to regularize tangential contact constraints. In practice, it means that we allow for
a small elastic relative displacement of the surfaces. The tangential gap vector reads:

gT = gTel n updated + ΔgT , (29)

where gTel n updated denotes the previous elastic tangent gap transferred to the current configuration (see
Equations (30)–(36)). The tangential gap vector can also be split as follows:

gT = gTel + ΔgTsl, (30)

where gTel denotes the elastic part of gT and ΔgTsl the increment in irreversible tangential sliding. Both quantities can be
obtained from a return mapping procedure, see Equation (41) and thereof.

Transfer of gTel n and update of the tangential gap
The (stored) elastic gap of the previous configuration, gTel n must be transferred to the current configuration to properly
treat rigid body motions.20 In the current configuration, the contravariant components of the (projected) elastic tangential
gap of the previous increment read:

g𝛽Tel n proj = gTel n ⋅ 𝝉I𝛽n . (31)

These components are associated to covariant basis vectors (see Equation (5)) in the current configuration such that:

gTel n proj = g𝛽Tel n proj𝝉
I
𝛽
. (32)

To preserve the elastic gap’s norm, the following scaling of the components is performed:

g𝛽Tel n updated = 𝜁g𝛽Tel n proj, (33)

with:

𝜁 =
⎧⎪⎨⎪⎩

||gTel n||||gTel n proj|| if ||gTel n proj|| > 10−8

1 otherwise.
(34)

Contravariant components of gT are computed according to:

g𝛽T = g𝛽Tel n updated + Δg𝛽T , (35)
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such that:

gT = g𝛼T𝝉
I
𝛼 = gT𝛼𝝉

I𝛼. (36)

Once gT is computed, a return mapping procedure is employed to compute the split into gTel and ΔgTsl, see
Equation (30).

Return mapping procedure
First, the trial state is computed, assuming gT is entirely elastic:

TT tr = 𝜖TgT , (37)

where 𝜖T denotes the (user-defined) tangential penalty stiffness. Inserting TT tr into Φ in Equation (28).1 gives:

Φ (TT tr) = ||TT tr|| + 𝜇TN . (38)

Depending on the sign of Φ (TT tr), frictional sliding occurs or not, which is referred to the sliding and sticking case,
respectively. The two cases are treated as shown below.

Sticking: Φ (TT tr) ≤ 0
In this case, ||TT tr|| does not exceed the threshold value−𝜇TN in Equation (28). The trial state fulfills the Coulomb friction
conditions Equation (28) and:

TT = TT tr. (39)

We can note here that the constraint in Equation (28).3 is not respected in general as the penalty regularization
allows small elastic sliding displacements, but is respected for ΔgTsl as Φ||ΔgTsl|| = 0. The higher 𝜖T , the lower the
magnitude of gTel for a given TN. However, large values of 𝜖T increase the condition number of the global stiffness
matrix.23

Sliding: Φ (TT tr) > 0
In this case ||TT tr|| exceeds 𝜇TN and Equation (28).1 is violated. The trial frictional traction is corrected to take the limit
frictional traction given by the Coulomb’s law:

TT = −𝜇TN
TT tr||TT tr|| . (40)

In both cases (Φ (TT tr) ≤ 0 and Φ (TT tr) > 0), the elastic tangential vector gTel is given by:

gTel =
1
𝜖T

||TT|| gT||gT|| , (41)

where the tangential traction, TT , is defined by Equations (39) or (40) for the sticking and sliding case, respectively. Note
that frictional sliding increment, ΔgTsl, can be explicitly retrieved from Equation (30).

2.3.3 Contact virtual work

In case of contact, a contact virtual work, 𝛿Πc, is added to the virtual work equation of the system and the space of
admissible variations 𝒱 is modified.19 In the quasi-static settings as considered in this contribution, the virtual work
including contact reads:

𝛿Π
(

pIJ, 𝛿pIJ
)
= 𝛿ΠI

(
pI, 𝛿pI

)
+ 𝛿ΠJ

(
pJ, 𝛿pJ

)
+ 𝛿Πc

(
pIJ, 𝛿pIJ

)
= 0, ∀𝛿pIJ ∈ 𝒱 , (42)
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where 𝛿Πi denotes the internal and external virtual work of beam i (excluding contact interactions). Kinematic
variables associated with i are stored in pi and the associated test functions in 𝛿pi. pi gathers the field of displace-
ment of the centroid line, ui , as well as the field of variables used to parametrize SO3, 𝜽i . pi is only admissible

if pi
(

Xi
)
= pi

D

(
Xi

)
, ∀Xi ∈ 𝜕i

D, where 𝜕i
D denotes the part of 𝜕i

D where Dirichlet boundary conditions are
imposed.19 pIJ = [pI, pJ]T gathers the kinematic variables of both beams. Similarly, test functions are gathered in
𝛿pIJ = [𝛿pI, 𝛿pJ]T .

Following Reference 21, by using the action–reaction principle, the contact virtual work, 𝛿Πc, can be suitably expressed
with respect to the slave part only. The infinitesimal virtual work produced by dLI , an infinitesimal part of I’s centroid
line, denoted by d𝛿Πc, can be written as in Reference 14:

d𝛿Πc =
⎛⎜⎜⎜⎝(TN nI + TT) ⋅

𝜕g
𝜕pIJ

||||| 𝜕q

𝜕pIJ
=0

⎞⎟⎟⎟⎠ dLI
, (43)

where:

𝜕g
𝜕pIJ

||||| 𝜕q

𝜕pIJ
=0

=

(
𝜕xJ

𝜕pIJ
−

(
𝜕xI

𝜕pIJ

)|||||| 𝜕q

𝜕pIJ
=0

⋅ 𝛿pIJ. (44)

dLI is related to the differential of hI1, dhI1, by:

dLI =
‖‖‖‖‖ 𝜕xI0c

𝜕hI1

‖‖‖‖‖ dhI1. (45)

Integration over all penetrated slave sections gives:

𝛿Πc =∫
h1I

U

h1I
L

⎛⎜⎜⎜⎝(TNnI + TT) ⋅
𝜕g
𝜕pIJ

||||| 𝜕q

𝜕pIJ
=0

⎞⎟⎟⎟⎠ dLI

=∫
h1I

U

h1I
L

⎛⎜⎜⎜⎝(TNnI) ⋅
𝜕g
𝜕pIJ

||||| 𝜕q

𝜕pIJ
=0

⎞⎟⎟⎟⎠ dLI

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝛿Πc,N

+ ∫
h1I

U

h1I
L

⎛⎜⎜⎜⎝(TT) ⋅
𝜕g
𝜕pIJ

||||| 𝜕q

𝜕pIJ
=0

⎞⎟⎟⎟⎠ dLI

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝛿Πc,T

. (46)

h1I
L and h1I

U denote the lower and upper bounds of the integral, respectively, corresponding to the first and last penetrated
slave sections if we assume a unique contact area.

2.3.4 Variation of the local parameters, 𝜹q

For the purpose of linearization procedure introduced below, variations of local parameters 𝛿q with respect to variations of
the kinematic variables 𝛿pIJ are needed. Again, the corresponding equations were previously provided in References 14,
16, but are repeated here to make the contribution self-contained. To express 𝛿q, in terms of 𝛿pIJ, we start from the
stationarity of local residual f in (13) with respect to pIJ as follows:

df

dpIJ
=

(
𝜕f

𝜕pIJ

)
𝛿pIJ +

⎛⎜⎜⎝
𝜕f

𝜕q

|||||q=q

⎞⎟⎟⎠ 𝛿q = 0, (47)
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where we recognize the Jacobian of the local problem, H, defined in Equation (14). After rearrangement, we obtain:

𝛿q =
[
𝛿h

I2
, 𝛿h

J1
, 𝛿h

J2
, 𝛿gN

]T
= A𝛿pIJ, (48)

where:

A = −
(

H|q=q

)−1 𝜕f

𝜕pIJ
|||||q=q

(49)

3 SPATIAL DISCRETIZATION AND LINEARIZATION

3.1 Interpolation of the beams’ surfaces

Beams I and J are now discretized with a series of consecutive beam finite elements (BFEs). The nodal variables of all
BFEs are gathered in array p̂, and the associated variations in array 𝛿p̂. The finite-dimensional trial and test functions, ph

and 𝛿ph, obtained by combining p̂ and 𝛿p̂ to properly chosen interpolation functions, replace their infinite dimensional
counterparts pIJ and 𝛿pIJ, respectively.

A variety of BFEs exists.6 They usually differ by whether or not shear deformations can occur, by the type of rotational
variables used, the interpolation schemes employed for the different types of variables and the treatment of locking.
In order to remain as general as possible, we do not restrict ourselves to one specific type of BFE in this section. We
assume that the discretized surface is sufficiently smooth. In the numerical examples in Section 4, however, we have used
two-nodes beam elements with rotation vectors as rotational variables. The associated discretized surface is discontinuous
with gaps and overlappings at the nodes. To overcome this problem, we work with an alternative surface which possesses
the desired continuity, which was previously introduced in Reference 14. Thus, each contact element constructed for every
integration point involves two BFEs on the slave side and two on the master side. The contact element’s nodal variables
are denoted as p̂

e
(see below).

In the following, we detail the procedure to obtain the contact contributions to the global force vector and the global
stiffness matrix, denoted by rg and K

g
, respectively.

3.2 Contact residual and stiffness

The discretized form of the virtual work in Equation (42) leads to a set of nonlinear equations. Newton’s method is gen-
erally used to iteratively determine global solution p̂sol of the virtual work statement. This requires the linearization of
Equation (42) around an estimate of p̂sol, denoted p̂, which yields:

𝛿Π
(

p̂ +△p̂, 𝛿p̂
)
≃ 𝛿Π

(
p̂, 𝛿p̂

)
+△𝛿Π

(
p̂, 𝛿p̂

)
△ p̂ = 𝛿p̂T

(
rg + K

g
△ p̂

)
≃ 0, (50)

where △p̂ denotes an increment of the nodal variables. The global residual force column, rg, reads:

rg

(
p̂
)
= f

int

(
p̂
)
+ rc

(
p̂
)
− f

ext

(
p̂
)
, (51)

where f
int

denotes the internal force column stemming from the contributions of all BFEs, and f
ext

the external force
column. rc contains all the (assembled) contact contributions from all contact elements, where a contact element refers
here to all cross-sections attached to an integration point (see below) along I’s centroid line and their projection on
discretized surface 𝜕J.

Since f
ext

generally does not depend on p̂, the global stiffness obtained after the linearization of rg, can be decomposed
as follows:

K
g
= K

int
+ K

c
, (52)
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where K
int

denotes the stiffness matrix associated with the BFEs, and K
c

denotes the stiffness matrix associated with all
contact elements.

The contact virtual work consists of the contributions of all contact elements:

𝛿Πc

(
p̂, 𝛿p̂

)
=
∑
e∈S

𝛿Πc,e

(
p̂

e
, 𝛿p̂

e

)
, (53)

where S denotes the set of active contact elements (i.e., those for which gN < 0), and 𝛿Πc,e denotes the contact vir-
tual work associated with contact element e. p̂

e
denotes the column of nodal variables involved in this contact

element.
If no smoothing procedure of the surface is required, each contact element involves two BFEs: the first one is part

of the discretization of I, and the second one is part of the discretization of J. As mentioned above, however, if a
smoothing of the beam’s surface is necessary to improve its surface continuity, each contact element depends on several
BFEs of I and of J.14,16,20 The elements of I and J required to construct contact element e are denoted by  and
 , respectively. The associated nodal variables are denoted by p̂ and p̂ such that p̂

e
= [p̂, p̂ ]T . Associated nodal

variations are denoted by 𝛿p̂
e
.

The linearization of 𝛿Πc then reads:

𝛿Πc

(
p̂ +△p̂, 𝛿p̂

)
=
∑
e∈S

𝛿Πc,e

(
p̂

e
+△p̂

e
, 𝛿p̂

e

)
(54)

≈
∑
e∈S

𝛿Πc

(
p̂

e
, 𝛿p̂

e

)
+△𝛿Πc

(
p̂

e
, 𝛿p̂

e

)
△ p̂

e
(55)

≈
∑
e∈S

𝛿p̂T
e

(
rce + K

ce
△ p̂

e

)
. (56)

Next, we discuss how to construct the contributions of a single contact element to the total force column and stiffness
matrix. The force column and stiffness matrix associated with element e are denoted by rce and K

ce
. We distinguish the

contributions stemming from normal and tangential contact. Hence, rce is decomposed as:

rce = rcNe + rcTe, (57)

where rcNe and rcTe denote the normal and tangential contact element contact contribution. Similarly, the contact element
stiffness is decomposed as follows:

K
ce
= K

cNe
+ K

cTe
(58)

3.2.1 Force vector and stiffness of a single contact element

To numerically integrate 𝛿Πc,N in Equation (46), n
IP integration points (to which a cross-section is attached where pen-

etration is to be quantified) are placed along ’s centroid-line. Whether we integrate along the centroid line of a beam
element or an artificial smoothed centroid line constructed from several BFEs, the variable over which we integrate is
denoted by 𝜂 (and hence, a mapping is constructed between hM

1 and 𝜂 if necessary). The contact virtual work of the normal
contact interactions reads:

𝛿ΠcN = −𝜖N ∫
1

−1
⟨−gN (𝜂)⟩ (𝛿g (𝜂) ⋅ nI (𝜂)

) || (𝜂) ||d𝜂
≈ −𝜖N

n
IP∑
k

wk⟨−gN (𝜂k)⟩ (𝛿g (𝜂k) ⋅ nI (𝜂k)
) || (𝜂k) ||

≈
n

IP∑
k

(
wkrcNek

)T
𝛿p̂

e
. (59)
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Jacobian  = 𝜕h
1

𝜕𝜂
maps differential length dh

1 to differential increment d𝜂. The weight of the kth integration point
is denoted by wk and its coordinate in the parameter space is denoted by 𝜂k.

For a given cross-section of  attached to xc (𝜂k), rcek in Equation (59) is expressed as:

rcNek = −𝜖N⟨−gN (𝜂k)⟩ nI (𝜂k)
�̂�g (𝜂k)
�̂�p̂

e

|||||| 𝜕q

𝜕p̂e
=0

|| (𝜂k) || (60)

where �̂�

�̂�p
denotes the total derivative with respect to variables p performed by the automatic differentiation (AD)

algorithm.20,24 Here, the exception in AD indicates that the variation of the gap vector, g (𝜂k), is not influenced by the
local variables as discussed in our previous work.14 K

cNek
, stemming from the contribution of the kth integration point,

can be obtained using AD. It allows to include the implicit dependency of local variables q on global variables pIJ (see
Equation (48)):

K
cNek

=
�̂�rcNek

�̂�p̂
e

|||||| 𝜕q

𝜕p̂e
=A

. (61)

Similarly to Equation (59), the numerical integration of the frictional term 𝛿ΠcT in Equation (46) governing friction
reads:

𝛿ΠcT = ∫
1

−1
TT (𝜂) ⋅

�̂�g (𝜂k)
�̂�p̂

e

|||||| 𝜕q

𝜕p̂e
=0

|| (𝜂) ||d𝜂
≈

n
IP∑
k

wkTT (𝜂k) ⋅
�̂�g (𝜂k)
�̂�p̂

e

|||||| 𝜕q

𝜕p̂e
=0

|| (𝜂k) ||
≈

n
IP∑
k
(wkrcTek)

T𝛿p̂
e
, (62)

where:

rcTek = || (𝜂k) ||TT (𝜂k) ⋅
�̂�g (𝜂k)
�̂�p̂

e

|||||| 𝜕q

𝜕p̂e
=0

. (63)

The corresponding contribution to the tangent stiffness can once again be obtained with AD:

K
cTek

=
�̂�rcTek

�̂�p̂
e

|||||| 𝜕q

𝜕p̂e
=A

. (64)

3.2.2 Contribution of all contact elements

rc and K
c
, which contain the contributions of all contact elements in set S, are assembled as follows:

rc = A
e∈S

n
IP∑
k

wk
(

rcNek + rcTek
)
= A

e∈S
rce, (65)
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K
c
= A

e∈S

n
IP∑
k

wk

(
K

cTek
+ K

cNek

)
= A

e∈S
K

ce
. (66)

where A denotes the finite-element assembly operator.

4 NUMERICAL EXAMPLES

In this section, the proposed frictional framework is applied to three beam-to-beam examples and one beam-inside-beam
example. So far, we have presented our contact framework without specifically referring to a certain type of BFEs. In all
presented simulations, however, Simo–Reissner geometrically exact beam elements are used. The associated BFEs have
a linearly interpolated centroid line.1-3 This entails that the surface of a series of consecutive BFEs is C0-continuous only
if the undeformed configuration is straight. If the string of BFEs is not straight in the reference configuration, the surface
associated with such strings of BFEs is not C0-continuous and hence, contact constraints are hard (if not impossible) to
apply.

An approximated but C1-continuous surface description was proposed in Reference 16 to alleviate this issue, see also
Figure 4. This surface is used in all the numerical examples below and is only used for the contact treatment; it has no
influence on the employed beam theory, nor on the BFEs.

4.1 Beam-to-beam contact: A 1+6 strand in tension

Strands are assemblies of wires used in tire reinforcement or as components of wire ropes. In this example, we
focus on a 1+6 (a central wire surrounded by six helical wires) strand subjected to tension. The geometry of the
strand is reported in Table 1. A gap of 0.05 mm is inserted between the central wire and its six surrounding wires
in order to prevent numerical issues at the strand’s ends. The Young modulus is set to E = 188 GPa and its Poisson
ratio to 0.3.

Only one pitch of the strand is modeled. Twenty BFEs are used to discretize each wire. One strand’s end is clamped
while the nodes at the other end are moved in the z-direction by a final displacement uend such that the strand’s axial
engineering strain reaches 𝜖strand = 0.015, see Figure 5. Only one Gauss integration point is used per smoothed patch for
the integration of the contact virtual work.

F I G U R E 4 Two connected beams j and j+ 1 whose centroid lines is shown with a green and orange dashed line, respectively. Their
nodes are shown with gray circles. The smoothed centroid line constructed for these two beams is shown with a plain blue curve. The
associated control points are shown with red circles. As an example, the quadrature points of the three-point Gauss–Lobatto rule are
indicated by black lines and the single quadrature point of the one-point Gauss–Legendre rule is indicated by a green cross

T A B L E 1 Geometrical parameter for the 1+6 strand (a straight wire surrounded by six
helical wires)25

Central wire diameter 3.94 mm

Helical wire diameter 3.73 mm

Pitch length 115 mm
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F I G U R E 5 Beam-to-beam contact 4.1: 1+6 strand subjected to an
axial displacement uend at one of this end while the other end is clamped

F I G U R E 6 Beam-to-beam contact 4.1:
Component of the reaction forces in the z-direction

The initial penalty stiffness is estimated using the Hertz theory for parallel cylinders,26 resulting in 𝜖N = 𝜋E2

8(1−𝜈)2
=

82 × 109 N/m. As the tensile force gradually increases with the loading, the contact forces between the wires increase.
Thus, the residual penetration due to the use of the penalty method increases. As soon as the penetration measured at an
integration point according to Equation (9) falls below −5% of the smaller slave beam cross-section dimension at the end
of a time step, the penalty stiffness of all quadrature points of the slave BFE/smoothed curve is increased by 10% and the
corresponding time step is repeated.

The tangential penalty stiffness is set to 𝜖T = 8.2 × 109 N/m and allows for reasonably small elastic relative
displacements of the contacting surfaces without causing convergence issues. The friction coefficient is set to
𝜇 = 0.115.

The loading is applied in 150 equally spaced time steps. Reaction forces in the axial direction are shown in Figure 6.
It can be observed that for small strains, the response predicted by our model has the same slope as the one predicted
by Costello’s theory. Figure 6 also shows the reaction force predicted for two equivalent strand models in commercial
FE software Abaqus©. One uses C3D8R elements (hexahedra with reduced integration and hourglass control) and the
other B31 elements (linearly interpolated beam elements). Both simulations give a similar response and capture the first
experimental points well. As the material behavior is elastic, the reduction of the reaction force’s slope due to the wires’
plastification is not captured.

Figure 7 shows the evolution of the number of active contact points. Initially, the wires are not in contact due to the
(small) initial gap between the core wire and the helical ones. Then, as the strand elongates, wires come in contact in
the center of the strand. The contact propagates towards the strand’s ends. Despite a relatively large number of contact
interactions, only a few global Newton–Raphson iterations are necessary to converge, see Figure 7.

4.1.1 The choice of the quadrature rule and penalty stiffness

The influence of the choice of the quadrature rule and the penalty parameter is studied. The goal is to investigate if contact
locking appears when more quadrature points are used and/or for high values of the penalty stiffness. The numerical
example of Figure 5 is repeated with:
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F I G U R E 7 Beam-to-beam contact, Example 4.1.
Top: Number of global iterations to reach convergence
criterion ||f

int
+ rc − f

ext
|| < 10−8; bottom: Number of

penetrated sections

F I G U R E 8 Beam-to-beam contact, Example 4.1:
Influence of the number of quadrature points on
contact traction TN for a Gauss–Legendre quadrature
with k= 1

• Different number of quadrature points, nQP, going from 1 to 4 with the Gauss–Legendre quadrature rule, and from 2
to 4 with the Gauss–Lobatto quadrature rule, see Reference 27,

• different values of 𝜖N with 𝜖N = k 𝜋E2

8(1−𝜈)2
26 with k∈ {0.5, 1, 2, 10}. The tangential penalty stiffness is always set to 𝜖T = 𝜖N

10
.

To study the influence of the quadrature rule on contact traction TN, the contact traction of the different contact
elements between the central wire and a chosen peripheral wires have been reported for:

• k= 1 but a varying number of Gauss–Legendre quadrature points, see Figure 8,
• 1 and 2 Gauss–Legendre quadrature points but k∈ {0.5, 1, 2, 10}, see Figure 9,
• k= 1 but a varying number of Gauss–Lobatto quadrature points, see Figure 10,
• 3 Gauss–Lobatto quadrature points but k∈ {0.5, 1, 2}, see Figure 11.

Figure 8 shows that when the number of Gauss–Legendre quadrature points nQP is more than two, TN oscillates along
the contact line. Figure 9(A) shows that for a 1-point Gauss–Legendre quadrature rule, TN does not oscillate, even for
k= 10. Figure 9(B) shows that for a 2-point Gauss–Legendre quadrature rule, TN does not oscillate for k≤ 1, but higher
values of k (and thus 𝜖N) induce oscillations. For a Gauss–Lobatto integration rule, Figure 10 shows that even with a
number of quadrature points as low as 2, oscillations of TN are present.

Figure 11 shows that increasing k increases the amplitude of these oscillations. None of the simulations using k= 10
converges with a Gauss–Lobatto quadrature. For all converging simulations, the evolution of the reaction force and the
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(A)

(B)

F I G U R E 9 Beam-to-beam contact,
Example 4.1: Influence of k on contact traction TN

for a Gauss–Legendre quadrature with (A) nQP= 1,
and (B) nQP= 2

F I G U R E 10 Beam-to-beam contact,
Example 4.1: Influence of the number of quadrature
points on contact traction TN for a Gauss–Lobatto
quadrature with k= 1

reaction torque is very similar for all the quadrature rules tested here and is not shown. As TN does not oscillate for a
1-point Gauss–Legendre quadrature rule, even with a high penalty stiffness, this quadrature rule is used in all remaining
numerical examples in this article.

4.2 Beam-to-beam contact: Twisting

Twenty beams of length L= 70× 10−3 m are aligned in the z direction, see Figure 12. Each beam is clamped at one end,
while the cross-sections at the other end are rotated around the z axis with an angle of 180◦ in 720 increments. Forty BFEs
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F I G U R E 11 Beam-to-beam contact,
Example 4.1: Influence of k on contact traction
TN for a Gauss–Lobatto quadrature with
nQP= 3

F I G U R E 12 Beam-to-beam
contact, Example 4.2: (A) Initial
configuration; (B) final
configuration for 𝜇 = 0.25

are used to discretize each beam. The nodes at the rotated ends are free to move in the z direction while the other degrees of
freedom are prescribed. The beams’ Young’s modulus is 100 GPa and their Poisson’s ratio is 0.33. To show the influence of
friction, the simulation is performed with three different friction coefficients 𝜇: 0, 0.25, and 1. The initial penalty stiffness
is again estimated using Hertz contact theory for two parallel cylinders, resulting in 𝜖N = 𝜋E2

8(1−𝜈)2
≈ 4.3 × 1010 N/m.26 The

tangential penalty stiffness is set to 𝜖T = 𝜖N∕10 = 4.3 × 109 N/m.
As the rotation increases, beams wrap around each other, which causes the contact area and the number of penetrated

sections to increase (bottom diagram in Figure 13). The deformed configuration is similar for all simulations and is shown
on the right in Figure 12. Despite the substantial number of penetrated sections, the number of global iterations required
to converge according to ||f

int
+ rc − f

ext
|| < 10−8, remains low (top diagram on Figure 13). This is thanks to the proper

linearization of rc, see Equations (61) and (64), with the AD tool.
Figure 14 reports the evolution of the reaction forces and the total torques around z axis at the support. The influence

of friction is relatively small for this example, although friction does have a substantial influence on the reaction force in
the axial direction of the beams (top-right diagram in Figure 14).

4.3 Beam-to-beam contact: Twisting and pulling of a fiber

In this example, four beams of length L= 70× 10−3 m are aligned along the z direction (Figure 15). The beams’
cross-sections are circular with a radius of 3.6× 10−3 m. During the first part of the simulation, the displacements and
rotations of all beam nodes at one end are fully restrained. The sections at the other end are rotated around the z axis
with an angle of 180◦. This loading is applied in 1800 increments. Each beam is discretized with 40 BFEs. The nodes at
the rotated end of the beams are only free to move along z while the other kinematic variables are prescribed. During the
second part of the loading, one of the beam is extracted from the deformed structure by pulling it (at the end node) in the
z direction.

The initial penalty stiffness is once again estimated using Hertz theory for the case of perfectly parallel cylinders in con-
tact, resulting in 𝜖N = 4.4 × 1010 N/m. The tangential penalty stiffness is set to 𝜖T = 𝜖N∕10 = 4.4 × 109 N/m. A one-point
Gauss–Legendre quadrature rule is used to integrate the contact virtual work.
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F I G U R E 13 Beam-to-beam contact,
Example 4.2. Top: Number of global
iterations to reach convergence criterion||f

int
+ rc − f

ext
|| < 10−8; bottom: Number of

penetrated sections

F I G U R E 14 Beam-to-beam contact, Example 4.2: Reaction forces and reaction torque

The simulation is performed without friction and with a friction coefficient of 0.25. It is also performed for
circular (with a radius of 3.6× 10−3 m) and elliptical cross-sections (with the same cross-sectional area as the circular
cross-sections, with a= 2.16× 10−3 m).

The undeformed configuration as well as the deformed configuration at the end of the two part of the simulation is
shown in Figure 15 for circular and elliptical cross-sections. The number of global iterations required to attain the desired
accuracy, ||f

int
+ rc − f

ext
|| < 10−8 is shown in Figure 16. Figure 17 shows the reaction force, revealing that both friction

as well as cross-sectional shape have a substantial influence. The force-displacement curves of the cases with friction are
less smooth than their frictionless counterparts. This is because of the change in the sticking/slipping status of contact
points.
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F I G U R E 15 Beam-to-beam
contact, Example 4.3: Initial
configuration (left column);
configuration halfway through the
loading (central column), and final
configuration (right column) for
circular cross-sections (A–C) and
elliptical cross-sections (D–F)

F I G U R E 16 Beam-to-beam
contact, Example 4.3. Top: Number of
global iterations to reach the
convergence criterion||f

int
+ rc − f

ext
|| < 10−8; bottom:

Number of penetrated sections

F I G U R E 17 Beam-to-beam contact, Example 4.3:
Reaction force at the end nodes of the pulled beam during
the second part of the simulation
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4.4 Beam-inside-beam contact: Insertion

This example involves an initially straight thin beam that is pushed in a hollow beam (see Figure 18(A)). Both beams have
elliptical cross-sections. Initially, only a small part of the inner beam is present in the hollow one. The curved part of the
hollow beam’s centroid-line is a half-circle of radius 150× 10−3 m. The kinematic variables of the outer beam’s end node
near the thin beam’s insertion location are restrained. Its wall thickness is 10−3 m and the lengths of its cross-sectional
semi-axes are a= 20× 10−3 m and b= 16× 10−3 m.

The inner beam has a length of 54× 10−2 m, and a Young’s modulus of 100 GPa. The cross-sectional shape is
given by a= 5.4× 10−3 m and b= 4.3× 10−3 m. The outer hollow beam is more compliant with E = 10 GPa. The
z-displacement of the inner beam’s end node furthest away from the outer beam is prescribed to reach 54× 10−2 m in 300
increments, whilst the other kinematic variables at this end node are restrained. The thin beam is discretized with 20 BFEs
and the hollow beam with 45 BFEs. A one-point Gauss–Legendre quadrature rule is used to integrate the contact virtual
work.

Once again the simulation is performed with different static friction coefficients: 0, 0.5, and 1. Both beams have a
Poisson’s ratio of 0.33. The initial penalty stiffness is set to 𝜖N = 1 × 103 N/m which is several order of magnitude less
than for the examples in Sections 4.2 and 4.3. A higher penalty stiffness causes convergence issues with oscillations of
the contact status, meaning that some contact elements penetrate the thick beam wall and then detach (gN > 0) from
one iteration to the next. The tangential penalty stiffness is set to 𝜖T = 1 × 102 N/m and allows acceptably small elastic
tangential gaps, while allowing the (global) Newton–Raphson scheme to converge.

Both structures deform due to contact, see Figure 18. Figure 19 shows that numerous sections of the inner beam
penetrate the wall of the outer beam, which indicates that the contact is non-localized. Only a few iterations are necessary

F I G U R E 18 Beam-inside-beam contact,
Example 4.4: (A) Initial configuration; (B)
configuration halfway through the loading, and
(C) final configuration

F I G U R E 19 Beam-inside-beam
contact, Example 4.4. Top: Number of
global iterations to reach convergence
criterion: ||f

int
+ rc − f

ext
|| < 10−8;

bottom: Evolution of the number
penetrated cross-sections
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F I G U R E 20 Beam-inside-beam contact,
Example 4.4: Reaction force at the inner beam’s
prescribed node in the beam’s axial direction

to reach convergence for the “beam-inside-beam” framework as Figure 19 shows. Figure 20 shows the component of the
reaction force in the z direction. The presence of friction clearly has a substantial influence on the force-displacement
response, indicating that friction not only influences the results of beam-to-beam contact schemes, but also those of
beam-inside-beam contact schemes.

The contact of the tip of the inner beam plays a crucial role during the entire simulation. It is enforced with a contact
at the closest pair of surface points between the surface of the last section of the inner beam and the inner surface of the
tube. A similar contact element was used in Reference 8. This contact interaction needs a specific treatment in order to
avoid a complete loss of contact between the tip and the inner surface when the tip slides out. More details can be found
in Reference 14.

5 CONCLUSION

This contribution presents the extension of beam-to-beam and beam-inside-beam contact frameworks towards
friction. It is applicable to shear-deformable and shear-undeformable beams with circular and elliptical cross-sections.
The framework is not only able to account for frictional sliding in the beams’ axial direction, but also in the circumferen-
tial direction. It is suitable for non-localized contact interactions, occurring for instance when beams are parallel to each
other or wrapped around each other. The contact kinematics are formulated in terms of surface parameters of the master
and slave beams. Thus, the introduced framework can be exploited for a variety of BFE formulations, provided that their
cross-sections are rigid and their discretized surface is C1-continuous.

An important specificity of the introduced framework is that both slave and master contact points change their loca-
tion at the beams’ surfaces during the relative tangential motion of beams. This is unlike common node-to-segment
approaches, in which the location of the slave contact points are fixed. We propose a measure of relative tangential dis-
placement that is frame indifferent and does not involve higher-order dependencies on global kinematic variables. Thanks
to that, the measure is suitable for finite-deformation and finite-sliding problems, and also leads to computationally
efficient linearization.

The presented formulation is shown to efficiently regularize contact constraints in a series of numerical exam-
ples for beam-to-beam and beam-inside-beam contact interactions, with and without friction for beams with circular
and elliptical cross-sections. Even if numerous contact interactions are present and the beams’ deformations, rotations
and curvatures are substantial, only a few global iterations are necessary to converge. This is thanks to the consis-
tent linearizations achieved using AD, which automatically incorporates the dependencies between global and local
variables.
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While the present formulation is suitable for non-localized beam-to-beam contact, it is not truly adapted to enforce
localized contact. In such cases, frameworks as presented by Gay Neto et al.,8,15 which enforce contact at a single pair of
points, seem more accurate. A scheme that automatically decides whether to enforce point-wise contact or non-localized
contact remains for future work. Although Reference 10 provides a geometrically based choice of the contact formula-
tion which depends on the spatial arrangement of the two beams’ centroid-lines, it cannot be used here because it is
limited to beams with circular cross-sections. Another geometrical criterion would be necessary to decide which formu-
lation to employ for beams with elliptical cross-sections (point-wise surface-to-surface contact8,15,28 or surface-to-surface
non-localized contact).
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APPENDIX

Equation (18) approximates the increment in the tangential gap between two time-steps. Five test cases in which the
displacements and rotations of two beams in contact are completely prescribed are performed to reveal how the error of
the tangential gap decreases with the number of increments. In every test, both beams have circular cross-sections with
a radius r = 1 m. The beams are initially in contact such that gN ≈ 0. The examples are presented in Figure A1. The error
of the total relative sliding of the surfaces are reported in Figure A2. For every example, a tangential penalty parameter
𝜖T = 105 has been used.

Test 0,1, and 2 correspond to perfect rolling scenarios. We thus expect the measure of relative displacement to decrease
as the number of increments, ninc, increases. On the contrary, some relative sliding of the surface is expected in tests 3
and 4.

Below, each test is briefly described along with the measure of error employed. gTel,final denotes the elastic gap
measured at the end of the simulation.

• Test 0: the slave beam is rotated around the master beam with an angle 𝛽 = 𝜋. The slave is rotated around its
centroid-axis with an angle 𝛼 = 2𝛽. The master beam does not move.

• Test 1: it is identical to Test 0 except that the roles of slave and master are inverted.
• Test 2: both beams are rotated around their centroid lines by angle of 𝜋

2
in opposite direction.

• Test 3: both beams are rotated around their centroid lines by angle of 𝛼 = 𝜋

2
in the same direction. We thus expect a

total relative sliding of 2r𝛼.
• Test 4: the slave beam is rotated around the master beam with an angle of 𝛼 = 2𝜋 and longitudinally displaced with

vdisp = 0.1 m. Therefore, the master contact point follows an hellicoidal trajectory. As the slave beam is rotated with an
angle of 𝛼 around its centroid line, the surface parameters of the slave contact point, h

I
, do not change. Hence, the

slave contact point does not contribute to the total sliding of contacting surfaces.
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(A) (B)

(C)

(E)

(D)

F I G U R E A1 Schematics of the different tests
performed

F I G U R E A2 Error on the total
tangential gap measured at the end of
the fictitious loading
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For each test, the measure of error on
(∑ninc ||||Δgi

Tsl
||||) at the end of the fictitious loading is plotted in Figure A2. The

measure of error employed is:

• For tests 0, 1, and 2: error =
(∑ninc

i=1
||||Δgi

Tsl
||||) + ||||gTel,final

||||
• For test 3: error = 2r𝛼 −

(∑ninc
i=1

||||Δgi
Tsl
||||) + ||||gTel,final

||||,
• For test 4: error =

(
𝛼

√
r2 +

(
vdisp

𝛼

)2
−
∑ninc

i=1
||||Δgi

Tsl
||||
)

+ ||||gTel,final
||||


