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Abstract
This paper presents a novel approach to forecast hourly day-ahead electricity prices. In recent years, many predictive
models based on statistical methods andmachine learning (deep learning) techniques have been proposed. However,
the approach presented in this paper focuses on the problem of constructing a fair and unbiased model. In this con-
sidered case, unbiased means that the model can increase prediction accuracy and decrease categorical bias across
different data clusters. For this purpose, a model combining techniques such as long short-term memory (LSTM)
recurrent neural network, attention mechanism, and clustering is created. The proposed model’s main feature is that
the attention weights for LSTM hidden states are calculated considering a context vector given for each sample in-
dividually as the cluster center to which the sample belongs. In training mode, the samples are iteratively (one time
per epoch) clustered based on representation vectors given by the attention mechanism. In the empirical study, the
proposed model was applied and evaluated on the Nord Pool market data. To confirm that the model decreases
categorical bias, the obtained results were compared with results of similar LSTM models but without the proposed
attention mechanism.

Keywords: Deep learning, electricity prices forecasting, time series forecasting, attention mechanism, debiasing,
Nord Pool data
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INTRODUCTION
Since the early 1990s, energy markets have play increasingly important roles in the power systems worldwide
because of the deregulation process. Forecasting energy demand and day-ahead prices is a vital issue for all
market participants.Accurate day-ahead price forecasting in the spot market helps the power suppliers adjust
their bidding strategies to achieve the maximum benefit. On the other hand, consumers can derive a plan
to maximize their utilities using the electricity purchased from the pool or use self-production to protect
themselves against high prices [1].

Time series of electricity prices tend to have complex features such as nonstationarity, nonlinearity, and high
volatility, making energy price forecasting difficult. One of the widely used andmost powerful model groups is
the time series models. Weron [2–4] reviewed the approaches to modeling and forecasting day-ahead electricity
prices. He also found that an approach where each hour is forecasted separately gives better results than an
approach where forecasts are made for the whole day at once. However, both approaches are equally popular.
Common statistical methods are: autoregressive (AR) and autoregressive with exogenous inputs (ARX) mod-
els [5], double seasonal Holt–Winter (DSHW) models [6], threshold ARX (TARX) models [7,8], autoregressive
integrated moving average (ARIMA) models [9,10], semi/nonparametric models [5,11], generalized autoregres-
sive conditional heteroscedasticity (GARCH)-based models [12–14], and dynamic regression (DR) and transfer
function (TF) models [15]. Next to statistical models, computational intelligence techniques are widely used
in electricity price forecasting due to their strong nonlinear modeling capabilities. Szkuta et al. [16] proposed a
three-layered ANN with back-propagation for modeling and predicting the Victorian electricity market data.
Wang et al. [17] proposed a neural-network-based approach to predict systemmarginal prices, also considering
weekend and public holidays as input. The cascaded neural network structure for market-clearing price predic-
tion in the New England market was presented by Zhang et al. [18]. Over the last decade, several innovations
have been introduced in the field of neural networks that have led to deep learning development. Forecast-
ing electricity prices using deep learning techniques, e.g., deep recurrent neural networks, is also presented in
many papers [19–24].

Electricity prices display a set of relatively unique attributes: a constant balance between production and con-
sumption [25]; dependence of the consumption on time, e.g., the hour of the day, day of the week, and time of
the year; load and generation that is influenced by external weather conditions [25]; and influence of neighbor-
ing markets [4]. Due to these characteristics, as shown in many studies, errors of forecasting are different in
different groups of data [22,26]. Natural data groups are those resulting from data division by time, e.g., accord-
ing to the seasons, months, days of the week, or hour of the day. Other groups that are more difficult to identify
are those resulting from the division of data according to external factors, such as weather conditions (temper-
ature or wind force) and fuel prices, e.g. natural gas, oil, and coal. Each of these groups may be represented by
a different number of samples in the dataset in practice. It has also been shown that algorithms trained based
on biased data lead to algorithmic discrimination [27,28]. Recently, comparative tests have emerged to quantify
discrimination [29,30], as well as datasets designed to evaluate these algorithms [31]. Therefore, this article takes
the challenge of integrating debiasing capabilities directly into a model during a training process that adjusts
automatically and unattended to training data deficiencies. This approach includes a comprehensive deep
learning algorithm that simultaneously learns to forecast electricity prices for the next day and the clustering
of the training data in an unsupervised manner.

METHODS
Before proposing the deep learning algorithm for prediction and the training procedure, the problem specifi-
cation, LSTM recurrent network, and attention mechanism are introduced.
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Problem Statement
Consider the problem of prediction future values. Let D𝑡𝑟𝑎𝑖𝑛 = {(𝒙 (𝑖) , 𝒚 (𝑖))}𝑛𝑖=1 be a set of paired training data
samples consisting of features (present and past values) 𝒙 ∈ R𝑚 and future values 𝒚 ∈ R𝑑 . The aim is to find
a functional mapping of 𝑓 : 𝑿 → 𝒀 parameterized by 𝜃 that minimizes some loss L(𝜃) over given training
dataset. In other words, we consider solving the following optimization problem:

𝜃∗ = argmin
𝜃

1
𝑛

𝑛∑
𝑖=1

L𝑖 (𝜃) (1)

For new test sample, (𝒙, 𝒚), the predictor should output �̂� = 𝑓𝜃 (𝒙) where �̂� is almost equal to 𝒚. Now, assume
that each sample also has an associated latent vector 𝒛 ∈ R𝑘 which represents hidden features of the sample [32].
The notion of a biased predictor can be formalized as follows [33]:

Definition 1 A predictor, 𝑓𝜃 (𝒙), is biased if its prediction changes after being exposed to additional sensitive
feature inputs. It means that a predictor is fair with respect to a set of latent features, 𝒛, if: 𝑓𝜃 (𝒙) = 𝑓𝜃 (𝒙, 𝒛).

A good example to understand this is the facial detection problem considered by Amini et al. [33]. When
deciding whether an image contains a face or not, a person’s skin color, gender, and even age are the primary
latent variables and should not influence the classifier’s decision. To ensure the reliability of the classifier with
respect to different latent variables, the dataset should contain roughly uniform samples in the hidden space.
In other words, the training dataset should equally represent different categories over the latent space. Note
that this is different from claiming that the dataset should be balanced for the classes. Moreover, in time series
forecasting, it is an even more natural situation due to the lack of division into classes. However, methods
proposed in the literature [33–35] to generate training data that are more “fair” by resampling or generating new
samples are difficult to apply to time series.

LSTM recurrent network
The LSTM was introduced by Sepp Hochreiter and Jurgen Schmidhuber in 1997 [36]. Unlike traditional recur-
rent neural networks, an LSTM network is well-suited to learn from experiences to identify and predict the
time series when there are very long time lags with unknown size. The main feature of LSTM is the ability to
remove or add information to the cell state, carefully regulated by three different structures called gates, namely
input, forget, and output gates. As shown in Figure 1, the state of each cell (𝑐𝑡−1) passes through the LSTM
cell to generate a state for the next step (𝑐𝑡). Gates are a way to let information along the state flow optionally.
They have been composed of a 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 or 𝑡𝑎𝑛ℎ neural net layer and a pointwise multiplication operation.

The mathematical functions of three gates are defined as:

𝑖𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝑊𝑥𝑖𝑥𝑡 +𝑊ℎ𝑖ℎ𝑡−1 + 𝑏𝑖) (2)
𝑓𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝑊𝑥 𝑓 𝑥𝑡 +𝑊ℎ 𝑓 ℎ𝑡−1 + 𝑏 𝑓 ) (3)
𝑜𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝑊𝑥𝑜𝑥𝑡 +𝑊ℎ𝑜ℎ𝑡−1 + 𝑏𝑜) (4)
𝑐𝑡 = 𝑓𝑡 ⊙ 𝑐𝑡−1 + 𝑖𝑡 ⊙ 𝑡𝑎𝑛ℎ(𝑊𝑥𝑐𝑥𝑡 +𝑊ℎ𝑐ℎ𝑡−1 + 𝑏𝑐) (5)
ℎ𝑡 = 𝑜𝑡 ⊙ 𝑡𝑎𝑛ℎ(𝑐𝑡) (6)

where 𝑖𝑡 is the input gate, which controls how much information of input (𝑥𝑡) and previous hidden state (ℎ𝑡−1)
is allowed to pass into the memory cell; 𝑓𝑡 is the forget gate, which controls howmuch information is forgotten
before passing though the cell; 𝑜𝑡 is the output gate, which controls how much information from the current
memory cell can be output to the hidden state; 𝑐𝑡 represents the cell state generated as an additional variable
for the cell;𝑊 is the weight matrix; and 𝑏 is the biases to each layer. The symbol ⊙ represents the operation of
pointwise multiplication [22].
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Figure 1. The detailed structure within a LSTM cell [22].

Encoder–decoder with attention
Based on LSTM units, encoder–decoder networks [37] have become popular due to their success in machine
translation. The main idea is to encode the source sentence as a fixed-length vector and use the decoder to
generate a translation. One problemwith encoder–decoder networks is that their performance will deteriorate
rapidly as the input sequence’s length increases [38]. In time series analysis, especially when we work with high-
frequency time series, this could be a concern. To resolve this issue, the attention-based encoder–decoder
network [39] employs an attentionmechanism to select parts of hidden states across all the time steps. Attention
is a mechanism that provides a richer encoding of the source sequence to construct a context vector that the
decoder can then use. The main difference between the encoder–decoder with attention mechanism and the
encoder–decoder model is that a different context vector 𝑐𝑡 is computed for every time step 𝑡 of the decoder.
Let ℎ𝑖 , 𝑖 = 1, 2, . . . , 𝑘 be a hidden states of encoder; then, the context vector 𝑐𝑡 is computed as a weighted sum
of these hidden states ℎ𝑖

𝑐𝑡 =
𝑘∑
𝑖=1

𝛼𝑡𝑖ℎ𝑖 . (7)

The weight 𝛼𝑡𝑖 of each hidden state ℎ𝑖 is computed by

𝛼𝑡𝑖 =
exp(𝑒𝑡𝑖)∑
𝑗

exp(𝑒𝑡 𝑗 )
, (8)

where
𝑒𝑡𝑖 = 𝑓𝑎𝑡𝑡 (ℎ𝑖 , 𝑠𝑡−1) (9)

is an alignmentmodel that scores howwell the inputs around position 𝑖 and the output at position 𝑡match. The
score is based on the previous hidden state 𝑠𝑡−1 of the decoder and the 𝑖th hidden state of the input sentence.
The model 𝑓𝑎𝑡𝑡 could be a feedforward neural network that is jointly trained with all the other components of
the system.

LSTM with attention for forecasting electricity prices
In this work, we propose to apply the LSTM deep neural network (LSTM-DNN) with a specific attention
mechanism to predict the electricity day-ahead price. The architecture of the proposed model is shown in
Figure 2.

Preprocessing and input/output
Figure 3 shows the high volatility of the Nord Pool market’s electricity price in the SE1 region. Figure 3 shows
that all prices are positive, and sometimes extremely high prices appear. The extremely high prices can be
caused by shortages of power supply in the system. However, those extreme values of the price occur infre-
quently. For instance, for the SE1 region, during seven years from 22 January 2013 to 31 December 2019, prices

http://dx.doi.org/10.20517/jsegc.2021.02
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Figure 2. Architecture of the proposed model for forecasting electricity day-ahead prices.
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Figure 3. The electricity price of the Nord Pool market in SE1 region during seven years from 22 January 2013 to 31 December 2019 (60,840
h).

higher than 66 EUR/MWh (higher than mean plus three sigmas) occur less than 1% of the time. Therefore, to
reduce the effect of abnormal events on the prediction performance, we refine the extreme prices into specific
values. Its neighbor prices interpolate the prices higher than the mean plus three sigmas. After redefining the
prices, we also transform prices by using the natural logarithm as follows:

𝑝𝑑𝑡 = ln(𝑃𝑑
𝑡 + 1), (10)

where 𝑃𝑑
𝑡 is the electricity price on day 𝑑 at time step 𝑡.

As inputs, we can use various variables: historical prices or loads, weather conditions, holidays, the day of the
week, oil prices, etc. Our research assumes that the price discounts everything, so all the factors mentioned
above should already be included in the price. Hence, we use as input only historical prices. The actual price
values on day 𝑑 are denoted as:

𝑝𝑑 = {𝑝𝑑1 , 𝑝
𝑑
2 , . . . , 𝑝

𝑑
𝑡 , . . . , 𝑝

𝑑
𝑇 }. (11)

The predicted price values at day 𝑑 are represented as:

𝑝𝑑 = {𝑝𝑑1 , 𝑝
𝑑
2 , . . . , 𝑝

𝑑
𝑡 , . . . , 𝑝

𝑑
𝑇 } = 𝒚𝑑 , (12)
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where 𝑝𝑑𝑡 is the predicted price at time step 𝑡. 𝑇 can be 24 for an hourly market (as in our case) and 48 for a
half-hourly market. As an input to the LSTM cell to predict the prices for the day 𝑑 + 1, we use all the prices
in the L days before:

𝒙𝑑 = {𝑝𝑑−𝐿+1, 𝑝𝑑−𝐿+2, . . . , 𝑝𝑑−1, 𝑝𝑑} (13)

LSTM Encoder with attention and clustering
To generate a vector of latent features for each sample, each sample is projected into feature space by feeding
it through the LSTM encoder with an attention mechanism twice. The LSTM encoder is a simple LSTM
model that has a single hidden layer of LSTM units. This model returns the sequences of hidden states 𝒉𝑙
(𝑙 = 1, 2, . . . , 𝐿) and it has one hyperparameter 𝑙𝑎𝑡𝑒𝑛𝑡_𝑑𝑖𝑚, which determines the dimension of the vectors
𝒉𝑙 , 𝒛, and 𝒄. Themodel used to perform the Attn block’s attention score is the traditional multilayer perceptron
(MLP) neural network with one hidden layer with 𝑙𝑎𝑡𝑒𝑛𝑡_𝑑𝑖𝑚 neurons and hyperbolic tangent (tanh) as the
activation function. The input of the model is concatenation of vectors 𝒉𝑙 and 𝒄. The output is the vector 𝛼𝑙

of attention weights. Each example is passed through the attention mechanism with the context vector 𝒄 set
to zero in the first run. Next, on the set of vectors 𝒛, generated in this way, the clustering algorithm (k-means)
is performed with a given hyperparameter for the number of clusters (𝑐𝑙_𝑛𝑢𝑚). Then, in the second run, each
sample is passed through an attention mechanism with the context vector 𝒄 set to the cluster center to which
the sample belongs. Finally, the vector 𝒛 generated in this way for each sample is passed to the predictive
model.

Predictor
As a simple prediction model, the model for predicting day-ahead prices is the MLP neural network with one
hidden layer with the rectified linear unit (ReLu) activation function in the hidden layer and a linear activation
function in the output layer. The input of the model is vector 𝒛 and the output is the vector 𝒚 of day-ahead
prices that we intend to forecast. The model has one hyperparameter 𝑛𝑒𝑢𝑟𝑜𝑛𝑠_𝑛𝑢𝑚, which determines the
number of neurons of the hidden layer.

Training
In the proposed model, all parts of the model are jointly trained by minimizing the mean absolute percent-
age error (MAPE), defined as the average absolute difference between the actual value and the forecast value
divided by the actual value:

𝑀𝐴𝑃𝐸 = 100 · 1
𝑁

𝑁∑
𝑑=1

1
𝑇

𝑇∑
𝑡=1

|𝑝𝑑𝑡 − 𝑝𝑑𝑡 |
|𝑝𝑑𝑡 |

(14)

where 𝑝𝑑𝑡 an 𝑝𝑑𝑡 are actual and forecast price on day 𝑑 at time step 𝑡, respectively.

The mean absolute percentage error’s choice over the mean square error is made for a simple reason: because
electricity prices have large spikes, the Euclidean norm would emphasize the spiky prices. As an optimizer,
we choose the Adam algorithm [40], a stochastic gradient descent method [41] that uses adaptive learning rates.
With the Adam algorithm, the training procedure also considers early stopping [42] by monitoring the error on
the validation dataset to avoid overfitting.

EMPIRICAL STUDY
In this section, we perform the empirical study to evaluate the proposedmodel and analyze the variousmodels’
obtained results. Our goal is to confirm that the proposed attention mechanism with clustering improves
forecasts’ accuracy and makes the model more unbiased. To do so, we evaluate three architecture of the model:

• The simple vanilla LSTM model is the proposed model without attention mechanism and clustering; the
vector 𝒛 passed to predictive model is set to the last hidden state of LSTM, 𝒛 = 𝒉𝐿 .

http://dx.doi.org/10.20517/jsegc.2021.02
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Figure 4. Increased performance and decreased categorical bias with the proposed model for season category.

• The LSTM encoder with attention is the proposed model with attention but without clustering; the context
vector 𝒄 is set to zero.

• The proposed model, which is described in the previous sections.

Data
For this research, we consider the public Nord Pool1 day-ahead market covering electricity prices from six
countries divided into 14 regions, namely Sweden (SE1, SE2, SE3, and SE4), Finland (FI), Norway (Oslo,
Kr.sand, Bergen, Molde, Tr.heim, and Troms), Estonia (EE), Lithuania (LV), and Latvia (LT), in the period
from January 2013 to December 2019. The data are prepared using preprocessing techniques described in Sec-
tion Preprocessing and Input/Output, including a deal with too high prices and log-transformation of prices.

The data are divided into three sets:

1. Training set (1 January 2013 to 31 December 2017): These data are used for training the models.
2. Validation set (1 January 2017 to 31 December 2018): These data are used to select the optimal model (early

stopping).
3. Test set (1 January 2018 to 31 December 2019): These data, which are not used at any step during the model

training process, are employed as the out-of-sample data to compare the models.

There are 24 electricity prices per day. Hence, the training dataset comprises 602,808 data points to predict.
Both validation and test datasets comprise 122,640 data points to predict each.

Hyperparameters
The hyperparameters that should be chosen for the model are described above with the proposed model’s
architecture. To choose optimal values for hyperparameters, we conducted a grid search over tunable pa-
rameters. As a result, for the sake of conciseness in this paper, we present the results obtained for optimal
configurations of hyperparameters: 𝐿 = 21, 𝑙𝑎𝑡𝑒𝑛𝑡_𝑑𝑖𝑚 = 64, 𝑛𝑒𝑢𝑟𝑜𝑛𝑠_𝑛𝑢𝑚 = 128, and three different
𝑐𝑙_𝑛𝑢𝑚 ∈ {10, 20, 30}, to show the impact of numbers of clusters.

Results
To compare and analyze the various predictors’ predictive accuracy, we compute their MAPE on the test set.
Models were re-trained from scratch five times each for added statistical robustness of results. It is important
to note that the predictors are not re-estimated when new data are available, i.e., the models were trained on
data from 2013 to 2017, while the test data cover 2019. The obtained results are listed in Table 1 and shown in
Figure 4. The example of forecasted prices is illustrated in Figure 5.

To demonstrate debiasing, we quantified prediction performance on individual categories. Specifically, we con-
sidered different data groups resulting from data division by region and date and time (seasons, months, day

1Nord Pool data: http://www.nordpoolspot.com

http://dx.doi.org/10.20517/jsegc.2021.02
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Table 1. Comparison of the predictive accuracy of the various forecasters by means and standard deviations of MAPE (%) computed for
different groups of data resulting from the division of data by region and time.

Model 𝑐𝑙_𝑛𝑢𝑚 Overall Regions Seasons Months
Mean Std Mean Std Mean Std

LSTM 0 13.87073 13.87073 7.43098 13.81929 6.87106 13.80947 13.86471
LSTM att 0 13.48047 13.48047 7.10680 13.43214 6.51909 13.42175 12.92929
Proposed 10 13.42228 13.42228 7.07100 13.37356 6.58061 13.36267 12.89435
Proposed 20 13.36895 13.36895 6.98201 13.32102 6.42634 13.31264 12.71844
Proposed 30 13.32764 13.32764 6.89610 13.27935 6.38002 13.27071 12.74699

Model 𝑐𝑙_𝑛𝑢𝑚 Dayweeks Hours Peaks
Mean Std Mean Std Mean Std

LSTM 0 13.87974 4.94078 13.10990 1.84422 13.71895 3.95523
LSTM att 0 13.48865 4.38670 12.72462 1.46363 13.43393 3.80945
Proposed 10 13.43036 4.47882 12.59082 1.57140 13.33455 3.73537
Proposed 20 13.37693 4.41302 12.67355 1.60619 13.29039 3.49958
Proposed 30 13.33565 4.37444 12.66831 1.50792 13.27910 3.39811
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Figure 5. Forecasted prices for a random selected week from test data.

weeks, hours, and peaks). From the results shown in Table 1, we can make various observations. As expected,
the column “Overall” shows that adding an attention mechanism improved predictions, and adding clustering
improved them even more. There is also a dependency that increasing the number of clusters improves predic-
tion. Moreover, for almost all divisions, the proposed model turned out to be the most unbiased predictor. As
we can see, the standard deviation is then the smallest and, in most cases, decreases as the number of clusters
increases. The only exception is the division into hours, which may result from the fact that forecasts are made
for the whole day, not individually for each hour. As shown in Figure 4, a greater force of debiasing (increasing
𝑐𝑙_𝑛𝑢𝑚) improved the predictions for the “spring” category. This suggests that our model may debias for a
qualitative feature such as the season, which has a significant impact on its usefulness in improving forecasting
models’ reliability. Contrary to the trend observed with spring days, the prediction errors in the “summer”
category increase with an increasing number of clusters; we suspect that it may be related to other external
factors. Additionally, the “autumn” and “winter” categories’ errors remained almost constant for both the
biased and debiased models and were much better than those of the other categories. This suggests that our
proposed model does not sacrifice performance on categories that already have high precision. As confirmed
by Figure 4, the overall precision increased with an increased debiasing power (increasing 𝑐𝑙_𝑛𝑢𝑚). Error bars
(standard error of the mean) are shown in order to visualize the statistical significance of differences between
the trainedmodels. It is also worth noting that the differences in the quality of forecasts between the categories
are significant, confirming the need to develop methods to eliminate these issues.

http://dx.doi.org/10.20517/jsegc.2021.02


Marszałek et al. J Smart Environ Green Comput 2021;1:21-31 I http://dx.doi.org/10.20517/jsegc.2021.02 Page 29

CONCLUSION
In this paper, the LSTMdeep neural network with attentionmechanism and clustering is devised for electricity
market day-ahead price forecasting, which considers a context vector given for each sample individually as the
cluster center to which the sample belongs. By learning the latent variables in an unsupervised manner, we
can scale this approach to large datasets without labeling them in a training set. We applied our proposed
model to forecasting day-ahead electricity prices. Given a biased training dataset, our models show increased
prediction accuracy and decreased categorical bias across various data categories compared to similar models
but without the proposed mechanisms. The next step in our research will be to also include external factors
(e.g., production, consumption, weather conditions, and oil prices) as input data and to extend the model with
a decoder module based on the Variational Autoencoder model. These activities could contribute to achieving
even better predictions and improve the learning phase of latent structures in the data.
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