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Abstract: Composite materials are widely used in many engineering applications and fields of tech-
nology. One of the main defects, which occur in fiber-reinforced composite materials, is delamination.
It manifests itself in the separation of layers of material and the damaged structure once subjected
to mechanical loads degrades further. Delamination results in lower stiffness and the decrease of
structure’s carry load capability. Its early detection is one of the tasks of non-invasive structural
health monitoring of layered composite materials. This publication discusses a new method for
delamination detection in fiber-reinforced composite materials. The approach is based on analysis
of energy signal, calculated with Teager–Kaiser energy operator, and comparison of change of the
weighted instantaneous frequency for measurement points located in- and outside of delamination
area. First, applicability of the developed method was tested using simple models of vibration
signals, reflecting considered phenomena. Next, the authors’ weighted instantaneous frequency was
applied for detection of deamination using signals obtained from FEM simulated response of the
cantilever beam. Finally, the methods effectiveness were tested involving real experimental signals
collected by the laser Doppler vibrometer (LVD) sensor measuring vibrations of the delaminated
glass-epoxy specimens.

Keywords: delamination; Teager–Kaiser energy operator; instantaneous frequency; fiber-reinforced
composite material

1. Introduction

Fiber-reinforced polymer (FRP) composite materials have found application in a wide
range of engineering structures—from parts of vehicles, through structures like pedestrian
bridges to wind turbine blades. The main cause of their popularity is very good strength to
mass ratio.

Both, during manufacturing as well as use, FRP structures are subjected to a number
of degradation processes, such as cracks or delamination. Degradation can result from
loading the structure with force over accepted level, e.g., as a result of impulse, or due
to violating construction’s fatigue strength on cyclic load. According to present state of
technology, the origination of a defect does not preclude further use of a structure. However,
further operation of an object, in accordance with a given level of safety, implies the need
for early detection, identification, and localization of the fault as well as controlling fault
development. Detection of an early phase of a fault allows to change operation conditions
or to plan maintenance and repairs [1,2].

Delamination is the separation of part of a material of FRP which causes local change
of its stiffness. Further loading of a structure, will effect, in the growth of delamination area
or, in an extreme case, its rapid development causing destruction or irreversible loss of
operation ability of a structure, e.g., like in the case of helicopter rotor blade delamination
which took place in Israel in 2009 [3]. Due to the importance of this degradation mechanism,
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as well as the difficulty to detect and localize delamination, a number of diagnostic methods
have already been considered by engineers and still new ones are being developed.

Those methods are based on observations of different physical phenomena such
as: ultrasonic waves [4,5], acoustic emission [6], thermographic response of the structure
excited with the thermal (IR) radiation or external forces [7–9], or vibrations [10,11]. Despite
there still being some challenges for ultrasonic and thermographic methods [12], these are
the leading methods used for inspections of high-risk composite components like, e.g.,
aerospace structures [6]. They allow to fully identify relatively small delamination, but the
qualified operator has to set the test and the inspection process may take many hours to
complete [13].

Due to economical and practical reasons, the methods based on observation and
analysis of vibrations have gained big popularity, mainly in structural health monitoring
applications. It is caused by the fact that the vibration signal can be easily measured by
relatively cheap equipment [14]. There is a broad range of measurement technologies,
starting from classical transducers like accelerometers [14], through optical fibers [14],
piezoelectric strain sensors [15], micro-electro-mechanical systems (MEMS) sensors [16,17],
up to touchless measurement methods realized, e.g., by laser Doppler vibrometry [18]. In
addition, most frequently, the operating conditions cause the structure to vibrate, opening
opportunity to possess diagnostic information without adding additional excitation energy.

Literature presents many techniques, which are dedicated to dealing with vibrational
response of a structure and aim for detection and/or identification of the structural dam-
ages, such as delamination. A great number of methods are based on inverse problem
analysis [19,20]. For example, in [21], the authors presented results of the examination
of the three different inverse algorithms for predicting the location and size of delami-
nation: direct solution using a graphical method, artificial neural network (ANN), and
surrogate-based optimization. Discussed algorithms have been validated using numeri-
cal data generated from the finite element (FE) model of delaminated beams, as well as
data from experimental modal analysis conducted on carbon-fiber reinforced polymer
beam specimens. It was shown that all the presented algorithms accurately predicted
the delamination parameters, when the FE model validation data were used. However,
when experimental data were used, the ANN algorithm turned out to be sensitive to the
measurements errors.

In [22], the authors showed that delamination can be identified, solving the inverse
problem with the use of gradient optimization, when the virtual distortion method is
used for modeling of the healthy structure. The delamination identification scheme was
formulated by the inverse problem also in [23,24]. Inverse analysis methods are usually very
effective in delamination identification. They are capable of finding the exact delamination
location, with the use of input data collected by low number of sensors. From the other
hand, they are very time consuming, as they need demanding learning process, e.g., in the
case of ANN use, or a detailed model of the investigated structure.

Another group of methods identify delamination by the use of so-called damage
indicators. The most popular damage indicators are based on time domain signals or modal
characteristics extracted from the vibrational signal. The example of such an indicator is
the probabilistic delamination indicator (PDI) presented in [25]. PDI is developed on the
basis of delamination induced relative frequency change curves and its relationship to
mode shapes. It was proved, that the method is capable to detect mid-plane as well as
off-mid-plane delamination in laminated composite beams. It was also shown that the
proposed method shows two symmetric, potential locations of delamination and because
of that, can be used for preliminary tests, preceding the use of, e.g., an ultrasonic apparatus.
Additionally, in [26], the method based on the computation of the damage indicators
was presented. The authors suggested damage indicators based on the analysis of phase
representation of signals. In this approach, the analyzed signal is presented on a phase
plane as the Poincare map. The identification and localization of failure in the form of
delamination, is performed based on the comparison analysis between representation



Materials 2021, 14, 1154 3 of 24

of signals from structure with and without a failure. Some other damage indicators are
depicted in [27].

The methods based on the use of damage indicators are significantly simpler and less
time consuming then the inverse analysis methods, but there are still areas that need to be
improved. Many indicators exhibit sensitivity problems, need a reference state, and do not
provide the possibility of detecting false alarms, reducing their reliability.

Intelligent signal processing-based algorithms can be pointed as the next group of
delamination identification methods. An interesting example of signal processing-based
identification is presented in [28]. The author proposed a two-step delamination detection
and evaluation procedure, which consists of modal shapes extraction and an advanced
signal processing algorithm, based on 2D wavelet transform (WT) with B-spline wavelets
of fractional order. Another novel testing procedure of that type, based on the feature
extraction capability of multi-level wavelet-based processing, is presented in [29]. Intel-
ligent signal processing-based methods are using advanced mathematical tools. They
frequently operate as multi step algorithms and require preliminary selection of signal
processing parameters.

As the delamination is a very serious damage and can result in catastrophic failure,
there is a very high concern in the scientific community in finding the effective methods
allowing for its identification. The papers mentioned above represent only a small fraction
of the published literature resources in the field, showing the diversity of scientific tools
adopted for delamination identification purposes. In the more broad discussion on the
vibration-based delamination assessment methods, their potential and classification are a
job for a self-contained review article rather than for the introductory part of the research
paper; a general conclusion coming from at least few review papers [20,30,31] can be
presented as a good state of the art summary. Conclusions can be drawn that all presented
techniques have their own advantages and disadvantages and there is no general technique
that allows to identify all kinds of delamination in all kinds of structures. In addition,
taking into account that most of the methods presented in literature are examined on
simple elements like beams or plates, it seems that in the case of more composed objects,
the reliable SHM system should use at least a few identification methods. It legitimizes the
search for new, complementary methods of delamination identification.

In the context of the above, the proposed method should not be considered as a stand-
alone solution, being a perfect remedy, but as one of possible assisting methods in the
vibration-based SHM system. Nonlinear dynamics of breathing deformation, observed in
the finite element model of the vibrating specimen as well as in experimental tests, points
to the need of selecting proper signal processing and analysis methods allowing to detect
this phenomena.

The presented approach, is based on the Teager–Kaiser energy operator (TKEO).
The analysis of the time domain signal using the Teager–Kaiser energy operator enables
observation of transient disturbances of the signal’s instantaneous frequency (IF) [32].
Such disturbances can result from a failure, e.g., crack or delamination of a composite
structure. The main assumption underlying the developed method is local, periodic change
of stiffness of the tested object due to opening and closing of delamination which will
manifest in the change of an instantaneous frequency of vibration. As the change of stiffness
in delaminated area occurs within a single period of vibration, the vibration of delaminated
beam is characterized by specific half-period fluctuation of instantaneous frequency.

In contrast to many present vibration-based methods, the original TKEO-based delam-
ination detection method does not require knowledge of dynamic behavior of the structure
in reference, i.e., healthy state, nor referring to the numerical model. In the considered case
of breathing delamination, comparison of instantaneous frequency of vibration signals
recorded in measurement points located within and outside delamination allows to create
a useful failure indicator.

The paper is organized in the following order: Section 2 discusses disturbance of the
vibration signal resulting from opening and closing of delamination. Section 3 presents
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a simplified model of a vibration signal, in which variation of instantaneous frequency
within each half-period of vibration is assumed to result from phenomena of breathing
delamination. Section 4 is devoted to discussion on the applicability of selected signal
processing methods for detection of considered half-period disturbance of instantaneous
frequency. This section also gives some details on the Teager–Kaiser energy operator
and introduces the original Teager–Kaiser weighted instantaneous frequency fw. The
analysis described in this section was performed on the signal obtained using the model
described in the previous section. Those works were preliminary activities before the FEM
model was built and experimental tests were performed. Section 5 presents results of
tests performed with the FE model of fiber-reinforced composite specimens. In contrast
to the numerical model from Section 3, the FE model allowed to obtain more realistic
behavior regarding amplitude and frequency variations. Laboratory tests of specimen with
artificially introduced delamination and their results are presented in Section 6. Section 7
concludes performed research as well as discuss advantages and drawbacks of the Teager–
Kaiser weighted instantaneous frequency fw.

2. Breathing Delamination Phenomena

Present-day publications [33,34] as well as numerical models discussed in Section 4
and results of experimental tests presented in Section 5, indicate that in specific mode shapes
of delaminated structure, relative motion of the delaminated layer can be observed. This
phenomenon is known as opening and closing of delamination, or breathing delamination
(Figure 1) and it causes fluctuations of stiffness [35] in the delaminated structure. As a
result of the variation of stiffness, the frequency of vibrations undergoes instantaneous
changes. It can be assumed that delamination reveals itself in a specific signal pattern with
uneven half-periods. During the opening of delamination (Figure 1a), the structure has
lower stiffness, which is reflected in lower eigenfrequency. When delamination is closed
(Figure 1c), the stiffness of a specimen is close to the stiffness of an undamaged structure.
As a result, eigenfrequency is higher compared to the situation when delamination is
opened. During excited vibrations, e.g., in first mode, for a single period of excitation, part
of the structure’s motion takes place for opened delamination, while the other part takes
place for closed delamination. However, the complete period of the structure’s motion is
consistent with excitation frequency.

Figure 1. Breathing delamination of the beam structure during vibration: (a) opening of delamination
when the beam tip goes up; (b), beam in equilibrium; (c) closing of delamination when the beam tip
goes down.
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3. Simplified Model of Vibration Signal

To reflect nonlinear dynamic behavior of the structure with breathing delamination
and to perform preliminary analysis, the dedicated numerical model of a vibration signal
was created. The model must be considered simplified because it is not reflecting any partic-
ular breathing delamination of any specific structure. Additionally, it assumes that change
of instantaneous frequency takes place in a contiguous way without rapid transitions.

For the preliminary tests, it was assumed that half-periods of the created signal will
differ by 2 Hz and instantaneous frequency will continuously vary from 9 to 11 Hz and
back. In the first approach, indicated as Model 1, the numerical model was created by
combining half-periods of two single harmonic signals with different frequencies using
the cubic spline interpolation function S(t) [36], smoothly connecting sine half-periods.
Equation (1) describes single period T of the modeled signal:

x(t)Model1 =


A·sin(2π· f1·t) f or t ε (0.1T, 0.45T )
A·sin(2π· f2·t) f or t ε (0.625T, 0.925T)
S(t) f or t ε 〈0.925T, 0.1T〉 and t ε 〈0.45T, 0.625T〉

. (1)

To build the numerical signal, the upper half-period of 9 Hz waveform and the bottom
half-period of 11 Hz waveform were joined without interval. Due to different curvature of
half-periods, the connection point was smoothed with spline interpolation. Due to spline
smoothing, the zero-crossing point is shifted from the original zero-crossing of 9 and 11 Hz
waveforms. In the x(t)Model1 signal, all connection points of half-periods were smoothed,
while the beginning and the end of the signal were modified to keep the same curvature of
half-periods.

The Model 2 (x(t)Model2) is created by combining two harmonic signals with appropri-
ately defined amplitudes A1 and A2, according to the following analytical Equation (2):

x(t)Model2 = A1 sin(2π· f ·t) + A2 sin(2π·2· f ·t). (2)

The selection of amplitude ratio A1/A2 as well as value of frequency f allowed to
correctly model the non-symmetry of the signal. Figure 2 presents the comparison of the
single period for both models with the assumption of representation of the signal with
9 and 11 Hz half-periods.

Figure 2. Comparison of waveforms from models.

Main differences between the models are related to spline interpolation smoothing
used in Model 1. The smoothing causes modification of part of the curvature of the
waveform as well as the shifting of the beginning of the consecutive full period of the
signal. Because the signal created by the use of the Model 2 does not suffer from those
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drawbacks, it was used in further analysis. Next, the section refers only to use of the
x(t)Model2 signal and it will be denoted as x(t).

4. Detection of Frequency Fluctuation

The section discusses application of three different tools for detection of instantaneous
change of the signal frequency. The signal x(t) (Equation (2)) was analyzed using: spectral
analysis, Hilbert transform-based demodulation and the Teager–Kaiser energy operator-
based demodulation. The mathematical principia of the presented methods as well as
results of the conducted analysis were presented in the next subsections.

4.1. Spectral Analysis

Spectral analysis, which is based on the Fourier transform mathematical theorem, is
one of most popular tools used in signal analysis [37], e.g., in machines’ condition monitor-
ing. The method allows for decomposition of a time series into harmonic oscillations and
represents its amplitude and phase spectrum. The results of the numerical spectral analysis
are strongly dependent on the duration of the investigated signal. It is commonly used in
measurement practice, which in case of multi-harmonic signals, at least few fundamental
periods are analyzed, in order to correctly grasp all components of interest. The result
of spectral analysis, conducted on the signal x(t), is presented in Figure 3. The analyzed
signal consisted of 30 complete periods.

Figure 3. Spectrum of signal x(t).

The spectrum has 3 harmonic components: DC component, main component with
frequency 9.95 Hz, and its second harmonic—19.9 Hz. The frequency of the main compo-
nent results from the period’s duration of the analyzed signal, which is composed of two
different half-periods. Investigating structure, for which it is not possible to refer to the
healthy state, the frequency observed in spectrum can be interpreted as modal frequency
of the undamaged structure. The spectrum reveals no information regarding deviation
of frequency.

4.2. Hilbert Transform Demodulation Analysis

The demodulation based on Hilbert transform is well established in the engineering
community and found application in many tasks such as, for example, bearing diag-
nostics [2]. It allows for identification of modulation phenomena and, particularly, for
estimation of instantaneous frequency [38].
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The complex sum of the analyzed signal s(t) and its Hilbert transform ŝ(t) creates the
analytical signal s̃(t) defined as Equation (3):

s̃(t) = s(t) + jŝ(t). (3)

The analytical signal allows to estimate envelope (Equation (4)) and instantaneous
frequency (Equation (5)) of the analyzed signal:

|s̃(t)| =
√

s2(t) + ŝ2(t), (4)

φ(t) = arg{s̃(t)} = arctg
ŝ(t)
s(t)

. (5)

In the considered case of the nonlinear signal with half-period frequency variation,
the Hilbert transform demodulation does not allow to properly detect changes occurring in
the signal. According to this approach, the investigated signal has weak amplitude and fre-
quency modulations. The spectrum of the obtained instantaneous frequency signal reveals
existence of the 9.95 Hz component as well as the contribution of its higher harmonics.

The modeled discrepancy of frequency is not correctly represented in the instantaneous
frequency (Figure 4). The Hilbert demodulation indicates that instantaneous frequency has
small variations around mean value equal to 9.95 Hz. The extreme values of the obtained
IF occur for instants of transition of half-periods. Hilbert transform demodulation results
do not point to the frequencies related to half-periods and the same does not identify well
enough the breathing delamination symptoms.
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4.3. Signal Processing Using the Teager–Kaiser Energy Operator

The Teager–Kaiser energy operator is a differential operator and was presented in [39]
while its properties were discussed in [40–43]. Many successful applications of TKEO
and related measures in condition monitoring of gears and bearings can be found in
publications [44–46]. One of the features of TKEO is that it calculates the signal’s energy
point-by-point. As a result, TKEO is more sensitive to transient changes occurring in
signal. On one hand, it is sensitive to noise, but on other hand, it allows for easier,
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comparing to solutions based on, e.g., Hilbert transform, detection of instantaneous changes
in the signal’s amplitude or frequency, e.g., such as transient changes of IF caused by
breathing delamination.

Teager–Kaiser energy ETK(t) is the time-domain signal obtained by the operator
Ψ(s(t)) (Equation (6)) acting on the analyzed signal s(t):

Ψ(s(t)) =
.
s2
(t)− s(t)

..
s(t). (6)

In [41], the authors presented a compact and easy to implement form of the TKEO for
discrete signals (Equation (7)):

Ψd(sn) = sn
2 − sn−1sn+1. (7)

For a certain class of AM-FM signals, described as (Equation (8)):

s(t) = A(t) cos(ω(t)t), (8)

it can be shown that (Equation (9)) [47]:

ETK(t) = Ψ(s(t)) ≈ A(t)2ω(t)2. (9)

Extending this concept, the TKEO (Equation (6)) can be applied for determination of
the envelope (Equation (10)) and instantaneous frequency (Equation (11)):

A2(t) =
Ψ(s(t))2

Ψ
( .
s(t)

) , (10)

ω2(t) =
Ψ
( .
s(t)

)
Ψ(s(t))

. (11)

The demodulation procedure based on Equations (10) and (11) is known as the energy
separation algorithm (ESA) and was presented in [43,48]. Discussion on properties of the
algorithms, both for continuous (CESA) and discrete (DESA) signals is presented in [47].

It is important to emphasize here, that because in the general case, the base formula (9) al-
lows for determination of approximate value of Teager–Kaiser energy, Equations (10) and (11)
are accurate for harmonic signals only. In the case of signals with AM and FM modulations,
both for CESA and DESA, the additional high frequency components arise in related
Teager–Kaiser energies. In consequence, some additional conditions have to be imposed on
the signal to minimize discrepancy, such as [49]: the analyzed signal is changing slowly, in
relation to sampling frequency and the modulation bandwidth and value are significantly
smaller from the carrier frequency.

Several DESA algorithms exist [48] and although all known TKEO-based demodula-
tion algorithms were tested for the analyzed signal (Equation (2)), the DESA-2 algorithm
was chosen as giving the best results with lowest errors. According to DESA-2 [48], instan-
taneous frequency is defined by Equation (12) and envelope by Equation (13):

ωn ≈
1
2

arccos
[

1− Ψd(xn+1 − xn−1)

2Ψd(xn)

]
, (12)

An ≈
2Ψd(xn)√

Ψd(xn+1 − xn−1)
. (13)

One must be aware of the limitations of this approach. The vibration signal coming
from breathing delamination is not an AM-FM class signal and does not fulfill the condi-
tions allowing for proper demodulation. As a result, it is not possible to fully correctly
estimate changes occurring in the signal. The value of the instantaneous frequency is
overestimated. Additionally, as [50] discusses, mutual influence of modulation phenomena
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can arise. In case of the considered signals, in order to improve obtained estimation results,
the Teager–Kaiser weighted instantaneous frequency fw is analyzed (Equation (14)):

fw =
ωn·An

2π
. (14)

Figure 5 presents part of the modeled signal x(t) and its Teager–Kaiser weighted
instantaneous frequency fw. The periodic changes of weighted instantaneous frequency
fw (blue) are correlated with signals half-periods (red). However, due to imperfection
of the used signal’s model x(t) (Equation (2)), resulting from superposition of harmonic
components, the transition between half-periods is not smooth, causing inflections seen in
fw. The mentioned above limitations of the DESA-2 algorithm cause the method to give
acceptable quantitative estimates of weighted instantaneous frequency—the lower (8.26 Hz)
as well as higher frequency (11.37 Hz) differ from the modeled parameters (9 and 11 Hz)
with an acceptable margin. The presented IF estimation method gives good qualitative
results, indicating the existence of breathing delamination symptoms. In contrast to the
Hilbert transform approach, the extreme values of Teager–Kaiser weighted instantaneous
frequency are concurrent in time with half-periods of the signal. Despite the divergence
of the values, the method can find application in practice because it reveals existence of
phenomena of interest.
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Comparison of analyzed methods clearly show, that only the one based on TKEO
demodulation allowed for estimation of modeled changes of IF and revealed phenomena
on interest. The spectrum analysis as well as Hilbert demodulation did not make it possible
to identify variation of instantaneous frequency.

4.4. Estimation of Instantaneous Frequency of Decaying Signal

To define applicability of the described Teager–Kaiser weighted instantaneous fre-
quency (Equation (14)), a number of test cases were investigated. Both steady-state and
decaying signals (Equation (15)) were analyzed:
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xdecaying(t) = Ad
−t·x(t), (15)

where: x(t)—the signal x(t)Model2, Ad—amplitude decaying factor, t—time.
The reason for performing such tests was the higher ease of FE modeling of the

structure with breathing delamination producing decaying signals, which were later used
as input data for analysis of the method effectiveness in the case of the cantilever beam
with delamination (Section 5.4). However, during laboratory measurements of structure,
described in Section 6, vibrations with steady amplitude were excited due to technical ease
of the experiments. The presented research task ensued to validate the TKEO method for
different modeled signals.

Signals with amplitude decaying factor from 1 (no decaying) to 0.1 (fastest decaying)
were analyzed to identify whether decaying increases estimation error. For each considered
case, the investigated signal was limited to the time range from the beginning till the
moment when the signal’s absolute envelope reached the value of 0.2. Statistical parameters
for each case, including the signal’s duration, are presented in Table 1. The obtained results
differ from the assumed values—11 and 9 Hz, but it is possible to observe the deviation of
instantaneous frequency related to the half-periods duration.

Table 1. Statistical parameters of instantaneous frequency of the decaying signal.

Decaying
Factor Ad

Signal
Duration

[s]

Mean
Frequency

[Hz]

Maximum
Frequency

[Hz]

Minimum
Frequency

[Hz]

Standard
Deviation of
Frequency

1 10 10.0162 11.3782 8.2789 0.9693
0.9 10 10.0155 11.6189 7.6486 0.9706
0.8 4.8994 10.0141 11.4111 7.2562 0.9704
0.7 2.3489 10.0032 11.4144 7.2461 0.9753
0.6 1.3455 9.9901 11.4354 7.2396 0.9805
0.5 0.8517 9.9698 11.3830 7.2315 0.9833
0.4 0.5732 9.9718 11.3523 7.2258 0.9824
0.3 0.4007 10.0263 11.3871 7.2232 0.9978
0.2 0.2855 10.0047 11.5053 7.2376 1.0157
0.1 0.2013 10.0841 11.7125 7.2946 1.0396

The quality of the instantaneous frequency estimation was strongly related to the
time length of the signal taken to the analysis. For the signals with low values of Ad, the
calculated weighted instantaneous frequencies fw, had higher estimation errors. From
performed tests, a conclusion can be made that although the estimation of instantaneous
values of frequency becomes less correct with the increase of the decaying factor, still the
phenomenon of frequency variation can be observed. Additionally, it is worth to recall
that even for signals with short duration, the DESA-2 based approach allowed to perform
useful analysis.

Figure 6 presents part of the decaying signal (Equation (15)) and change of its weighted
instantaneous frequency fw. Similar to the case of signal with steady amplitude, one can
observe periodic changes of estimated instantaneous frequency corresponding to the
signal’s half-periods.
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5. Estimation of Instantaneous Frequency of Signal from FEM Simulation
5.1. General Description of Modeling of the Delaminated Beam

The finite element modeling for simulation of a delaminated beam behavior was
performed with the use of the commercial finite element software ANSYS. The delaminated
beam was composed of four blocks, as it is presented in Figure 7a. The longer inner edge of
the block number 3 was modeled by the sinusoidal function. That allowed to reflect realistic
crack conditions [51]. The adjoining edges of the blocks, numbered consecutively as 1, 3, 4
and 2, 3, 4, were connected by the constraints imposed on nodal displacements ux (horizon-
tal axis) and uy (vertical axis). Besides, the CF boundary conditions scheme was applied to
the whole delaminated beam, meaning that the beam was fixed in one end. The standard
surface-to-surface contact interaction introduced between two faces of the delamination,
allowed neither penetration nor separation among the sublaminate structures.

Figure 7. Scheme of the beam parts connections (a), zoom of part of the beam with delamination (b),
contact status definition with penalty-based method (c).

Four-nodal plane elements with a plane strain condition defined in the width direction
were used. This is a rather rarely used practice in analysis of beams upon out of plane
loading, but this approach was verified by the comparison of the eigenvalues obtained
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from the discussed model with the eigenvalues of full 3D model. There were no meaningful
frequency differences for the first three modes for considered geometry. The use of four-
nodal plane elements allows to reduce time cost of computation in comparison to use of 3D
brick elements. The additional asset is, that those elements allow to create more realistic
conditions at the delamination tips than standard beam elements.

5.2. General Description of the Contact Modeling

As delamination splits part of the beam into two distinct segments, which are con-
nected in the delamination tips and can come into interaction during the vibrations, the
additional boundary conditions, called contact conditions [52–54], have to be fulfilled for
each time step of numeric simulation. In ANSYS software, those conditions are defined
via the special type of contact elements, appropriate for specific types of contact problems.
The type used in the presented simulation, was 2D surface-to-surface contact element. The
pair-based contact definition was chosen for this purpose, which means that one of the
delamination boundaries was established as the so-called target surface, while the other
one as contact surface. Both surfaces are specified in Figure 7. Since the part situated
above the delamination (for the purpose of publication called upper sublaminate) is thinner
and more flexible than the opposite part, the elements which represent contact surface
(dedicated rather for deformable body) were overlaid on the exterior of upper surface.
Similarly, the elements which represent target surface and are applicable for rigid as well as
flexible bodies, were overlaid on the exterior of lower surface (called lower sublaminate),
which is thicker and less flexible.

To enforce maintaining the constraints in contact modeling, the penalty method was
used with contact status defined as it is shown in Figure 7c. In this method, the contact
force is the function of the penetration distance and some degree of penetration is involved.
The computation algorithm used in simulation identified separation and penetration of
layers based on the distance between contact surfaces of delamination. For separation, the
distance between the layers is positive and as a result, the contact force, used in equations
of motion, equals zero. For penetration, the distance has negative value and as a result,
the contact force (Equation (16)) is added to equations of motion. The normal contact force
Fn is defined in the penalty method by the use of so-called normal contact stiffness kn and
user-defined admissible penetration xp:

Fn = kn·xp. (16)

The value of contact stiffness kn was as small as possible, but also high enough to
prevent penetration. Friction was neglected.

The number of equilibrium equations in this method, for most of the cases, is much
smaller compared to other methods and the time of the computation can be shortened.

5.3. Case Study for 40% Delamintion

For the purpose of demonstrating the breathing delamination effect, transient anal-
ysis were performed with the initial condition imposed as the displacement field. Those
conditions recreated deformation of the beam, caused due to application of static, perpen-
dicular force in the beam tip. Delamination of the length a equal to 40% of the total beam
length L, with the thickness-wise location equal 75% of the beam’s height H, localized in
the middle of the beam, was analyzed. The beam material was assumed as anisotropic and
its properties are presented in Table 2.

Table 2. Mechanical properties of the beam.

E11 [GPa] E22 [GPa] G12 [GPa] ν12 ρ [kg/m 3]

17.4 17.4 1.45 0.3 2075
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Figure 8a shows time evolution of the vertical displacements in points A and B, for the
discussed case. As it is shown in Figure 7b, points A and B are localized in the middle of
the delamination area, but point A belongs to the lower sublaminate, while point B belongs
to the upper sublaminate. When the beam goes downwards, delamination is closed and
displacements of the points A and B are practically the same, while when the beam goes
upwards, delamination surfaces remain detached from each other and point B reaches a
higher amplitude than point A. Figure 8b allows to compare the difference of the vertical
displacements in points A and B with the tip displacements.

Figure 8. Displacements evolution in points A and B for the case of free vibrations (a), the difference
of displacement of point A and B and normalized tip displacements (b).

5.4. Analysis of FEM Signals

The numerical FE model described in Section 5.2, was used to simulate the vibrations
of the beam with different delamination lengths. For each case, delamination was located in
the middle of the beam’s length and at 75% of the beam’s height. The ratios of delamination
size with regard to specimen length xa/L, ranging from 0.2 to 0.6, were examined. For each
case, the displacements time signal from two points: the one located in the middle of the
beam and the second located in its tip, were collected and analyzed.

To obtain the band-limited signal, low-pass filtration was applied in order to remove
influence of higher frequencies. As it can be seen in Figure 9 for the case of xa/L = 0.4,
periodic variations of Teager–Kaiser weighted instantaneous frequency occur due to the
opening and closing of delamination. The same phenomena are observed for all investi-
gated cases. Table 3 presents calculated statistical parameters for estimated fw in relation
to xa/L ratio for the node located in the delamination area (point “delam”) and the node
located at the free end of the specimen (point “tip”). For big delamination, i.e., xa/L = 0.5
and xa/L = 0.6, the difference between lowest and highest fw identified in the signal
exceeds 5 Hz.

It can be observed that the deviation of fw for given xa/L ratio is significantly smaller
in the case of “tip” node comparing to the “delam” node located over the delamination.
For big delamination, the frequency deviation can also be observed in the point located at
the free end. This is related to the influence of large delamination on dynamical behavior
of the whole structure. Figure 10 shows comparison of standard deviation of weighted
instantaneous frequency fw for the point located in the delamination area (red, dashed) and
the free end of the FE model (blue), revealing significant difference between points located
on the same structure. As shown, the point in the delamination area demonstrates higher
difference of half-period frequencies then the point located outside this area, which gives
the prospect not only for the detection of delamination existence but also identification of
its size.
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Figure 9. Part of the decaying signal (red) from the FEM simulation and its Teager–Kaiser weighted
instantaneous frequency (blue), case xa/L = 0.4.

Table 3. Influence of the delamination size on weighted instantaneous frequency of the signals from
delamination area (point “delam”) and from the free end (point “tip”).

xa/L Point
Teager–Kaiser Weighted Instantaneous Frequency fw [Hz]

Mean Maximum Minimum Standard
Deviation

0.2
delam 25.915 26.328 25.469 0.204

tip 25.993 26.293 25.743 0.153

0.3
delam 25.624 26.304 24.968 0.310

tip 25.993 26.293 25.743 0.153

0.4
delam 25.147 26.691 23.525 1.065

tip 24.995 25.451 24.663 0.192

0.5
delam 24.739 27.641 21.970 1.563

tip 24.313 25.158 23.817 0.326

0.6
delam 20.658 24.784 16.526 2.651

tip 22.949 24.041 22.258 0.401

Figure 10. Standard deviation of fw for the delamination center (red, dashed) and free-end (blue).
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For validation purposes, the signals were also analyzed with the Hilbert transform
demodulation approach. In contrast to the TKEO-based method, which allowed to identify
variation of fw between successive half-periods for all tested signals, the Hilbert transform
demodulation approach revealed 2.5 Hz variation of the IF only for the biggest delamina-
tion (xa/L = 0.6). For other tested cases, the IF was not diagnostically informative. For this
reason, results presented in the consecutive part of the publication are limited to the ones
obtained with the estimated Teager–Kaiser weighted instantaneous frequency approach.

6. Experimental Validation of Teager–Kaiser Weighted Instantaneous Frequency
6.1. The Specimens

For preparation of the tests specimens, an 8th layered composite plate was manufac-
tured from bidirectional E-glass fabric (Saerbeck, Germany) of basis weight 163 g/m2 and
epoxy resin ARALDITE LY3505 (Woodlands, TX, USA) with hardener XB 3403 (Wood-
lands, TX, USA), by the use of vacuum-bag method. During the hand lay-up of the fabric,
three 0.0001 m thick Teflon inserts of different dimensions were placed between the 6th
and 7th layer of the composite. Four individual test specimens of nominal dimension
0.18 m × 0.02 m × 0.0014 m were cut from the laminate after resin solidification and the
inserts were removed after cutting out specimens. The inserts allowed to create a partially
separated layer with controlled length and edges. The created delamination span through
the whole width of the beams. Throughout vibration tests, specimens were clamped along
one of the tips with 0.03 m distance and active length was equal to 0.15 m. The center
of delamination was located at 0.075 m from the free end, i.e., in the center of the active
part of the specimen. During the experiment, four specimens were tested: one without
delamination (xa/L = 0, further indicated as 00) and three with different ratios of delami-
nation length xa to active length L, respectively: xa/L = 0.2 (indicated as 20), xa/L = 0.4
(indicated as 40), and xa/L = 0.6 (further indicated as 60). The photo of specimens is
presented in Figure 11, while the specimens’ geometry, layer arrangement and the photo of
the experimental stand during the samples preparation are shown in Figure 12.

Figure 11. The specimens, from top to bottom respectively: 00, 20, 40, 60.
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Figure 12. Specimens’ geometry and delamination placement (a), general scheme of layer arrange-
ment for test sample (b), experimental stand during samples preparation (c), where: 1—form with
constituent materials in vacuum-bag; 2—vacuum connector; 3—vacuum hose; 4—data acquisition
system controlling process parameters.

6.2. The Experimental Setup

The schematic diagram is presented in Figure 13. The tested specimen was placed in a
mounting clamp attached to the armature of the modal shaker ModalShop 2100E11. The
modal shaker and the mounting clamp excited vertical vibrations which caused bending
modes of specimens. The specimens had the CF boundary conditions—one end of the
tested beam was fixed and the other was vibrating freely. During all experiments, bolts
of the mounting clamp were screwed with force of 7 Nm using torque wrench. The
Bruel&Kjaer 4507-B-004 accelerometer sensor was mounted on top of the mounting clamp
for reference measurement of excitation signal. Vibrations of the specimen were recorded
using Polytec PSV-400-3D laser Doppler vibrometer, set in “single measurement head”
configuration. The LDV sensor measured bending vibrations in direction perpendicular
to beams surface, in two measurement points: one located in the center of delamination
area (indicated M1) and second located at the free end of the specimen (indicated M2).
To record signals from both measurement points, the scanning head was shifted between
measurement locations using special frame, allowing for repetitive setting of the head. The
shaker excited the specimen to vibrate according to control signal generated by the LDV’s
inner generator.

6.3. The Measurements

The measurements were conducted in two steps. In the first one, all specimens were
excited with pseudo-random noise signal and modal analysis was performed in the range (0,
2000) Hz. This band covered the first five bending modes of the specimens. The results are
presented in Table 4. The modal analysis reveals differences in modal frequencies between
specimen 00 and specimens with delamination. However, the monotonic trend is observed
only for third and fifth modal frequency. Direct application of the modal frequencies for
structural health monitoring requires that modal frequencies of an undamaged structure
are known in advance, which allows to identify the difference resulting from failure [55].
This method does not allow for the localization of a failure. To identify the localization of
delamination, methods such as mode shape curvature could be used [56].
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Figure 13. Experimental setup—scheme with measurement points M1 and M2.

Table 4. First modal frequencies for analyzed specimens.

Specimen
(xa/L Ratio)

Bending Modal Frequency [Hz]
Weight [g] Average

Width [m]1st 2nd 3rd 4th 5th

00—without
delamination

(0)
29.07 184.72 522.41 1014.36 1694.77 8.9 0.00143

20—with
delamination

(0.2)
30.07 184.73 499.66 1036.46 1534.63 8.8 0.00153

40—with
delamination

(0.4)
28.43 192.13 429.18 914.43 1451.81 9 0.00159

60—with
delamination

(0.6)
28.45 185.33 403.95 780.89 1320.15 9 0.00149

It must be pointed out, that in the case of the first two modes, the differences between
modal frequencies of the individual specimens can be related to its weight and width
variation, as well as influence of mounting errors. First modal frequencies might not be an
objective criterion for technical state assessment.

In the second step, the specimens were excited with the harmonic signal with the
frequency equal to the identified first modal frequency. During the test of a single specimen,
the Polytec vibrometer recorded signals from measurement points: M1 (center of specimen)
and M2 (free end of specimen—out of delaminated area). For each measurement point, the
vibrometer recorded the simultaneously time domain vibration signal of specimen and
reference vibration of mounting clamp. The sampling frequency was equal to 12,800 Hz.
Duration of the recorded waveforms was 5.12 s.
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Because fluctuation of instantaneous frequency, discussed in the Sections 3 and 5,
manifests strongly in displacement signal, therefore, velocity signals, recorded by the laser
vibrometer, were integrated using numerical procedure from the Matlab environment [36].
Although the excitation signal was harmonic, the mechanical system of the shaker, as well
as the environment, produced a measurement noise. The presence of noise in analyzed
signals decreases quality of results obtained using the Teager–Kaiser energy operator. To
reduce the influence of the noise and increase the signal-to-noise ratio, each measurement
signal was time synchronously averaged (TSA). This procedure used zero-crossing of
rising edge of the reference signal. Averaging caused reduction of measurement signals
to realizations with duration of 10 full periods of the reference signal. For such averaged
signals, fw was calculated and further analyzed.

6.4. Experimental Results

TSA displacement signals from measurement points M1 and M2 of the successive
specimens as well as reference signal, measured by the sensor located on mounting clamp,
were processed with the use of the DESA-2 algorithm to obtain fw.

The weighted instantaneous frequency of reference signal was oscillating close to
the assumed frequency of the excitation signal as it is presented in Figure 14. The small
fluctuations might result from work conditions of the used modal shaker, which is rather
dedicated to heavy structures.

Figure 14. Weighted instantaneous frequency fw of reference signal (specimen 00).

Figures 15–18 present time fluctuations of Teager–Kaiser weighted instantaneous
frequency fw related to M1 and M2 measurement points for samples 00, 20, 40, and 60
respectively. The consistent scale was used for the sake of comparison. Each figure presents
deviation of fw for both measured signals. For the sample without delamination, the
deviation of the weighted instantaneous frequency for both points is similar and is close
to the deviation of fw of the reference signal. It was observed that with the increase of
delamination size, the fluctuations of the weighted instantaneous frequency from point M2
increase, but still remain smaller than the fluctuations measured in the point M1, which is
located directly above the delamination.
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Figure 15. Teager–Kaiser weighted instantaneous frequency for sample 00.

Figure 16. Teager–Kaiser weighted instantaneous frequency for sample 20.

Figure 17. Teager–Kaiser weighted instantaneous frequency for sample 40.
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Figure 18. Teager–Kaiser weighted instantaneous frequency for sample 60.

For comparison of the presented signals and evaluation of delamination, statistical
parameters can be used such as: standard deviation (Equation (17)), coefficient of variation
(Equation (18)), or values span (Equation (19)) of the weighted instantaneous frequency fw:

S =

√
1

N − 1 ∑N
i=1|xi − x|2, (17)

where xi—successive samples of signal, N—number of samples of signal, x—mean value
of signal x = 1

N ·∑
N
i=1 xi.

V =
S
x

, (18)

where x —mean value of signal, S—standard deviation (17).

D = max(x)−min(x). (19)

Values of those parameters computed for all the samples are presented in Table 5.

Table 5. Characteristic parameters of waveforms of instantaneous frequency for measurement points.

Sample Meas.
Point

¯
x [Hz] S [Hz] V D SM1

SM2

VM1
VM2

00
M1 29.0347 0.2268 0.0078 0.824

1.3436 0.1345M2 28.9857 0.1688 0.058 0.707

20
M1 29.9945 0.5557 0.0185 3.508

2.2192 2.2024M2 29.9481 0.2504 0.0084 1.169

40
M1 28.4434 1.4609 0.0514 4.366

7.0780 7.0411M2 28.4013 0.2064 0.0073 0.704

60
M1 27.2422 3.5267 0.1295 10.532

4.1781 4.3311M2 28.1925 0.8441 0.0299 2.886

For the performed measurements, the most informative parameters were standard
deviation S and coefficient of variation V. Change of standard deviation between samples
with increasing size of delamination is presented in Figure 19.
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Figure 19. Standard deviation of vibration data for different delamination size.

The experimental work confirmed periodic changes of weighted instantaneous fre-
quency f w caused by opening and closing of breathing delamination. Based on the measures
like standard deviation, it is possible to build a failure indicator.

7. Conclusions

The paper discussed the application of the original Teager–Kaiser weighted instan-
taneous frequency fw dedicated for analysis of vibrational response of the beams with
breathing delamination. In the framework of the presented research work:

• numerical models were created, reflecting breathing delamination phenomena in
vibration signal;

• the conducted experimental tests confirmed half-period variation of instantaneous
frequency resulting from breathing delamination;

• the weighted instantaneous frequency fw, a new approach for estimation of instanta-
neous frequency, has been developed and its effectiveness was tested;

• a failure indicator and a diagnostic method were proposed for detection of breathing
delamination type failure.

The main findings of the conducted research can be summarized as:

• the use of the Teager–Kaiser operator for the construction of the new weighted instan-
taneous frequency parameter gives much better prospects for delamination detection
than in the case of use of instantaneous frequency obtained using demodulation with
the Hilbert transform;

• standard deviation of fw can be a good indicator of delamination existence;
• the method is efficient for the analysis of the real-world vibrational signals, when

proper signal processing is applied.

The performed research allowed to identify several limitations of the method, e.g.,
that the presence of noise in the signal causes that the calculation of fw requires additional
signal processing steps such as averaging. Another drawback of fw is that it is based on
the DESA-2 algorithm dedicated for demodulation of AM-FM signals. Despite the fact
that the analyzed signal does not belong to AM-FM class, the method gives qualitative
information on failure existence, although obtained results are overestimated. Another
limitation of the potential SHM method, based on analysis of the fw, is that excitation must
allow delamination to open and close. In the considered case frequency, the first mode
was used. It might be needed to refer to the FEM model of a structure to identify suitable
excitation frequency.
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The main benefit of fw is that, as long as the signal has high sampling frequency,
short signals can be used for analysis because duration does not influence the result, as
is in the case of integration-based methods. Based on the comparison of fluctuations of
weighted instantaneous frequency for measurement points located in- and outside of the
delamination area, one can deduce regarding delamination. Finally, it is important to stress
that the main advantage of the proposed assisting damage detection approach is that it
does not require analysis of the mode shapes of the structure, or any foreknowledge of the
undamaged structure. This is for sure the key element that makes the method linked to the
nature of the damage as such rather than to the structure.

The proposed approach can be useful for monitoring of simple beam-like structures
e.g., composite bridge decks. However, the structure’s boundary conditions must allow for
delamination breathing. This occurs for at least some of the boundary condition schemes,
such as CF (clamped-free) or CC (clamped-clamped). As it was shown, in the case of a
simple cantilever beam, the first mode was sufficient for delamination detection. In the
case of more complicated structures, the proper excitation must be implemented to force
breathing delamination phenomena to occur in all suspected components of the structure.
In such a situation, multimodal testing can be necessary.

The experimental research presented in the paper was limited to the case of unidirec-
tional arrangement of reinforcing layers in the specimens. In order to verify the method’s
effectiveness for other stacking sequences, future research work will cover testing of speci-
mens with various orientation of layers and the ratio of the stiffness of the separated part
(upper sublaminate in Figure 7b) to the stiffness of the undamaged specimen. The mu-
tual stiffness ratio will affect the amplitude of fluctuations of fw identifying the method’s
applicability range.

The definition of the applicability scope of the method to other types of failures and
development of the algorithm, allowing for identification of size of delamination, is an
open issue and will be the subject of future work.
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