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Abstract: Road roughness is an important factor in road network maintenance and ride quality. This 
paper proposes a road-roughness estimation method using the frequency response function (FRF) 
of a vehicle. First, based on the motion equation of the vehicle and the time shift property of the 
Fourier transform, the vehicle FRF with respect to the displacements of vehicle–road contact points, 
which describes the relationship between the measured response and road roughness, is deduced 
and simplified. The key to road roughness estimation is the vehicle FRF, which can be estimated 
directly using the measured response and the designed shape of the road based on the least-squares 
method. To eliminate the singular data in the estimated FRF, the shape function method was em-
ployed to improve the local curve of the FRF. Moreover, the road roughness can be estimated online 
by combining the estimated roughness in the overlapping time periods. Finally, a half-car model 
was used to numerically validate the proposed methods of road roughness estimation. Driving tests 
of a vehicle passing over a known-sized hump were designed to estimate the vehicle FRF, and the 
simulated vehicle accelerations were taken as the measured responses considering a 5% Gaussian 
white noise. Based on the directly estimated vehicle FRF and updated FRF, the road roughness es-
timation, which considers the influence of the sensors and quantity of measured data at different 
vehicle speeds, is discussed and compared. The results show that road roughness can be estimated 
using the proposed method with acceptable accuracy and robustness. 

Keywords: structural health monitoring; road roughness; vehicle response; frequency response 
function; Fourier transform 
 

1. Introduction 
Road surface conditions play an important role in road driving quality, comfort, and 

safety [1–3], and they are also essential for vehicle dynamics design and fatigue life [4–6]. 
Furthermore, they can provide valid data for road network maintenance [7,8] and dura-
bility applications [9]. Currently, artificial observation methods and accurate measure-
ment technologies are commonly used for pavement condition evaluation [10,11]. The 
cost of the artificial observation method is low; however, its accuracy depends on observ-
ers with strong subjectivity. Automatic detection equipment is highly precise; however, it 
is expensive and not suitable for the frequent evaluation of ordinary roads. Therefore, the 
development of low-cost methods for accurate estimation of road roughness remains an 
important research topic. This work addresses the roughness estimation problem using 
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measured vehicle accelerations and vehicle frequency response function in an approach 
that is easy to be performed and inexpensive. 

For moving vehicles, the road roughness can be regarded as an external excitation; 
therefore, force construction methods based on a dynamic response [12–14] can usually 
be employed for road roughness identification. In recent years, road roughness identifi-
cation methods based on vehicle responses have been widely studied because vehicle re-
sponses can be easily measured by low-cost and conventional sensors, such as displace-
ment and acceleration sensors. 

Using the measured vertical accelerations and displacements of vehicle wheels, and 
rotational movement of the vehicle body, Imine et al. [15] developed a method for road 
profile estimation based on sliding mode observers considering the full car model with 
known vehicle parameters. Ngwangwa et al. [16] reconstructed road surface profiles from 
measured vehicle accelerations through artificial neural networks (ANNs), which may 
eliminate the need for the characterization and calculation of systems through the utiliza-
tion of supervised learning. Doumiati et al. [17] studied a real-time estimation method 
based on a Kalman filter using the measured dynamic responses of a vehicle. A known 
quarter-car model is considered, and the experimental results show the accuracy and po-
tential of the proposed estimation process. Fauriat et al. [18] proposed a method for esti-
mating road profiles via vehicle response using augmented Kalman filters in a stochastic 
framework, which offers a fast algorithm by combining information from different sen-
sors through a simple linear quarter-car model of the vehicle with a priori knowledge of 
system parameters. Kang et al. [19] proposed a road-roughness estimation method based 
on a discrete Kalman filter with unknown input. Kim et al. [20] presented an improved 
Kalman filter that can simultaneously estimate the state variables and road roughness 
without any prior information about the vehicle suspension control system. Jiang et al. 
[21] proposed an inverse algorithm to construct road profiles in time using one iteration 
to update the wheel forces, which were then used to identify the road roughness. The 
proposed algorithm was evaluated for different types of road roughness profiles. Jeong et 
al. [22] proposed a deep learning estimation method utilizing the international roughness 
index (IRI) with the goal of using anonymous vehicles and their responses measured by a 
smartphone. The above methods were carried out in the time domain. Several other time-
domain methods and algorithms, such as eigen perturbation techniques [23,24], are ame-
nable for real-time structural inspection and can be adapted for the detection of road 
cracks and surface irregularities. 

Compared with time-domain methods, frequency-domain methods are more effi-
cient and less sensitive to noise. Therefore, the power spectral density (PSD) of road pro-
files provides a convenient way to assess and classify road roughness [25]. Liu et al. [26] 
proposed a construction method for road roughness in the left and right wheel paths 
based on the PSD and coherence function. In this method, the road roughness is divided 
into original and perturbed parts, and the perturbed parts of the two parallel wheels are 
considered to be stochastic and independent. González et al. [27] presented a method for 
estimating the PSD of a road profile from the PSD of the axle or body accelerations meas-
ured over the road profile considering a half-car model that requires prior knowledge of 
the vehicle transform function. Qin et al. [28] developed a method to estimate road rough-
ness by measuring and calculating the PSD of unsprung mass accelerations using a two 
degrees-of-freedom (DOFs) quarter-car model through a transform function related to the 
vehicle parameters. Huseyin et al. [29] studied the estimator accuracy in road profile iden-
tification and derived a Cramer–Rao lower bound on the variance of all unbiased wavi-
ness parameter estimators. Turkay et al. [30] studied the modeling of road roughness from 
the power spectrum and coherence measurements of parallel tracks based on full-car 
models. Turkay et al. [31] utilized two methods to construct the road roughness model for 
the right and left tracks, of which one method is the Welch method and the other is a 
multi-input/multi-output subspace-based identification algorithm. Zhao et al. [11,32,33] 



Actuators 2021, 10, 89 3 of 20 
 

 

evaluated the IRI using the dynamic responses of ordinary vehicles in the frequency do-
main. 

The current methods of road profile estimation using the vehicle’s response present 
different levels of complexity, precision, and computer intensity. However, most of them 
require the characteristics of the vehicle parameters to be known or identified in advance. 
This paper presents an estimation method for road profiles that uses the measured accel-
erations of a vehicle and is based on the vehicle frequency response function (FRF) with 
respect to the displacements of vehicle-road contact points in the frequency domain. The 
related formulations are deduced and expressed in a discrete system, which is convenient 
for use in practice. A half-car model, which can be relatively easily expanded to a complex 
full-vehicle model, is used to illustrate the proposed method. The time-shifting property 
of the Fourier transform is employed to build the relation between road profiles regarding 
the front and rear wheel contact points, such that it provides a road profile estimation 
with high efficiency by solving a linear equation. 

This paper is structured as follows. First, the vehicle FRF is derived with regard to 
the vehicle-road contact points by analyzing the motion equation of the vehicle. Then, 
estimation methods of the vehicle FRF are discussed using the measured vehicle re-
sponses. Finally, a numerical example of the road roughness estimation is used to verify 
the proposed methods using a half-car model with four degrees of freedom. 

2. Road Roughness Estimation 
2.1. Vehicle Motion Equation 

In this study, a half-car model is taken as an example to illustrate the theoretical der-
ivation, and the theory can be easily expanded into a complex full-vehicle model. The half-
car model is shown in Figure 1 with a four-DOF suspension system, which can reproduce 
the bouncing, pitching, and axle modes of the vehicle. The sprung body mass of vehicle 
m1 has vertical body displacement u1(t) and rotation u2(t), and the body mass moment of 
inertia J is denoted as m2. The two unsprung masses corresponding to the rear and front 
axles, that is, m3 and m4, respectively, have vertical axle displacements u3(t) and u4(t). In 
addition, the tire stiffness is modeled as a linear spring with constant values of k3 and k4 
for the rear and front wheels, respectively, and the suspension system is also modeled as 
a linear spring with constant values of k1 and k2 for the rear and front axles in parallel with 
dampers c1 and c2, respectively. The horizontal distances from the centroid of the vehicle 
to the rear and front axles are denoted as e1 and e2, respectively. 

 
Figure 1. Half-car model of the vehicle. 

As a car carries a small number of passengers, the coupling vibration between the 
wheels and the road is small, and thus can be ignored. Via a dynamic analysis of a vehicle 
moving on a road surface, the motion equation of the vehicle is shown in Equation (1), 
where matrices M, C, and K are the system mass, damping, and stiffness of the vehicle, 
respectively. Vector F represents the excitations applied to the vehicle, which are caused 
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by road roughness r, as shown in Equation (2), and is related to the stiffness 𝐊௧ of the 
wheel. The component elements of the system matrices are shown in Equation (3). 𝐌𝐮ሷ ሺ𝑡ሻ + 𝐂𝐮ሶ ሺ𝑡ሻ + 𝐊𝐮ሺ𝑡ሻ = 𝐅ሺ𝑡ሻ (1)𝐅ሺ𝑡ሻ = 𝐊௧𝐫ሺ𝑡ሻ (2)

⎩⎪⎪⎪
⎨⎪
⎪⎪⎧𝑴 = ⎣⎢⎢

⎡𝑚ଵ 𝑚ଶ 𝑚ଷ 𝑚ସ⎦⎥⎥
⎤ ,𝑲 = ⎣⎢⎢

⎡ 𝑘ଵ + 𝑘ଶ 𝑘ଵ𝑒ଵ − 𝑘ଶ𝑒ଶ −𝑘ଵ −𝑘ଶ𝑘ଵ𝑒ଵ − 𝑘ଶ𝑒ଶ 𝑘ଵ𝑒ଵଶ + 𝑘ଶ𝑒ଶଶ −𝑘ଵ𝑒ଵ 𝑘ଶ𝑒ଶ−𝑘ଵ −𝑘ଵ𝑒ଵ 𝑘ଵ + 𝑘ଷ 0−𝑘ଶ 𝑘ଶ𝑒ଶ 0 𝑘ଶ + 𝑘ସ⎦⎥⎥
⎤

𝑪 = ൦ 𝑐ଵ + 𝑐ଶ 𝑐ଵ𝑒ଵ − 𝑐ଶ𝑒ଶ −𝑐ଵ −𝑐ଶ𝑐ଵ𝑒ଵ − 𝑐ଶ𝑒ଶ 𝑐ଵ𝑒ଵଶ + 𝑐ଶ𝑒ଶଶ −𝑐ଵ𝑒ଵ 𝑐ଶ𝑒ଶ−𝑐ଵ −𝑐ଵ𝑒ଵ 𝑐ଵ 0−𝑐ଶ 𝑐ଶ𝑒ଶ 0 𝑐ଶ ൪ ,𝑲௧ = ൦ 0 00 0𝑘ଷ 00 𝑘ସ൪ , 𝒓 = ቂ𝑟ଵ𝑟ଶቃ ,𝒖 = ൦𝑢ଵ𝑢ଶ𝑢ଷ𝑢ସ൪
 (3)

2.2. Theoretical Reduction 
By performing Fourier transform on the two sides of Equations (1) and (2) the vehicle 

motion equation is obtained in the frequency domain as shown in Equation (4). The ex-
pression for the vehicle frequency response 𝑼ሺ𝜔ሻ is shown in Equation (5), where matrix 𝑯௨௨ሺ𝜔ሻ is the discrete vehicle FRF with its expression in Equation (6). Let 𝑪଴ be the ob-
servation matrix of the sensor locations on the vehicle, and Equation (7) shows the meas-
ured vehicle response 𝒀ሺ𝜔ሻ in the frequency domain, where n represents the types of 
measured vehicle responses. The vehicle responses may be displacements, velocities, and 
accelerations, and correspondingly n = 0, 1, 2. −𝜔ଶ𝑴𝑼ሺ𝜔ሻ + 𝜔𝑗𝑪𝑼ሺ𝜔ሻ+ 𝑲𝑼ሺ𝜔ሻ = 𝑲௧𝑹ሺ𝜔ሻ (4)𝑼ሺ𝜔ሻ =  𝑯௨௨ሺ𝜔ሻ𝑲௧𝑹ሺ𝜔ሻ,  (5)𝑯௨௨ሺ𝜔ሻ =  ሺ−𝜔ଶ𝑴 + 𝜔𝑗𝑪 + 𝑲ሻିଵ (6)𝒀ሺ𝜔ሻ = ሺ𝜔𝑗ሻ௡𝑪଴𝑼ሺ𝜔ሻ,  (7)

Based on the above reduction, the measured vehicle responses can be expressed by 
the product of the related frequency response function 𝑯௬௥ and road roughness 𝑹ሺ𝜔ሻ 
corresponding to the displacements of the vehicle–road contact points. Matrix 𝑯௬௥ is the 
FRF of the measured vehicle responses with respect to the displacements of the contact 
points, which can be estimated by Equation (9). Matrix 𝑯௨௥ሺ𝜔ሻ is the FRF of the vehicle 
responses regarding the displacements of contact points, which can be estimated using 
Equation (10). Then, it can be seen that the frequency response function 𝑯௬௥ can be esti-
mated from the FRF of vehicle 𝑯௨௨ሺ𝜔ሻ, which is related to the vehicle system parameters 
shown in Equation (6). With the estimated vehicle FRF 𝑯௬௥ and the measured responses 𝒀ሺ𝜔ሻ, the road roughness 𝑹ሺ𝜔ሻ can be obtained by solving the linear equation shown in 
Equation (8) and is expressed in Equation (11), where the matrix 𝑯௬௥ା ሺ𝜔ሻ denotes the gen-
eralized inverse of matrix 𝑯௬௥ሺ𝜔ሻ. 𝒀ሺ𝜔ሻ = 𝑯௬௥ሺ𝜔ሻ𝑹ሺ𝜔ሻ, (8)𝑯௬௥ሺ𝜔ሻ = ሺ𝜔𝑗ሻ௡𝑪଴𝑯௨௥ሺ𝜔ሻ, (9)𝑯௨௥ሺ𝜔ሻ = 𝑯௨௨ሺ𝜔ሻ𝑲௧ (10)

൝𝑹ሺ𝜔ሻ = 𝑯௬௥ା ሺ𝜔ሻ𝒀ሺ𝜔ሻ𝑯௬௥ା ሺ𝜔ሻ = ቀ𝑯௬௥் ሺ𝜔ሻ𝑯௬௥ሺ𝜔ሻቁିଵ 𝑯௬௥் ሺ𝜔ሻ  (11)

 



Actuators 2021, 10, 89 5 of 20 
 

 

2.3. Simplification of the Estimation Using Time Shift Property of Fourier Transform 
Generally, vehicles run almost along a straight line; therefore, it can be assumed that 

the road roughness values corresponding to the front and rear wheels are almost the same 
with only a time difference. Thus, Equation (11) can be further simplified using the time 
shift property of the Fourier transform. 

The distance between the front and rear wheels is e1 + e2, and if the vehicle velocity is 
v, then the time difference between the front wheel and the rear wheel passing through 
the same position is t0 = (e1 + e2)/v. If r2(t) denotes the road roughness at the location of the 
front wheels at time t, then the road roughness with respect to the rear wheel r1(t) satisfies 
Equation (12) because the time that the rear wheel passes that position is t + t0. 

r1(t + t0) = r2(t) (12)𝑅ଶሺ𝜔ሻ and 𝑅ଵሺ𝜔ሻ denote the Fourier transforms of road roughness r2(t) and r1(t), re-
spectively, and according to the time shift property of the Fourier transform, 𝑅ଶሺ𝜔ሻ and 𝑅ଵሺ𝜔ሻ satisfy the relation shown in Equation (13). Therefore, Equation (8) can be simpli-
fied to Equation (15), which is used to calculate the road roughness of rear wheel 𝑅ଵሺ𝜔ሻ. 
Thus, only one variable must be solved. Then, the road roughness 𝑟ଵሺ𝑡ሻ in the time do-
main can be obtained by the inverse Fourier transform shown in Equation (17). 𝑅ଶሺ𝜔ሻ = e௝ఠ௧బ𝑅ଵሺ𝜔ሻ (13)𝑹 = ൤𝑅ଵ𝑅ଶ൨ = ቂ 1𝑒௝ఠ௧బቃ 𝑅ଵሺ𝜔ሻ (14)𝒀ሺ𝜔ሻ = 𝑯௬௥ሺ𝜔ሻ ቂ 1𝑒௝ఠ௧బቃ 𝑅ଵሺ𝜔ሻ = 𝑯௬௥ଵሺ𝜔, 𝑣ሻ𝑅ଵሺ𝜔ሻ  (15)𝑅ଵሺ𝜔ሻ = 𝑯௬௥ଵା ሺ𝜔, 𝑣ሻ𝒀ሺ𝜔ሻ  (16)𝑟ଵሺ𝑡ሻ = 𝐼𝐹𝐹𝑇൫𝑅ଵሺ𝜔ሻ൯  (17)

3. Estimation of the Vehicle FRF with Regard to Road Roughness 
Equation (16) shows that if the FRF of the measured vehicle response with respect to 

the displacements of contact points, that is, road roughness 𝑯௬௥, is obtained, the road 
roughness can be easily estimated using the measured vehicle response. However, it is 
worth noting that in Equation (16) a potential singularity exists in the calculation of the 
inverse matrix 𝑯௬௥ଵା ሺ𝜔, 𝑣ሻ. Thanks to the popular truncated singular value decomposition 
(TSVD) [34] or Tikhonov regularization method [35], the singularity can be eliminated. 
Furthermore, the estimation of vehicle FRF 𝑯௬௥ is investigated here via two approaches: 
the direct estimation and the updated estimation based on the shape function method. 

3.1. Direct Estimation of the Vehicle FRF 
To estimate the FRF 𝑯௬௥ of the measured vehicle response with respect to the road 

roughness, a driving test was designed based on Equation (8) using acceleration sensors 
to measure the vehicle response 𝒀ሺ𝜔ሻ. A known hump is designed using the cosine wave 
expressed in Equation (18). Let a car drive over the hump with a constant velocity, as 
shown in Figure 2. The shape of the hump surface represents the displacement of the 
wheel–road contact point, which in the frequency domain is taken as the road roughness 𝑹ሺ𝜔ሻ in Equation (8). 𝑟ሺ𝑧ሻ = ௛ቀଵି௖௢௦ቀమഏ೥೗ ቁቁଶ , 0 ≤ 𝑧 ≤ 𝑙  (18)
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Figure 2. Diagram of a car driving over a hump. 

For the half-car model shown in Figure 1, the number of wheel–road contact points 
is two, and the dimension of the frequency transfer function matrix 𝑯௬௥ሺ𝜔ሻ in Equation 
(8) is q × 2, where q is the number of sensors located on the vehicle. The dimensions of the 
contact displacement 𝑹ሺ𝜔ሻ are 2 × 1. To accurately estimate the function 𝑯௬௥ሺ𝜔ሻ, it is ad-
visable to perform multiple-group tests with different driving speeds to obtain effective 
data with different frequency bands. Although the shape of the road surface is the same 
in the tests, the time histories of the contact displacements 𝒓ሺ𝑡ሻ are different owing to 
different vehicle driving speeds. 𝒓௜ሺ𝑡ሻ and 𝒚௜ሺ𝑡ሻ denote the displacements of the contact 
points and measured vehicle responses in the ith test, respectively. Accordingly, 𝑹௜ሺ𝜔ሻ 
and 𝒀௜ሺ𝜔ሻ are their Fourier transforms in the frequency domain. 

Based on Equation (8), the measured responses 𝒀௜ሺ𝜔ሻ and the corresponding contact 
displacements 𝑹௜ሺ𝜔ሻ from the tests are assembled and expressed in Equation (19). The 
least-squares method can then be used to estimate the FRF 𝑯ሜ 𝒚𝒓ሺ𝝎ሻ as shown in Equation 
(20) which represents the relation between the measured vehicle responses and the road 
roughness. 

ቐ𝒀ሜ ሺ𝜔ሻ = 𝑯ሜ ௬௥ሺ𝜔ሻ𝑹ሜ ሺ𝜔ሻ𝒀ሜ ሺ𝜔ሻ = ሾ𝒀ଵሺ𝜔ሻ,𝒀ଶሺ𝜔ሻ,⋯ ,𝒀௞ሺ𝜔ሻሿ𝑹ሜ ሺ𝜔ሻ = ሾ𝑹ଵሺ𝜔ሻ,𝑹ଶሺ𝜔ሻ,⋯ ,𝑹௞ሺ𝜔ሻሿ (19)

𝑯ሜ ௬௥ሺ𝜔ሻ = 𝒀ሜ ሺ𝜔ሻ𝑹ሜ ்ሺ𝜔ሻ൫𝑹ሜ ሺ𝜔ሻ𝑹ሜ ்ሺ𝜔ሻ൯ିଵ  (20)

3.2. Updating the Estimated FRF Based on the Shape Function Method 
The direct estimation of the structural FRF using Equation (20) may result in errors 

due to noise and the frequency band range of the hump excitation. The noise mainly in-
cludes test and environmental noises. The frequency band range of the hump excitation 
depends on the driving velocity, and in the frequency band range corresponding to the 
excitation with a small amplitude, there will be a relatively large FRF estimation error, 
which may even cause singular data in those local frequency ranges. 

The frequency response is complex and consists of real and imaginary parts. For the 
FRF of a car, the real and imaginary parts are generally continuous and smooth curves 
considering vehicle damping. In this way, the shape function method [36] is employed 
here to fit the real and imaginary parts of the estimated FRF in its local frequency band 
range with a data singularity to reduce the estimation error. In the shape function method, 
a continuous curve is compared to the bending deformation of a beam, and the curve is 
approximated by interpolation. In Figure 3 it can be seen that the curve is divided into 
several segments. Each segment is considered as a beam element, and the node of each 
segment is equivalent to the endpoint of the beam element. Using the property of the 
shape function in the finite element, the value at any point of the curve (the deformation 
of the beam) can be expressed by the rotation angle and displacement of the node of the 
segment. 

As shown in Figure 3a, the curve is divided into n segments (elements) with a total 
of n + 1 nodes, and the number of shape functions is 2n + 2. The frequency coordinate 
corresponding to the ith node is denoted by 𝜔௜ as shown in Figure 3b, and N2i−1(ω) rep-
resents the shape function corresponding to its unit vertical deformation, the expression 
of which is shown in Equation (21). The shape function corresponding to its unit rotational 
angle is defined as N2i(ω), the expression of which is shown in Equation (22). 

已知形状
l h
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Figure 3. Basic principle of the shape function method. (a) Division of the curve; (b) The shape 
function corresponding to the unit vertical deformation; (c) The shape function corresponding to 
the unit rotational angle. 

⎩⎨
⎧ 𝑁ଶ௜ିଵሺ𝜔ሻ = 0 𝜔 < 𝜔௜ିଵ or 𝜔 > 𝜔௜ାଵ 𝑁ଶ௜ିଵሺ𝜉௜ିଵሻ = 𝜉௜ିଵଶ ሺ3 − 2𝜉௜ିଵሻ;  𝜉௜ିଵ = ఠିఠ೔షభఠ೔ିఠ೔షభ ,𝜔௜ିଵ < 𝜔 < 𝜔௜ 𝑁ଶ௜ିଵሺ𝜉௜ሻ = 1 − 3𝜉௜ଶ + 2𝜉௜ଷ;  𝜉௜ = ఠିఠ೔ఠ೔శభିఠ೔ ,𝜔௜ < 𝜔 < 𝜔௜ାଵ   (21)

⎩⎪⎨
⎪⎧ 𝑁ଶ௜ሺ𝜔ሻ = 0;  𝜔 < 𝜔𝑖−1 or 𝜔 > 𝜔𝑖+1 𝑁ଶ௜൫𝜉𝑖−1൯ = −𝜉𝑖−12 ൫1 − 𝜉𝑖−1൯;  𝜉𝑖−1 = 𝜔−𝜔𝑖−1𝜔𝑖 − 𝜔𝑖−1 ,𝜔𝑖−1 < 𝜔 < 𝜔𝑖 𝑁ଶ௜ିଵ൫𝜉𝑖൯ = −𝜉௜ሺ1 − 𝜉௜ሻଶ;  𝜉𝑖 = 𝜔−𝜔𝑖𝜔𝑖+1 −𝜔𝑖 ,𝜔𝑖 < 𝜔 < 𝜔𝑖+1  (22)

Taking the shape functions 𝑁௝ሺ𝜔ሻ (j = 1,2,…,2n + 2) as a set of bases, ℎሺ𝜔ሻ is assumed 
to be the real or imaginary part of the frequency response that needs to be updated, and 
the curve of ℎሺ𝜔ሻ can be approximately expressed by these bases and is shown in Equa-
tion (23): ℎሺ𝜔ሻ = ∑ 𝑁௝ሺ𝜔ሻ𝛼௝ଶ௡ାଶ௝ୀଵ ,  (23)

where 𝛼௝ is the coefficient of the jth shape function. All the directly estimated FRF data ℎ(𝜔௔) (a = 1,2,…) are assembled into a column vector 𝒉 that corresponds to the frequency 
coordinates 𝜔௔  (a = 1,2,…), and all the coefficients are assembled into vector 𝜶 =ሾ𝛼ଵ,𝛼ଶ, … ,𝛼ଶ௡ାଶሿ୘; then, Equation (23) can be rewritten as a system of linear equations as 
shown in Equation (24). 𝒉 = 𝑵𝜶,  (24)

where 𝑵 is a matrix that collects the shape functions 𝑁௝(𝜔௔) (j = 1,2,…,2n + 2; a = 1,2,…). The 
coefficient 𝜶 can be calculated by the least-squares method, as shown in Equation (25). 𝜶 = (𝑵୘𝑵)ିଵ𝑵୘𝒉,  (25)

The singular data in the directly estimated FRF are certain to cause large errors in the 
calculation of the coefficient 𝜶. In this study, singular data are eliminated by setting the 
threshold value, and an iterative solution is adopted to calculate the coefficient 𝜶, as ex-
pressed in Equation (26): 𝜶௕ାଵ = (𝑵୘𝑸௕𝑵)ିଵ𝑵୘𝑸௕𝒉,  (26)

where 𝜶௕ାଵ is the calculated coefficient in the bth iteration. Herein, the initial value 𝜶ଵ = 𝟎. 𝑸௕ represents the weight matrix of the bth iteration, which is a diagonal matrix constituted by 
the weights 𝑞௕(𝜔௔) (a = 1,2,…). The expression of 𝑞௕(𝜔௔) is given by Equation (27). 
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𝑞௕(𝜔𝑎) = ቊ 0, หℎ(𝜔𝑎) −∑ 𝑁௝(𝜔𝑎)𝛼௝௕ଶ௡ାଶ௝ୀଵ ห > β௕ 1, หℎ(𝜔𝑎) −∑ 𝑁௝(𝜔𝑎)𝛼௝௕ଶ௡ାଶ௝ୀଵ ห ≤ β௕ ,  (27)

where β௕ is the threshold for judging whether or not the data are singular. With an in-
crease in iterations, the threshold β௕ decreases. The iteration stops when the function con-
verges. By substituting the coefficient 𝜶௕ାଵ from the last iteration into Equation (24), the sin-
gular data in the frequency response curve can be eliminated. Then, using the obtained 
vehicle FRF, the road roughness can be estimated by Equation (16) using the measured 
vehicle responses. 

3.3. On-Line Estimation of Road Roughness 
Via the vehicle FRF calibrated in advance, the road roughness can be estimated using 

the measured vehicle responses. The process is performed in the frequency domain, which 
generally requires the responses to be measured in a certain time period to perform Fou-
rier transform and the estimation. In this case, the following method of segmented data 
acquisition and calculation is proposed in this paper to achieve on-line identification of 
road roughness: 

(1) Denote by T the time interval for on-line estimation. For the ith time period t ∈(𝑡௜ , 𝑡௜ + 4𝑇), 𝑡௜ = (𝑖 − 1)𝑇, the responses measured in the time period t ∈ (𝑡௜ , 𝑡௜ + 4𝑇) are 
used for road roughness estimation, defined as 𝑟̂௜(𝑡), t ∈ (𝑡௜ , 𝑡௜ + 4𝑇). 

(2) Since the initial state of the vehicle is usually unknown, estimation errors can ap-
pear in the initial time period. Considering the time coincidence between the ith and the 
(i − 1)th estimation periods, the estimation accuracy can be improved by combining the 
two estimated roughness profiles in the overlapping time period. Therefore, the on-line 
road roughness estimation is performed as shown in Equation (28) 

ቊ𝑟(𝑡) = ቀ௧೔ାଶ்ି௧் ቁ 𝑟̂௜ିଵ(𝑡) + ቀ௧ି௧೔ି்் ቁ 𝑟̂௜(𝑡)     for 𝑡 ∈ (𝑡௜ + 𝑇, 𝑡௜ + 2𝑇),𝑟(𝑡) = 𝑟̂௜(𝑡)    for 𝑡 ∈ (𝑡௜ + 2𝑇, 𝑡௜ + 4𝑇),                                                     (28)

where ቀ௧೔ାଶ்ି௧் ቁ and ቀ௧ି௧೔ି்் ቁ are the weighting coefficients of the two overlapping time 
periods in order to make the estimated road roughness curve continuous. 

(3) Let i = i + 1, and repeat the above steps. 

4. Numerical Simulation 
To numerically demonstrate the proposed methods, a half-car model with four DOFs 

is used. The vehicle model parameters are listed in Table 1, which are selected based on 
reference [11]. 

Table 1. Parameters values of the vehicle model. 

m1 

(kg) 

m2 

(kg·m2) 
m3 

(kg) 
m4 

(kg) 
k1 = k2 

(N/m) 
k3 = k4 
(N/m) 

c1 = c2 

(N·s /m) 
e1 

(m) 
e2 

(m) 
1000 4000 100 150 20,000 300,000 4000 1.6 1.6 

4.1. Characteristic Analysis of the Vehicle FRF 
The four natural frequencies are shown in Table 2 and correspond to the bouncing, 

pitching, front axle, and rear axle-top modes of the vehicle. 

Table 2. Four natural frequencies of the half-car model (Hz). 

Order 1 2 3 4 
natural frequency 0.779 0.974 7.355 9.006 
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Vehicle accelerations, which are generally easy to obtain via sensors, were measured 
in this study. It was assumed that three sensors were located along the DOFs of the vehicle 
body u1, rear wheel u3, and front wheel u4, denoted by S1, S2, and S3, respectively. The 
vehicle vertical acceleration responses are measured, and the observation matrix C0 is 
shown in Equation (29). 

𝑪଴ = ൥1 0 0 00 0 1 00 0 0 1൩  (29)

By applying a unit impulse on the rear wheel along DOF u3, the acceleration fre-
quency responses of the vehicle at the measurement points can be expressed as 𝑯௦௨(𝜔) = -𝜔ଶ𝑪଴𝑯௨௨(𝜔)𝑩௨ଷ, where 𝑩௨ଷ = ሾ0 0 1 0ሿ୘, and the amplitude of the corresponding 
frequency responses are shown in Figure 4. Taking the unit vertical displacement of the 
rear wheel contact point, that is, the road roughness, as the excitation, the observed accel-
eration frequency responses of the vehicle can be expressed as 𝑯௦௥(𝜔) = -𝜔ଶ𝑪଴𝑯௨௥(𝜔)𝑩௥ଵ, 
where 𝑩௥ଵ = ሾ1 0ሿ୘. Their amplitudes are shown in Figure 5. Although the amplitudes 
of the two types of frequency responses shown in Figures 4 and 5 are different, they have 
similar change regularities. Comparatively speaking, in the calculation of responses 𝑯௦௥(𝜔), the stiffness and damping of the vehicle wheel are added; therefore, their ampli-
tude is larger than the frequency responses 𝑯௦௨(𝜔). 

 
Figure 4. Amplitudes of the acceleration frequency responses of the vehicle at the measurement 
points to the unit impulse applied on the rear wheel along degrees of freedom (DOF) u3. 

 

Figure 5. Amplitudes of the acceleration frequency responses of the vehicle at the measurement 
points to the unit vertical displacement of the rear wheel contact point. 

The distance between the front and rear wheels is 3.2 m; therefore, with a driving 
velocity of 10 m/s, the time shift between the front and rear wheels is t0 = 0.32 s. Assuming 
that the front and rear wheels drive along a straight line, the measured acceleration fre-
quency responses of the vehicle with regard to the unit displacement of the rear wheel 
contact point 𝑯௬௥ଵ(𝜔, 𝑣) can be calculated using Equation (15). Figure 6 shows the ampli-
tude of 𝑯௬௥ଵ(𝜔, 𝑣), and its real and imaginary parts are shown in Figure 7. Because both 
the front and rear wheels are excited in order, the frequency responses of the vehicle with 
respect to the rear wheel in Figures 6 and 7 are different from those shown in Figures 4 and 
5. There exists a time shift of t0 = 0.32 s between the excitations applied successively on the 
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front and rear wheels, and there is one more item 𝑒௝ఠ௧బ in the corresponding frequency 
responses; therefore, the frequency response curve has a periodic change rule, i.e., 1/t0 = 
3.12 Hz, which can be seen as “S3” in Figure 7. It can be seen that there is a phase difference 
of π/2 between the real and imaginary parts of the acceleration frequency responses of the 
vehicle. 

 
Figure 6. Amplitudes of the acceleration frequency responses of the vehicle at the measurement 
points to the excitation applied successively on the rear wheel along DOF u3 and the front wheel 
along DOF u4. 

 
Figure 7. Real and imaginary parts of the acceleration frequency responses of the vehicle at the 
measurement points to the excitation applied successively on the rear wheel along DOF u3 and the 
front wheel along DOF u4. 

4.2. Simulation of the Measured Vehicle Accelerations 
Let the vehicle drive past a well-designed hump shown in Figure 2 with a height h = 

0.02 m and length l = 0.5 m. Eight groups of driving tests were performed with velocities 
of [20, 17, 15, 13, 11, 7, 5, −3] m/s, where a negative value indicates that the car moves 
backward. In practice, the initial position of the vehicle needs to be at a certain distance 
from the hump in order to allow the vehicle to accelerate and then run at a constant speed, 
but in the numerical example, the initial position can be right in front of the hump and the 
influence of the vehicle wheel shape is also neglected. The measured vehicle accelerations 
are simulated via the equation of motion of the vehicle, i.e., Equation (1), using the New-
mark-β method. Additionally, a 5% Gaussian noise is considered. Figure 8 shows the ac-
celerations of the vehicle body measured by S1 with velocities of [20, 15, −3] m/s, while 
Figure 9 shows the accelerations of the rear wheel measured by S2 with velocities of [20, 
15, −3] m/s. 
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Figure 8. The accelerations of the vehicle body measured by S1 with velocities of [20, 15, −3] m/s. 

 
Figure 9. The accelerations of the rear wheel measured by S2 with velocities of [20, 15, −3] m/s. 

4.3. Estimation of Vehicle FRF 
To identify the road roughness via Equations (16) and (17), the vehicle FRF estimation 

is first discussed and verified using the direct estimation. Furthermore, the shape function 
method is used to deal with singular points. 

4.3.1. Direct Estimation Using Measured Responses 
Although the hump profile is the same in the different tests, the time histories of the 

hump profile, that is, the road roughness, differ with respect to the different driving ve-
locities. The frequency spectra of the hump with respect to different velocities are shown 
in Figure 10, and the frequency spectra of the vehicle accelerations along DOF u1 are 
shown in Figure 11. 

 
Figure 10. Frequency spectrum of the hump with velocities of [20, 15, −3] m/s. 
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Figure 11. Frequency spectrum of the vehicle acceleration along DOF u1 with velocities of [20, 15, 
−3] m/s. 

To investigate the influence of the measured data on the FRF estimation, the meas-
ured responses were combined into five cases, as shown in Table 3 which were employed 
to estimate the vehicle FRF. In different cases, the amplitudes of the vehicle acceleration 
FRF along DOF u1 are estimated and compared in Figures 12–16 and denoted as “Direct”. 
It can be seen that the accuracy is the highest in Case 1 which uses all the measured re-
sponses at different speeds. It also shows that the driving speed and measured data vol-
ume may influence the estimation results. 

Table 3. Combination of measured responses in different cases. 

Case Case 1 Case 2 Case 3 Case 4 Case 5 
Sets of velocity (m/s) 20, 17, 15, 13, 11, 7, 5, −3 20, 15, 11, 5, −3 20, 15, 11, 5 20,15, 1 15, 11 

 
Figure 12. Comparison of the amplitudes of the vehicle acceleration frequency response function 
(FRF) along DOF u1 in Case 1. 

 
Figure 13. Comparison of the amplitudes of the vehicle acceleration FRF along DOF u1 in Case 2. 
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Figure 14. Comparison of the amplitudes of the vehicle acceleration FRF along DOF u1 in Case 3. 

 
Figure 15. Comparison of the amplitudes of the vehicle acceleration FRF along DOF u1 in Case 4. 

 
Figure 16. Comparison of the amplitudes of the vehicle acceleration FRF along DOF u1 in Case 5. 

It can be seen that the estimated FRF in Case 1 using eight groups of measured data 
is smoother than those estimated in the remaining cases, and singular data appear in the 
frequency band range greater than 50 Hz. In Case 2, which uses five groups of measured 
data, singular data in the FRF appeared around the frequency band range between 19 Hz 
and 38 Hz and greater than 50 Hz. More singular data appear in Cases 3 and 4, and there 
is a large quantity of singular data in Case 5. It is worth noting that the estimation error is 
obvious in the frequency band range larger than 40 Hz because the excitations in that 
range are close to zero. However, this part of the FRF has little influence on related prob-
lems. For brevity, only the related FRFs of the vehicle acceleration along DOF u1 are shown 
in this paper, and the estimated FRFs of the rear and front wheels have similar accuracy. 

4.3.2. Updating the Vehicle FRF 
The vehicle FRF curve is divided into 80 segments, to which the imaginary and real 

parts are fitted locally via Equation (24), so as to reduce the FRF estimation error. The 
maximum value of the imaginary or real part is taken as the initial threshold value, and 
the threshold value is halved in the next iteration. A smooth frequency response curve can 
be obtained in four iterations. 

For the five cases listed in Table 3, the amplitudes of the updated FRFs of the vehicle 
along DOF u1 are shown in Figures 12–16 and denoted as “Shape.” It can be seen that the 
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influence of data singularities on FRF estimation can be effectively reduced by the shape 
function method, and even in Case 5, which has serious data singularities, the updated 
estimation is acceptable. As a result, the robustness of the method to noise and measured 
data is improved, which provides the advantage of a road roughness estimation. 

4.4. Road Roughness Estimation 
4.4.1. Road Roughness and Vehicle Response 

Currently, the trigonometric series method, which uses a special triangular series to 
approximate the road surface irregularity curve, is commonly used for road roughness 
calculations. The expression for the road roughness 𝑟(𝑥) is as follows: 𝑟(𝑥) = ∑ 𝛼௞cos(2𝜋𝑛௞𝑥 + 𝜑௞)ே೅௞ୀଵ   (30)𝛼௞ଶ = 4𝐺ௗ(𝑛௞)Δ𝑛, Δ𝑛 = ௡ೠି௡೗ே೅ ,  (31)𝐺ௗ(𝑛௞) = 𝐺ௗ(𝑛଴) ቀ௡ೖ௡బቁିଶ , 𝑛௞ = 𝑛௟ + 𝑘Δ𝑛,  (32)

where 𝛼௞ is the coefficient of the triangular series, depending on the roughness degree of 
the pavement. 𝐺ௗ(𝑛௞) is the displacement power spectral density of the pavement calcu-
lated using the equation provided in [37]. 𝐺ௗ(𝑛଴) is defined as the coefficient of uneven-
ness and depends on the degree of roughness of the pavement. 𝑛଴ is the reference special 
frequency (𝑛଴ = 0.1 circle/m), and 𝑛௞ is the special frequency. 𝑛௟ and 𝑛௨ are the lower 
and upper limits of the spatial frequency used to calculate the displacement power spec-
tral density 𝐺ௗ(𝑛௞). 𝜑௞ is a uniformly distributed random phase angle in the range of [0 
2π]. NT is the number of trigonometric functions used to construct the road roughness. 

In this study, the road surface grade was set to A, for which the irregularity coefficient 𝐺ௗ(𝑛଴)  was 16 × 10ି଺ mଷ , 𝑛௟ = 0.0221 mିଵ , and 𝑛௨ = 1.4142 mିଵ . The considered 
length of the road surface was 1600 m. The vehicle drove on the road with a velocity of 10 
m/s, and the corresponding road roughness is shown in Figure 17. 

Three acceleration sensors are located on the vehicle: S1 measures the vertical accel-
eration response of the vehicle body along DOF u1, S2 measures the rear wheel acceleration 
response along DOF u2, and S3 measures the front wheel acceleration response along DOF 
u3. The sampling frequency was 400 Hz. The time histories of the measured acceleration 
responses are shown in Figure 18. 

 
Figure 17. Time histories of the simulated road roughness. 
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Figure 18. Time histories of the acceleration responses measured by sensors S1–S3. 

4.4.2. Different Case Estimations 
To check the influence of the measured responses, four cases are considered in the 

road roughness estimation and are listed as follows: 
Case A: Estimation is performed using the responses measured by all the sensors, 

that is, S1, S2, and S3. 
Case B: Estimation is performed using the responses measured by sensors S1 and S3. 
Case C: Estimation is performed using the responses measured by sensors S1 and S2. 
Case D: Estimation is performed using the responses measured by sensor S1. 
In each case, the frequency spectrum of road roughness 𝑅ଵ(𝜔) was calculated via 

Equation (11) for the estimated vehicle. 
First, the estimation for Case A is taken as an example to validate the proposed 

method. The vehicle FRF is estimated using the eight groups of measured responses in 
Case 1 listed in Table 3, and the estimated frequency spectra of road roughness 𝑅ଵ(𝜔) are 
shown in Figure 19, where “Actual” refers to the actual road roughness. “Direct” refers to 
the results estimated using the vehicle FRF by the direct method, while “Shape” refers to 
the results estimated using the vehicle FRF updated by the shape function method, and 
“FEM” refers to the results estimated using the vehicle FRF computed with the actual 
vehicle parameters. To compare the estimation accuracy, Figure 20 shows the correspond-
ing absolute errors of the estimated road roughness, which refers to the difference be-
tween the estimated road roughness and the actual road roughness. It can be seen that the 
errors are quite small, which proves that the road roughness is estimated accurately using 
the above methods. The power spectral densities of the estimated road roughness are com-
puted and shown in Figure 21 and are almost identical to the actual values. 

 
(a) The estimated roughness of the whole road surface 

 
(b) The estimated roughness of road surface among 500~540 m 

Figure 19. Comparison of the estimated road roughness using sensors S1–S3. 
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(a) Absolute errors for the whole road surface 

 
 

(b) Absolute errors for road surface among 500~540 m 

Figure 20. Absolute errors of the estimated road roughness for Case A using sensors S1–S3. 

 
Figure 21. Estimated power spectral densities of the road roughness using sensors S1–S3 for Case A 
via the measured responses in Case 1. 

In Cases A–D, the road roughness is estimated via the vehicle FRF using direct esti-
mation and the updated method. The corresponding absolute errors are shown respec-
tively in Figures 22 and 23. It can be seen that the estimation accuracy is good in Cases A–
C, which have at least two sensors, while in Case D with only one sensor, the error is quite 
large. 

 
(a) Absolute estimation errors of the whole road surface 

 
(b) Absolute estimation errors of the road surface among 500~540 m 

Figure 22. Absolute estimation errors of road roughness in Case A–Case D using direct estimation. 
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(a) Absolute estimation errors of the whole road surface 

 
(b) Absolute estimation errors of the road surface among 500~540 m 

Figure 23. Absolute errors of road roughness in Case A–Case D using the updated FRF. 

4.4.3. Error Analysis 
Considering that the vehicle FRF is estimated using the test of driving over the hump 

in Cases 1–5, which are listed in Table 3, the road roughness is estimated using the sensors 
shown in Cases A–D to analyze the influence of the frequency response estimation and 
the sensors. The estimation errors here are quantitatively calculated using Equation (33) 
in terms of the relative error: 𝜀 = ‖𝑟௜ௗ(𝑡) − 𝑟(𝑡)‖/‖𝑟(𝑡)‖,  (33)

where rid(t) refers to the estimated road roughness, and r(t) refers to the actual road rough-
ness. The errors corresponding to the direct FRF estimation, the updated FRF, and the FRF 
obtained via the FEM are shown in Tables 4–6. In case D, where only one sensor S1 is 
employed, the estimation errors are about 30% even with the accurate estimated vehicle 
FRF in Case 1. On the other hand, the estimation errors in Case 4 and Case 5 are also quite 
high, which means that the poor estimation of vehicle FRF definitely influences the road 
roughness estimation even with all the three sensors used in Case A. 

Table 4. Errors of the estimated road roughness using the directly estimated FRF. 

 Case A Case B Case C  Case D 
Case 1  17.02% 16.82% 16.07% 31.10% 
Case 2 24.67% 22.67% 20.17% 47.71% 
Case 3 23.21% 23.16% 16.73% 38.03% 
Case 4 54.33% 35.60% 53.53% 48.09% 
Case 5 54.85% 42.51% 53.49% 52.85% 

Table 5. Errors of the estimated road roughness using the updated FRF. 

 Case A Case B Case C  Case D 
Case 1  10.26% 10.43% 10.50% 28.76% 
Case 2 11.67% 11.63% 11.57% 45.66% 
Case 3 15.29% 12.68% 13.72% 33.36% 
Case 4 59.89% 41.05% 57.57% 36.70% 
Case 5 61.70% 46.58% 60.14% 42.95% 

Table 6. Errors of the estimated road roughness using the FRF of the FEM. 

 Case A Case B Case C  Case D 
Errors 8.55% 8.75% 8.88% 16.39% 

−

−
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By observing the errors listed in Tables 4–6, the following conclusions can be drawn: 
(1) Owing to the noise influence, the error still exists, approximately 8% in Cases A–

C, even when using the FRF obtained by the vehicle FEM. The shape function method can 
improve the estimation accuracy of the vehicle FRF, and correspondingly, the estimation 
accuracy of the road roughness is increased using the updated FRF, which is approxi-
mately 10% in Case 1 and Cases A–C in Table 5. 

(2) The more groups of driving tests with different speeds over a hump are per-
formed, the more accurate the estimated frequency response is. Good results can be ob-
tained by using the four groups of the driving tests shown in Case 3 and Cases A–C in 
Table 5. 

(3) The location of two or three sensors in Cases A–C can provide a more accurate 
road roughness estimation, while the result via sensor S1 in case D is relatively poor. 

4.4.4. On-Line Estimation of Road Roughness 
In this work, the road surface grade was set to A as mentioned in Section 4.4.1. The 

considered length of the road surface was 4000 m. The vehicle drove on the road with a 
velocity of 10 m/s, and the corresponding road roughness is shown in Figure 24. 

Three acceleration sensors are employed with the same placements as those in Case 
A in Section 4.4.2. The sampling frequency was 400 Hz. The road roughness estimation is 
performed on-line with a time interval of 2.56 s. Assume that the vehicle runs for 400 s, 
and therefore it requires 154 times of on-line estimation step by step as described in Equa-
tion (28). The time histories of the estimated roughness of the whole road surface are 
shown in Figures 24 and 25 show the estimated results of the road surface between 2000 
and 2050 m. It can be seen that the estimation accuracy is good. 

 
Figure 24. Time histories of the simulated road roughness. 

 
Figure 25. Time histories of the estimated roughness of the road surface among 2000~2050 m. 

5. Conclusions 
A road roughness estimation method is proposed in the frequency domain based on 

the vehicle FRF via the measured vehicle accelerations. A numerical simulation of the road 
roughness estimation was used to verify the effectiveness of the proposed methods. The 
main conclusions are as follows: 

The formula for the vehicle response, road roughness, and vehicle FRF is deduced 
and set up in a linear equation system; hence, the road roughness can be estimated using 
the vehicle FRF and the measured vehicle responses. 

The vehicle FRF is estimated by designing multiple groups of driving tests over a 
known-size hump at different driving speeds. It obviates the need for an updated finite 
element model of the vehicle with known vehicle parameters and vehicle modeling. 

The vehicle FRF can be calculated by a direct estimation of the measured vehicle ac-
celerations using the least-squares method. Moreover, the shape function method can be 

−

−
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used to eliminate the singular and noisy parts of the estimated FRF and to improve the 
accuracy of the estimated road roughness profile. The road roughness can be estimated 
online with a few seconds time delay. 
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