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A B S T R A C T

The Mori–Tanaka (MT) scheme is a well-established mean-field model that combines simplicity and good
predictive capabilities. The additive tangent MT scheme is a popular variant of the method that is suitable
for elastic–viscoplastic composites. This work is concerned with the analysis of some intrinsic features of the
additive tangent MT scheme, in particular, of spurious softening in the macroscopic response that may be
encountered when the Perzyna-type viscoplasticity model is used. The resulting non-monotonic macroscopic
stress–strain response is clearly non-physical, but it also has a negative impact on the efficiency and robustness
of the MT model when it is used as a local constitutive model in concurrent multiscale finite-element
computations. As shown in the paper, the spurious softening is more pronounced when the so-called soft
isotropization is employed to compute the viscoplastic Hill tensor, but it is also observed, although for a much
narrower range of material parameters, in the case of the hard isotropization and when no isotropization is
applied. Moreover, the softening is promoted at low strain rates, for high elastic contrast, and for high volume
fractions of inclusions. Nevertheless, if the soft isotropization is avoided, the additive tangent MT scheme
proves to be a feasible and computationally robust mean-field model that can be successfully employed in
finite-element computations.
1. Introduction

When estimating effective properties of heterogeneous materials,
mean-field models are known to offer fairly good predictive capabilities
at low computational cost, as compared to more advanced methods,
especially those based on the computational homogenization. Among
the mean-field schemes applicable to two-phase composites of the
matrix–inclusion geometry, the Mori–Tanaka (MT) method (Mori and
Tanaka, 1973) is the most widely used. It makes this mean-field scheme
the first-choice candidate for application in large-scale finite-element
analyses.

The MT method relies on the Eshelby solution (Eshelby, 1957),
originally obtained for an infinite linearly-elastic medium containing an
ellipsoidal inhomogeneity, so its extension to the context of non-linear
material behaviour requires an additional step in model development,
which is related to a relevant linearization of the response. Such exten-
sions have been proposed for a large range of inelastic material models,
including elasto-plasticity (Dvorak and Benveniste, 1992; Doghri and
Ouaar, 2003; Chaboche et al., 2005), elasto-viscoplasticity (Tandon and
Weng, 1988; Molinari, 2002; Doghri et al., 2010; Czarnota et al., 2015),
damage (Ravichandran and Liu, 1995; Chaboche et al., 2001), phase
transformations (Garion and Skoczeń, 2006; Delannay et al., 2008),
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shape memory effects (Boyd and Lagoudas, 1996; Lue et al., 2000; Hu
and Sun, 2002), or finite strains (Pettermann et al., 2010; Doghri et al.,
2016).

The focus of the present contribution is on elastic–viscoplastic com-
posites in which the phases are governed by a Maxwell-type model. The
main difficulty when proposing the linearization method in this case is
that, for such a material behaviour, both the stress and the stress rate
enter the constitutive law of the matrix. We concentrate our attention
on the additive tangent MT model proposed by Molinari (2002) as a
remedy to this problem, however, there are several other solutions in
the literature proposed to account for this difficulty. They could be
categorized into three main groups: (i) models employing the analyt-
ical or numerical Laplace–Carson transform technique in the context
of linear (Hashin, 1969; Christensen, 1969; Barthélémy et al., 2016)
or non-linear (Pierard and Doghri, 2006; Ricaud and Masson, 2009)
viscosity, respectively; (ii) variational formulations following Ponte
Castañeda and Suquet (1997) and extended to elasto-viscoplasticity,
e.g., by Lahellec and Suquet (2007, 2013), Brassart et al. (2012)
and Agoras et al. (2016); (iii) approximate methods in which an es-
timate of the solution to the problem in the real time space (and not
in the transformed one) is provided by proposing some approximation
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of the localization equation (Nemat-Nasser and Obata, 1986; Sabar
et al., 2002; Doghri et al., 2010; Berbenni and Capolungo, 2015)
or the interaction law (Molinari, 2002; Mercier and Molinari, 2009;
Kowalczyk-Gajewska and Petryk, 2011). More elaborate review of mi-
cromechanical schemes available for elastic–viscoplastic materials can
be found in Czarnota et al. (2015) and Marfia and Sacco (2018).

The additive tangent MT model belongs to the third category and is
potentially one of the best candidates for implementation as a material
model at element Gauss points in finite-element calculations. The idea
of the additive interaction law for heterogeneous elastic–viscoplastic
materials was first proposed by Molinari et al. (1997) in the context
of a self-consistent scheme for polycrystalline materials with isotropic
overall properties. In Molinari (2002) the concept was adopted to a
MT-type micro–macro transition scheme for composite materials. Basic
advantages of the model are its appealing simplicity brought by the
additive form of the interaction equation as well as the fact that, for
an isotropic incompressible linear viscoelastic material, it delivers an
exact solution to the inclusion problem (Mercier et al., 2005). It is
worth mentioning here that Berbenni et al. (2015) came up with a
more involved interaction equation which delivers an exact solution of
the inclusion problem also for compressible materials. In the context
of non-linear elastic–viscoplastic two-phase composites, the additive
tangent MT model has been recently successfully validated with respect
to finite-element calculations in Czarnota et al. (2015) and Mercier
et al. (2019) for uniaxial cyclic loadings. Probably one of the first
finite-element implementations of the scheme with the Perzyna-type
viscoplasticity model was performed by Msolli et al. (2016) using
UMAT subroutine in ABAQUS/Standard. The tangent matrix is there
computed using the small-perturbation technique. However, it seems
that computational efficiency of the implementation and related issues
have not been sufficiently discussed. It is worth noting that for the last
decade the predictive capabilities of the additive interaction law have
been also explored in conjunction with the self-consistent scheme and
micromechanical modelling of polycrystalline materials (Wang et al.,
2010; Abdul-Latif et al., 2018; Zecevic and Lebensohn, 2020; Jeong and
Tomé, 2020; Girard et al., 2021).

The goal of the present study is to explore intrinsic features and
possible simplifications of the additive tangent MT model that may
affect computational efficiency of its finite-element implementation. In
the analysis the Perzyna-type viscoplasticity model is assumed for the
elastic–viscoplastic matrix phase, while inclusions are purely elastic.

Our recent works (Sadowski et al., 2017a,b) on the finite-element
implementation of the incremental MT model of elastic–plastic compos-
ites have revealed convergence problems that turn out to result from
discontinuities in the incremental finite-step response at the vicinity of
the elastic-to-plastic transition and from the related abrupt change of
the reference stiffness in the MT interaction equation. The problem has
been overcome by proposing a sub-stepping strategy. Although similar
discontinuities are not expected when using Perzyna-type model, which
can be seen also as a viscoplastic regularization of rate-independent
plasticity, possible issues related to the elastic-to-plastic transition,
which may affect robustness of implementation, need to be identified.
Such an issue, which is discussed in this work and, to our best knowl-
edge, has been overlooked in the previous studies, is a spurious non-
monotonic macroscopic stress–strain response under strain-controlled
proportional loading.

The original formulation employs the anisotropic viscoplastic tan-
gent stiffness for which the respective Hill tensor involved in the ad-
ditive interaction law needs to be calculated by performing numerical
integration. Obviously, this has a negative impact on the model effi-
ciency and robustness. Therefore, the isotropization techniques known
for the rate-independent elastic–plastic tangent stiffness (Doghri and
Ouaar, 2003) are of interest. It will be shown that application of some
isotropization strategies may, however, lead to amplification of the
spurious effects mentioned in the previous paragraph. Additionally,
2

contrary to the elastic–plastic composites, isotropization seems not to
improve the quality of predictions as compared to the anisotropic
model (Czarnota et al., 2015). Therefore such a strategy must be
selected with care.

The paper is organized as follows. The additive tangent MT model
employing the Perzyna-type law for the matrix is presented in Section 2.
Attention is paid to the anisotropic viscoplastic compliance and stiffness
tensors as well as to the related Hill tensor. Possible strategies of
model isotropization are also discussed. Section 3 illustrates selected
effects resulting from the MT model, such as a non-monotonic (or
softening) overall response of a composite material in the viscoplastic
regime and a non-smooth elastic-to-plastic transition, not observed for
a homogeneous elastic–viscoplastic material governed by the Perzyna
model. Section 4 is devoted to a detailed analysis of the softening in
the macroscopic response assuming the special case of proportional
deviatoric loading for which the tensorial governing equations simplify
to scalar ones, thus facilitating a more detailed analysis. In Section 5,
predictions of the MT model with and without isotropization are com-
pared to the results of unit-cell computations. Finally, in Section 6, an
application of the additive tangent MT model in concurrent multiscale
finite-element computations is presented in order to illustrate the im-
pact of the spurious softening on the efficiency and robustness of the
overall computational scheme.

2. Mori–Tanaka model for elastic–viscoplastic composites

2.1. Additive tangent Mori–Tanaka scheme

The MT model (Mori and Tanaka, 1973), a mean-field model orig-
inally developed for linear-elastic composites, relies on the Eshelby
solution (Eshelby, 1957) to the problem of an ellipsoidal inclusion
immersed in an infinite linearly elastic matrix. The Eshelby solution
implies the following interaction equation (Hill, 1965),

𝝈1 − 𝝈0 = −Le
∗
(

𝜺1 − 𝜺0
)

, (1)

where the stress 𝝈1 and strain 𝜺1 in the inclusion are homogeneous, and
those in the matrix, 𝝈0 and 𝜺0, are the far-field quantities. The fourth-
order tensor Le

∗ is called the Hill tensor (or the interaction tensor) and
epends on the elastic properties of the matrix and on the inclusion
hape. The MT model for a linear-elastic composite material is then
btained by identifying 𝝈0 and 𝜺0 with the average stress and strain

in the matrix, and the system of equations is closed by imposing the
averaging scheme and the local constitutive equations of the phases.

Consider now a two-phase composite material with elastic spherical
inclusions embedded in a Maxwell-type elastic–viscoplastic matrix. The
local constitutive equations in the rate form thus read

�̇�0 = L0
(

�̇�0 − �̇�v0
)

, �̇�1 = L1�̇�1, (2)

where the total strain in the matrix is additively decomposed into
elastic and viscoplastic parts, �̇�0 = �̇�e0+ �̇�v0, and L0 and L1 are the fourth-
order elastic stiffness tensors. In general, the viscoplastic part �̇�v0 of the
train rate in the matrix is a non-linear function of 𝝈0, the current stress
n the matrix. For the purpose of the present work, the viscoplastic part
f matrix deformation is assumed incompressible, so the tensor �̇�v0 is
eviatoric and depends only on the matrix stress deviator.

For the considered elasto-viscoplastic material behaviour, the fol-
owing additive form of the interaction equation is used in the present
ork,

̇ 1 − �̇�0 = −Mv
∗
(

𝐬1 − 𝐬0
)

−Me
∗
(

�̇�1 − �̇�0
)

. (3)

ere, Me
∗ is the inverse elastic Hill tensor, Me

∗ = (Le
∗)

−1, see Eq. (1),
hich depends on the elastic properties of the matrix, Mv

∗ is the inverse
iscoplastic Hill tensor, which depends on the viscoplastic compliance
ensor of the matrix and will be specified later, and 𝐬𝑖 = 𝝈𝑖 −

1
3

(

tr 𝝈𝑖
)

𝐈
are the stress deviators in the phases with 𝐈 denoting the second-order
identity tensor. The additive law (3) was first formulated by Molinari
(2002) and next the additive tangent MT model, adopted in the present
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study, was elaborated in full by Mercier and Molinari (2009). Note that
the same interaction equation is obtained in the context of the MT
averaging scheme when using the concept of sequential linearization
due to Kowalczyk-Gajewska and Petryk (2011) (for details, see Section
2.2 and Variant II of the model in that paper).

The current overall strain �̄� and stress �̄� of the composite material
are updated by averaging the corresponding local rate quantities,

̇̄𝜺 = (1 − 𝑐) �̇�0 + 𝑐�̇�1, ̇̄𝝈 = (1 − 𝑐) �̇�0 + 𝑐�̇�1, (4)

where 𝑐 is the volume fraction of inclusions. The interaction equa-
tion (3), the averaging rule (4) and the constitutive Eqs. (2) comple-
mented by the constitutive law for the viscoplastic strain rate �̇�v0 form

complete set of equations that govern the overall response of the
onsidered elastic–viscoplastic two-phase composite.

.2. Perzyna-type viscoplastic model

As mentioned above, the matrix is assumed to be governed by
n elastic–viscoplastic model, and the Perzyna-type overstress model
Perzyna, 1963) is here adopted for that purpose. For consistency with
he subsequent derivations, the subscript ‘0’ (referring to the matrix) is
xplicitly used in the constitutive equations below.

The elastic domain, 𝜙0 ≤ 0, is specified by the 𝐽2 (Huber–von Mises)
ield function,

0 = 𝜎eq0 − �̂�y0 (𝜅0), 𝜎eq0 =
√

3
2
‖𝐬0‖, (5)

where �̂�y0 is the yield stress that may in general depend on the (isotropic)
hardening parameter 𝜅0, and ‖𝐬0‖ =

√

𝐬0 ⋅ 𝐬0. Here and below, a centred
ot denotes the scalar product. Evolution of 𝜺v0 is governed by the
lastic flow rule,

̇ v0 = �̇�0
𝜕𝜙0
𝜕𝝈0

=
√

3
2
�̇�0𝐍0, 𝐍0 =

𝐬0
‖𝐬0‖

, (6)

where the plastic multiplier �̇�0 is an explicit function of the stress
deviator 𝐬0 and is given by

�̇�0 =

⎧

⎪

⎨

⎪

⎩

1
𝜏0

(

𝜎eq0
�̂�y0

− 1

)1∕𝑚

if 𝜙0 ≥ 0,

0 if 𝜙0 < 0.

(7)

Here, 𝜏0 is the relaxation time and 𝑚 is the rate-sensitivity parameter,
0 < 𝑚 ≤ 1. The hardening parameter 𝜅0 is defined as the accumulated
plastic strain with the evolution law �̇�0 = �̇�0.

2.3. Viscoplastic compliance and stiffness tensors

As a step towards introducing the inverse viscoplastic Hill tensor Mv
∗

in the interaction equation (3), let us define the viscoplastic compliance
tensor Mv

0,

Mv
0 =

𝜕�̇�v0
𝜕𝝈0

=
𝜕�̇�v0
𝜕𝐬0

, (8)

here �̇�v0 is specified by the flow rule (6). Applying the spectral de-
omposition (Rychlewski, 1995; Kowalczyk-Gajewska and Ostrowska-
aciejewska, 2009), the fourth-order tensor Mv

0, understood as a lin-
ar operator in the six-dimensional space of symmetric second-order
ensors, can be expressed in the spectral form,

v
0 =

1
2𝑔1

G + 1
2𝑔2

F, (9)

n terms of the orthogonal projectors G and F,

= 𝐍0 ⊗ 𝐍0, F = ID −G, ID = I − IP, IP = 1
3
(𝐈⊗ 𝐈) , (10)

nd the corresponding inverse Kelvin moduli (i.e., the eigenvalues in
he spectral decomposition),
1 =

3�̇�0
eq y , 1 =

3�̇�0
eq , (11)
3

2𝑔1 2𝑚(𝜎0 − �̂�0 ) 2𝑔2 2𝜎0 m
here �̇�0 is specified by Eq. (7). In Eq. (10), I is the symmetrized fourth-
order identity tensor, while IP and ID are the orthogonal projectors,
respectively, onto the spherical and deviatoric spaces of second-order
symmetric tensors, so that I = IP + G + F and we have GF = O,
GG = G and FF = F. It follows that the inverse Kelvin modulus
associated with the spherical part IP is equal to zero, as a result of
plastic incompressibility.

The viscoplastic stiffness tensor Lv
0 is then defined as the inverse of

the compliance tensor Mv
0. However, considering that Mv

0 is positive-
semidefinite, the inverse is here defined in the five-dimensional de-
viatoric space, such that Lv

0M
v
0 = Mv

0L
v
0 = ID. The use of the or-

hogonal projectors G and F makes the calculations straightforward.
ccordingly, Lv

0 reads

v
0 = (Mv

0)
−1 = 2𝑔1G + 2𝑔2F. (12)

he Kelvin moduli 2𝑔1 and 2𝑔2, where 𝑔1 < 𝑔2 for 𝑚 ≤ 1, are of
ultiplicity one and four, respectively.

.4. Elastic and viscoplastic Hill tensors

The elastic Hill tensor Le
∗ is defined in the standard manner (Hill,

965) in terms of the elastic stiffness tensor of the matrix, L0, and of
he polarization tensor Pe, namely
e
∗ = (Pe)−1 − L0, Pe = P̂(L0), (13)

here P̂ denotes, in a symbolic way, a function that delivers the polar-
zation tensor for a given argument (here the stiffness tensor L0) and for
specified inclusion shape (assumed spherical throughout this work),

ee e.g. Willis (1981). In the case of elastically isotropic matrix and
pherical inclusions, the elastic Hill tensor Le

∗ and its inverse Me
∗ can be

eadily expressed in closed form (e.g., Hill, 1965; Kowalczyk-Gajewska,
012).

Likewise, the viscoplastic Hill tensor is defined in terms of the
iscoplastic stiffness tensor Lv

0, Eq. (12),

v
∗ = (Pv)−1 − Lv

0, Pv = P̂(Lv
0). (14)

imilarly to Eq. (12) the formula is restricted here to the five-
imensional deviatoric space, which is admissible due to the proposed
orm of the interaction equation. Recall that, for an incompressible
aterial, the Hill tensor in the six-dimensional space is well defined,

nd it has a finite bulk modulus (Hutchinson, 1976). However, only its
rojection onto the deviatoric space, IDLv

∗I
D, plays a role in the interac-

ion equation (3). Accordingly, the viscoplastic compliance Hill tensor
v
∗ is derived as an inverse of the Hill tensor Lv

∗ in the five-dimensional
eviatoric space,
v
∗ =

(

IDLv
∗I

D)−1 . (15)

The polarization tensor Pv in Eq. (14) depends on the viscoplastic
tiffness of the matrix and on the shape of inclusions. Generally, Lv

0 is
nisotropic even if the material itself is isotropic, and thus the deriva-
ion of Pv = P̂(Lv

0) is only possible via numerical integration (Willis,
981). Note that, in the case of an incompressible solid, in most
f available procedures a very small compressibility is introduced to
v
0 (e.g., Hutchinson, 1976; Bornert et al., 2001). Such an approach is
lso followed in the present work. An alternative solution was proposed
n Lebensohn et al. (1998), where the tangent stiffness given by Eq. (12)
as used to calculate the polarization tensor, however, an additional

onstraint was imposed on Green’s function to account for viscoplastic
ncompressibility.

In order to reduce the computational cost, the subsequent simplifi-
ation is commonly used
v,iso = P̂(Lv,iso

0 ), (16)

o that Pv,iso is determined in terms of the isotropized stiffness of the
v,iso
atrix, L0 , and the polarization tensor is then isotropic as well. As
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in the case of the elastic–plastic tangent stiffness in rate-independent
plasticity, isotropization of Lv

0 may be performed in various ways (e.g.,
oghri and Ouaar, 2003; Chaboche et al., 2005; Pierard and Doghri,
006; Czarnota et al., 2015).

Referring to the specific form (12) of the viscoplastic stiffness tensor
v
0, its isotropic counterpart can be defined as

v,iso
0 = 2𝑔ID, 𝑔 = (1 − 𝛽) 𝑔1 + 𝛽𝑔2, (17)

here 𝑔 is defined in terms of the moduli 𝑔1 and 𝑔2, and 𝛽 is a weighting
actor, 0 ≤ 𝛽 ≤ 1. There are two common choices of factor 𝛽. Setting
= 0, so that 𝑔 = 𝑔1, corresponds to the so-called soft isotropization

recall that 𝑔1 < 𝑔2). On the other hand, the hard isotropization is
btained for 𝛽 = 4∕5 so that the resulting tensor Lv,iso

0 is the isotropic
art of Lv

0 in the sense that ID ⋅Lv,iso
0 = ID ⋅Lv

0, so that Lv,iso
0 = (ID ⋅Lv

0)I
D.

Now, for an isotropic viscoplastic stiffness tensor Lv,iso
0 , the polariza-

ion tensor Pv,iso and its inverse, both restricted to the five-dimensional
eviatoric space, are given in an explicit form,

v,iso = P̂(Lv,iso
0 ) = 1

5𝑔
ID, (Pv,iso)−1 = 5𝑔ID. (18)

Finally, upon isotropization of Lv
0, the viscoplastic Hill tensor can

be determined directly using Eq. (14). By expressing the Hill tensor
entirely in terms of the isotropic stiffness Lv,iso

0 , we have

Lv,iso
∗ = (Pv,iso)−1 − Lv,iso

0 = 3𝑔ID, Mv,iso
∗ = 1

3𝑔
ID. (19)

ote that, alternatively, the isotropic polarization tensor, Eq. (18), can
e combined with the actual anisotropic viscoplastic stiffness Lv

0, thus
ielding an anisotropic Hill tensor,
v,mix
∗ = (Pv,iso)−1 − Lv

0 = (5𝑔 − 2𝑔1)G + (5𝑔 − 2𝑔2)F. (20)

However, in the case of the soft isotropization, the Hill tensor given
by Eq. (20) is not necessarily positive definite as required by the
theory (Walpole, 1981). On the other hand, it has been checked that
for the hard isotropization the Hill tensor of the form (20) leads to an
overly stiff response. Accordingly, the second option, Eq. (20), is not
used in the detailed analysis reported below, and only the isotropic Hill
tensor (19) is used whenever isotropization is employed.

Note that, in the context of isotropization, the names ‘soft’ and ‘hard’
stem from the fact that there exists a monotonous relation between
the Hill tensor L∗ and the corresponding stiffness tensor L in the
sense that if L𝑎 − L𝑏 is positive definite then L𝑎

∗ − L𝑏
∗ is also positive

definite. As a consequence, the stress–strain response calculated for the
soft isotropization will be softer than the one predicted for the hard
isotropization. Based on the same reasoning, for the hard isotropization,
one may expect a softer response for the case (19) than for (20).

3. Illustration of selected effects resulting from the Mori–Tanaka
model

The additive tangent MT model outlined in the previous section is
now applied to illustrate some effects that are characteristic for this mi-
cromechanical scheme. Specifically, our aim here is to demonstrate that
in some situations, depending on the material and loading parameters,
a softening response is predicted by the model, which can be considered
a spurious effect of the MT model when applied to elastic–viscoplastic
materials. A detailed study of the softening and of the related effects is
carried out in Section 4.

The material parameters used in the present illustrative simulations
refer to a metal-matrix composite with spherical (ceramic) elastic in-
clusions. The Young’s modulus and the Poisson’s ratio of the matrix
are adopted as 𝐸0 = 75GPa and 𝜈0 = 0.3, respectively, and those of the
inclusions as 𝐸1 = 400GPa and 𝜈1 = 0.2. The yield stress of the matrix
is assumed equal to 𝜎y0 = 75MPa, and ideal plasticity (i.e. no strain
hardening) is assumed so that �̂�y0 (𝜅0) = 𝜎y0 , unless otherwise stated.
4

The rate-sensitivity parameter is adopted as 𝑚 = 1, unless otherwise
stated. Finally, the relaxation time 𝜏0 is left unspecified, since it is used
to normalize the strain rate, so that the latter is always specified by the
product 𝜏0 ̇̄𝜀. The computations have been carried out using a constant
strain increment Δ�̄� = 10−4. It has been checked that the results are not
visibly affected when the strain increment is further reduced.

In the simulations reported below, unless otherwise stated, the com-
posite material is subjected to uniaxial tension, and the macroscopic
response is reported in terms of the macroscopic tensile stress �̄� and
strain �̄�. The prescribed constant macroscopic strain rate 𝜏0 ̇̄𝜀 is varied
and so is the volume fraction 𝑐 of inclusions. The MT model combined
with the soft isotropization, see Eq. (19) with 𝑔 = 𝑔1, is used in most
cases, since this model admits an analytical solution that is discussed
in more detail in Section 4.4, however, other cases are also considered.

Fig. 1 shows the tensile response of the (homogeneous) matrix
material (𝑐 = 0) for 𝑚 = 1. In this reference case, the analytical solution
can be easily obtained (e.g., de Souza Neto et al., 2008, Section 11.2.7).
The response is linear elastic until the stress reaches the yield stress 𝜎y0 ,
and the corresponding strain is denoted by 𝜀y0 (both quantities are used
to normalize the response in Fig. 1). The elastic-to-plastic transition is
smooth (the slope of the stress–strain curve is continuous), and then
the stress increases towards its asymptotic value 𝜎∞0 = (1 + 𝜏0�̇�0)𝜎

y
0 ,

see Section 4.3. This asymptotic response is described by a simple
exponential function.

Now, Fig. 2 shows the corresponding response predicted by the
additive MT model for a composite material with the inclusion volume
fraction 𝑐 = 0.1. The elastic response, including the macroscopic yield
stress �̄�y and the corresponding macroscopic strain �̄�y, is governed by
the classical MT model, cf. Eq. (1), and is thus rate-independent. For the
adopted material parameters, the macroscopic yield stress �̄�y is higher
than that of the matrix, while the macroscopic yield strain �̄�y is lower
as a result of a higher effective elastic modulus.

The response in the plastic range is qualitatively different than that in
the reference case of a homogeneous elastic–viscoplastic material (i.e.
for 𝑐 = 0). As expected, the asymptotic macroscopic stress �̄�∞ increases
with increasing strain rate 𝜏0 ̇̄𝜀. However, there is a range of strain rates
for which �̄�∞ is lower than the macroscopic yield stress �̄�y, see the case
of 𝜏0 ̇̄𝜀 = 0.01 and 0.05 in Fig. 2. As a result, in some cases, the stress–
strain response is non-monotonic. This is a spurious effect of the MT
model, since in general such a response is not expected in reality (and
is not predicted by more elaborate micromechanical schemes, see e.g.
the finite-element unit-cell computations reported in Section 5). To the
best of our knowledge, this feature of the additive tangent MT scheme
has not been reported nor discussed to date, and hence its extended
analysis is carried out in the present paper.

Fig. 2 shows two types of the non-monotonic (or softening) re-
sponse. The macroscopic stress may decrease monotonically in the
plastic range, as in the case of 𝜏0 ̇̄𝜀 = 0.01, or first increase and then
decrease towards �̄�∞, as in the case of 𝜏0 ̇̄𝜀 = 0.05 and 0.1. For higher
strain rates, e.g. for 𝜏0 ̇̄𝜀 = 0.5, the macroscopic stress–strain response is
monotonic.

We also note that, unlike in the case of a homogeneous material
(𝑐 = 0), the elastic-to-plastic transition is not smooth, which is clearly
visible in the case of the lower strain rates. The kink on the stress–strain
curve is not visible (but still present, see Section 4.4) for 𝜏0 ̇̄𝜀 = 0.5.

Fig. 3 illustrates the effect of the volume fraction 𝑐 on the macro-
scopic response for a fixed macroscopic strain rate 𝜏0 ̇̄𝜀 = 0.05. Note that
in panels (a) and (b) the response is normalized by the yield stress and
strain of the matrix (𝜎y0 and 𝜀y0, respectively), hence the effect of 𝑐 on
the effective elastic modulus, on the macroscopic yield stress and on
the asymptotic macroscopic stress is clearly visible (all those quantities
increase with increasing 𝑐). In panel (c), the response is normalized by
the macroscopic yield stress and strain (�̄�y and �̄�y, respectively), hence
the elastic response appears independent of 𝑐 and the effect of 𝑐 on the
asymptotic macroscopic stress in reversed. It can be seen in Fig. 3 that
the softening is more pronounced for higher volume fractions 𝑐. We

also note that for 𝑐 = 0.05 the asymptotic macroscopic stress is higher
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Fig. 1. Uniaxial response of the homogeneous elastic–viscoplastic material of the matrix (𝑐 = 0) for 𝑚 = 1: (a) the effect of the normalized strain rate 𝜏0 �̇�0; (b) a detailed view of
the elastic-to-plastic transition. The tensile stress 𝜎0 and strain 𝜀0 are normalized, respectively, by the yield stress 𝜎y

0 and by the corresponding strain 𝜀y0 . Here and in the subsequent
figures, the instant of the elastic-to-plastic transition is indicated by a black marker.

Fig. 2. Macroscopic uniaxial response predicted by the MT model for 𝑐 = 0.1, 𝑚 = 1 and soft isotropization: (a) the effect of the normalized strain rate 𝜏0 ̇̄𝜀; (b) a detailed view of
the elastic-to-plastic transition. The macroscopic tensile stress �̄� and strain �̄� are normalized, respectively, by the yield stress 𝜎y

0 of the matrix and by the corresponding strain 𝜀y0 ,
as in Fig. 1. The horizontal dashed line in panel (b) indicates the asymptotic macroscopic stress for 𝜏0 ̇̄𝜀 = 0.1 thus showing that the corresponding response is non-monotonic.

Fig. 3. Effect of the inclusion volume fraction 𝑐 on the macroscopic uniaxial response for 𝜏0 ̇̄𝜀 = 0.05, 𝑚 = 1 and soft isotropization. Panels (b) and (c) show a detailed view of
the elastic-to-plastic transition, though with a different normalization. In panels (a) and (b), the response is normalized using the yield stress and strain of the matrix (𝜎y

0 , 𝜀
y
0). In

panel (c), each stress–strain curve is normalized using the respective macroscopic yield stress and strain (�̄�y , �̄�y). The horizontal dashed line in panel (c) indicates the asymptotic
macroscopic stress for 𝑐 = 0.05.
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Fig. 4. Effect of the rate-sensitivity parameter 𝑚 on the macroscopic uniaxial response for 𝑐 = 0.1 and soft isotropization, and for three selected strain rates: (a) 𝜏0 ̇̄𝜀 = 0.01,
b) 𝜏0 ̇̄𝜀 = 0.1 and (c) 𝜏0 ̇̄𝜀 = 1.
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han the macroscopic yield stress, �̄�∞ > �̄�y, still the response exhibits
oftening after the macroscopic stress reaches a maximum at �̄�∕�̄�y ≈ 1.1,
ee the horizontal dashed line in Fig. 3c.

To check whether the softening response is not associated with the
ate-sensitivity parameter set to 𝑚 = 1 in the preceding simulations,
he effect of parameter 𝑚 is examined in Fig. 4 for 𝑐 = 0.1 and for three
elected strain rates. It can be seen that the macroscopic response is
ffected by the rate-sensitivity parameter 𝑚 and by the strain rate 𝜏0 ̇̄𝜀
n a complex manner, but the general observation is that softening may
ccur also for 𝑚 < 1.

The effect of strain hardening of the matrix material is illustrated in
ig. 5. Specifically, a linear isotropic hardening is considered such that
he current yield stress, cf. Eq. (5), is defined as �̂�y0 (𝜅0) = 𝜎y0 + 𝐻0𝜅0,
here 𝐻0 is the hardening modulus (recall that ideal plasticity with
0 = 0 has been assumed so far). As expected, depending on the

ardening modulus 𝐻0 and on the magnitude of the softening in the
espective case with 𝐻0 = 0, the hardening effects in the matrix may
ully compensate the softening in the macroscopic response so that

monotonic response is obtained, as in the case of 𝐻0 = 0.05𝐸0
or 𝜏0 ̇̄𝜀 = 0.1 in Fig. 5b, or only partially reduce the magnitude of
oftening, as in the remaining cases depicted in Fig. 5a,b. In general, the
oftening during the initial transient period (if present) is followed by a
ardening overall response thus a non-monotonic up-down-up response
s obtained for 𝐻0 > 0.

Finally, we examine the impact of the isotropization method applied
o the viscoplastic stiffness tensor Lv

0 that is used to compute the Hill
ensor Lv

∗. Here, the case of the ‘soft’ and ‘hard’ isotropization is con-
idered, the second one in two variants corresponding to Eqs. (19) and
20), as well as the case of no isotropization (denoted as ‘anisotropic’).
n the latter case, the predictions vary depending on the assumed
eformation process, and here two limit cases of uniaxial tension and
ure shear are considered. The results presented in Fig. 6 may suggest
hat softening occurs only for the soft isotropization and in the case
f pure shear with no isotropization. However, a detailed analysis
arried out in the next section shows that there exists a (small) range
f material parameters for which softening may be observed also in
ther cases. This is illustrated in Fig. 7 in which the material parameters
ave been adopted such that softening, even if relatively weak, is
bserved in all cases, except for the hard isotropization combined with
q. (20). The results reported in Figs. 6 and 7 confirm also that the hard
sotropization combined with Eq. (20) yields an overly stiff response,
nd hence this case is not discussed in the subsequent sections.

In the illustrative cases reported so far, only the macroscopic re-
ponse has been examined. To provide more insight into the effects
nder consideration, Fig. 8 presents the evolution of the local stresses in
he phases as a function of the macroscopic strain for the case studied
6

n Fig. 6. From Fig. 8 and also from other observations that are not
eported here, it follows that the softening in the macroscopic response
s accompanied by a decrease of the equivalent stress in the (elastic)
nclusions during the initial stage of deformation soon after the elastic-
o-plastic transition. The related effects are more pronounced for the
oft isotropization, but are also observed in other cases. This seems
o be related to the release of the internal stresses that accumulate in
he inclusions during elastic loading as a result of the elastic mismatch
etween the phases. Note that the equivalent stress in the matrix is
ractically not affected by isotropization or by the Lode angle 𝜃 in
he anisotropic case, cf. Fig. 8a. Very small differences, illustrated in
he insets in Fig. 8a, occur only in the vicinity of the elastic-to-plastic
ransition.

The main conclusion of the preliminary analysis carried out above is
hat the additive tangent MT model for elastic–viscoplastic composites
ay lead to a softening macroscopic response. For the rate-sensitivity
arameter 𝑚 = 1, this effect is more pronounced at lower strain rates
nd at higher volume fractions of inclusions. However, the results
hown in Fig. 4 indicate that for 𝑚 = 0.01 the effect is observed also at
igher strain rates. We also note that the associated stress drop is often
ery abrupt and thus would not be compensated by the strain hardening
n the matrix. It has also been observed that the macroscopic response
redicted by the additive tangent MT model may exhibit a non-smooth
lastic-to-plastic transition. Recall that the elastic-to-plastic transition
s smooth in the case of a homogeneous elastic–viscoplastic material.

. Analysis of the softening in the macroscopic response

In this section, we carry out a detailed analysis of the softening
esponse resulting from the additive tangent MT model, which has
een illustrated in the previous section. To this end, the special case
f proportional deviatoric loading is considered, which results in scalar
overning equations, Section 4.1. The elastic-to-plastic transition is
iscussed in Section 4.2. In Section 4.3, general expressions for the
symptotic macroscopic stress �̄�∞ are derived and the conditions under
hich �̄�∞ is lower than the macroscopic yield stress �̄�y are analysed. Fi-
ally, in Section 4.4, an analytical solution is derived for the case of soft
sotropization and 𝑚 = 1, which facilitates a complete characterization
f the softening response in this case.

.1. Proportional deviatoric loading

Consider now the case of proportional deviatoric loading such that
he composite material is subjected, in a strain-controlled process, to a
eviatoric macroscopic strain,

̄ =
√

3 �̄�𝐍, 𝐍 = const, (21)

2
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Fig. 5. Effect of the hardening modulus 𝐻0 on the macroscopic uniaxial response for 𝑐 = 0.1, 𝑚 = 1 and soft isotropization, and for three selected strain rates: (a) 𝜏0 ̇̄𝜀 = 0.05, (b)
0 ̇̄𝜀 = 0.1 and (c) 𝜏0 ̇̄𝜀 = 1.
Fig. 6. Effect of isotropization of Lv
0 on the macroscopic response for 𝑐 = 0.2 and 𝜏0 ̇̄𝜀 = 0.01, and for two selected rate-sensitivity parameters: (a) 𝑚 = 1 and (b) 𝑚 = 0.1. In the

case of no isotropization (marked as ‘anisotropic’), the response depends on the deformation mode, and two limit cases of uniaxial tension and pure shear are shown.
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where the tensor 𝐍 is a constant unit deviator, tr 𝐍 = 0, ‖𝐍‖ = 1,
and the scalar factor �̄� = �̄�(𝑡) is a prescribed monotonic function of
time ( ̇̄𝜀(𝑡) > 0), thus specifying the macroscopic strain �̄�. On account
of plastic incompressibility and elastic and plastic isotropy of the
constituent phases, it can be shown that, upon isotropization of the
viscoplastic Hill tensor, the microscopic and macroscopic response is
also deviatoric and proportional, see also Sadowski et al. (2017b), so
that in particular,

�̄� =
√

2
3
�̄�𝐍, 𝝈𝑖 =

√

2
3
𝜎𝑖𝐍, 𝜺𝑖 =

√

3
2
𝜀𝑖𝐍, (22)

nd likewise for the rates. Here, �̄�, 𝜎𝑖 and 𝜀𝑖 are scalar coefficients
pecifying the magnitudes of the respective deviatoric tensors. By con-
truction, �̄� and 𝜎𝑖 correspond to the respective equivalent uniaxial
tresses.

As a result, the tensorial governing equations of the MT model,
ection 2, simplify to the respective scalar forms. The constitutive
qs. (2) and (6) take the following form,

�̇�1 = 3𝐺1�̇�1, �̇�0 = 3𝐺0
(

�̇�0 − �̇�v0
)

, �̇�v0 = �̇�0, (23)

where 𝐺𝑖 are the elastic shear moduli such that 2𝐺𝑖 = 𝐍 ⋅L𝑖𝐍 and �̇�0 is
governed by Eq. (7). The interaction equation (3) reads

�̇�1 − �̇�0 = − 1
v
(

𝜎1 − 𝜎0
)

− 1
e
(

�̇�1 − �̇�0
)

, (24)
7

3𝐺∗ 3𝐺∗
here 𝐺e
∗ and 𝐺v

∗ are scalar coefficients of the form

2𝐺e
∗ = 𝐍 ⋅ Le

∗𝐍 =
𝐺0(8𝐺0 + 9𝐾0)
3(2𝐺0 +𝐾0)

, 2𝐺v
∗ = 𝐍 ⋅ Lv

∗𝐍 = 3𝑔. (25)

ere, 𝐾0 stands for the bulk modulus of the matrix, and 𝑔 is defined in
Eq. (17). Coefficient 𝐺e

∗ corresponds to an elastically isotropic matrix
and Eq. (25)1 is a standard result (e.g., Hill, 1965). Coefficient 𝐺v

∗ of
he form (25)2 corresponds to the isotropic viscoplastic Hill tensor (17).
ote that a closed-form expression is not available in the case of an
nisotropic viscoplastic Hill tensor (14) which must be then evaluated
umerically (Ponte Castañeda, 1996).

Finally, the averaging rule (4) is applied to the scalar quantities,

̇̄𝜀 = (1 − 𝑐)�̇�0 + 𝑐�̇�1, ̇̄𝜎 = (1 − 𝑐)�̇�0 + 𝑐�̇�1. (26)

The set of Eqs. (23)–(26) can now be used to obtain the overall
esponse of the considered elastic–viscoplastic two-phase composite
nder proportional deviatoric loading,

̇̄𝜎 = 3�̄�( ̇̄𝜀 − ̇̄𝜀v), (27)

where �̄� is the overall elastic shear modulus,

�̄� =
(1 − 𝑐)𝐺0 + 𝑐𝛼𝐺1

1 − 𝑐 + 𝑐𝛼
, 𝛼 =

𝐺0 + 𝐺e
∗

𝐺1 + 𝐺e
∗
, (28)

while ̇̄𝜀v denotes the macroscopic plastic strain rate. Note that ̇̄𝜀v is the
overall inelastic strain rate, thus ̇̄𝜀v = ̇̄𝜀 − ̇̄𝜀e, where ̇̄𝜀e = ̇̄𝜎∕(3�̄�), and
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Fig. 7. Effect of isotropization of Lv
0 on the macroscopic response for 𝑐 = 0.3, 𝜏0 ̇̄𝜀 = 0.01, 𝜈0 = 0.45, 𝐸1 = 25𝐸0, and for two selected strain rate sensitivity coefficients: (a) 𝑚 = 1

and (b) 𝑚 = 0.1. Here, the material parameters (𝜈0 and 𝐸1∕𝐸0) have been tuned such that the softening is observed in all cases except Eq. (20).
Fig. 8. Local stresses in the phases shown as a function of the normalized macroscopic strain for 𝑐 = 0.2 and 𝜏0 ̇̄𝜀 = 0.01: (a) tensile stress in the matrix, 𝜎0, for 𝑚 = 1 and 𝑚 = 0.1;
ensile stress in the inclusions, 𝜎1, for (b) 𝑚 = 1 and (c) 𝑚 = 0.1.
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s not equal to the simple average of the local quantities in the form
1 − 𝑐)�̇�v0.

emark 1. Let us stress that, when the anisotropic viscoplastic Hill
ensor is used in the interaction equation (3), the local and over-
ll stresses and strains remain coaxial (they share common principal
irections) for the considered process (21), but are not necessarily
roportional, as exposed by Eqs. (22). It can be proved that Eqs. (22)
old also for the anisotropic viscoplastic Hill tensor when the isochoric
ension/compression or pure shear processes are assumed and do not
old for the combination of these two processes. Strictly speaking,
qs. (22) are valid as long as G = 𝐍⊗𝐍 in Eq. (10) is the eigen-projector
f the viscoplastic Hill tensor Lv

∗, and thus of its inverse Mv
∗, in its spec-

ral decomposition (Kowalczyk-Gajewska and Ostrowska-Maciejewska,
009), i.e. when

v
∗𝐍(𝜃) =

1
2𝐺v

∗(𝜃)
𝐍(𝜃), (29)

where 𝜃 denotes the Lode angle. Since by Eq. (15) the polarization
tensor and thus the Hill tensor share their symmetry group with the
stiffness tensor Lv

0 , it is seen that Eq. (29) holds when 𝐍(𝜃) represents
isochoric tension/compression (𝜃 = 0 or 𝜋∕3) or pure shear (𝜃 =
𝜋∕6). In these two cases, Lv

∗ is transversely isotropic or of tetragonal
symmetry, respectively, so 𝐍(𝜃) is an eigenstate and 2𝐺v

∗(𝜃) is the cor-
responding Kelvin modulus of any fourth-order tensor of the respective

v

8

symmetry group. Note that the value of 𝐺∗ is in general different
in these two cases. In other instances, Lv
∗ is orthotropic (with the

rthotropy axes coaxial with the principal directions of 𝐍) and 𝐍, even
when being the eigenstate of Lv

0 , is not necessarily an eigenstate of the
olarization tensor Pv and of the Hill tensor Lv

∗. A direct consequence
f the anisotropy of the Hill tensor is the influence of the third invariant
n the composite equivalent strain–equivalent stress response, despite
he local constitutive laws (2) and (5)–(7) do not involve such depen-
ency. Note that the equality of eigensubspaces of anisotropic Pv and
v
0 was erroneously claimed by Ponte Castañeda (1996) and Ponte Cas-

añeda and Suquet (1997). This error was next corrected in (Nebozhyn
nd Ponte Castañeda, 1999) where it was shown that the assumption
f such an equality provides only an approximation of Pv.

.2. Elastic-to-plastic transition

In the following, a monotonic loading process is considered with
̇̄ > 0 and with the initial state specified by �̄� = 0 and 𝜀v0 = 0.
nitially the response is elastic, and the corresponding macroscopic
esponse, �̄� = 3�̄��̄�, cf. Eq. (27), results from the classical MT model, cf.
q. (1). The macroscopic stress �̄�y at the instant of the elastic-to-plastic
ransition is then obtained by enforcing the yield condition 𝜙0 = 0 and
eads

̄ y =
(

1 − 𝑐 + 𝑐𝛼
𝐺1

)

𝜎y . (30)

𝐺0

0
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As illustrated in Section 3, the macroscopic response may be non-
smooth at the instant of the elastic-to-plastic transition. From Eq. (27),
it follows that the condition for smoothness is that the plastic strain rate
vanishes at this instant, i.e., ̇̄𝜀v|

|𝜙0=0
= 0. To examine this condition

urther, let us consider the viscoplastic response in the matrix at the
lastic-to-plastic transition, i.e., the first branch in Eq. (7) at 𝜙0 = 0

(so when locally in the matrix �̇�0 = 0). The corresponding macroscopic
plastic strain rate ̇̄𝜺v =

√

3∕2 ̇̄𝜀v𝐍 can be found in a closed form for the
sotropized viscoplastic Hill tensor and reads

̇̄𝜀v|
|𝜙0=0

=
𝑐(1 − 𝑐)

(1 − 𝑐 + 𝑐𝛼)
1

𝐺0�̄�

(𝐺e
∗(𝐺0 − 𝐺1)
𝐺1 + 𝐺e

∗

)2 𝜎y0
3𝐺v

∗
. (31)

It can be checked that ̇̄𝜀v|
|𝜙0=0

≥ 0. Furthermore, we have ̇̄𝜀v|
|𝜙0=0

> 0
only for the soft isotropization with 𝑚 = 1 (provided 𝑐 > 0 and 𝐺1 ≠ 𝐺0,
to exclude these two trivial cases). Indeed, for the soft isotropization
(𝛽 = 0), by evaluating 𝐺v

∗ in Eq. (25)2 using Eqs. (7), (11) and (17), we
have

2𝐺v,sof t
∗ = 𝜏0𝑚

(

�̂�y0
)1∕𝑚 (

𝜎eq0 − �̂�y0
)1−1∕𝑚 , (32)

which for 𝑚 = 1 simplifies to

2𝐺v,sof t
∗ = 𝜏0 �̂�

y
0 . (33)

In the case of the hard isotropization (𝛽 = 4∕5), we have

2𝐺v,hard
∗ = 1

5
𝜏0

(

4𝜎eq0 + 𝑚
(

𝜎eq0 − �̂�y0
))

(

�̂�y0
𝜎eq0 − �̂�y0

)1∕𝑚

. (34)

Accordingly, we have 𝐺v
∗ → ∞ for 𝜙0 → 0+ in all cases except for

the soft isotropization with 𝑚 = 1, when 𝐺v
∗ is finite, cf. Eq. (33).

Specification (31) still holds for the anisotropic Hill tensor under the
condition (29), i.e., for a uniaxial tension/compression or pure shear
process with 𝐺v

∗ = 𝐺v
∗(𝜃). For other values of 𝜃, at the instant of

the elastic-to-plastic transition the proportionality (22) is lost, since
̇̄𝜺v ≠

√

3∕2 ̇̄𝜀v𝐍.
As mentioned above, if ̇̄𝜀v|

|𝜙0=0
= 0 then the macroscopic response

s smooth at the elastic-to-plastic transition, cf. Eq. (27). The non-
mooth response, as observed in some cases in the sample simulations
n Section 3, is thus limited to the case of the soft isotropization with
= 1. Otherwise, the macroscopic response is smooth and thus shares

his feature with the response of a homogeneous elastic–viscoplastic
aterial.

.3. Asymptotic macroscopic stress �̄�∞

In this section, we consider the case of ideal plasticity (no hard-
ning, �̂�y0 = 𝜎y0 ) and we examine the asymptotic macroscopic stress
�̄�∞ under a constant macroscopic strain rate, which, as shown below,
an be determined in a closed form. We then provide the conditions
n which �̄�∞ is lower than the macroscopic yield stress �̄�y, which is

sufficient (but not a necessary) condition for the softening in the
acroscopic stress–strain response.

First, we consider the case when the Hill tensor is anisotropic,
owever, the condition (29) is fulfilled so that the proportionality
elations (22) remain valid. Under a constant macroscopic strain rate
0 ̇̄𝜀, an asymptotic steady state is reached for �̄� → ∞. In the steady
tate, the stresses are constant, thus �̇�0 = �̇�1 = ̇̄𝜎 = 0, so that we
ave �̇�0 − �̇�v0 = 0 and �̇�1 = 0, cf. Eq. (23). Accordingly, the interaction
quation (24) and the averaging rule (26) simplify to

�̇�0 =
1

3𝐺v
∗(𝜃)

(

𝜎1 − 𝜎0
)

, ̇̄𝜀 = (1 − 𝑐) �̇�0, (35)

where 𝐺v
∗ (𝜃) is defined by Eq. (25)2 with 𝐍 = 𝐍(𝜃), and 𝜃 is the Lode

angle equal to 0 (or 𝜋∕3) and 𝜋∕6 for uniaxial tension (or compression)
and pure shear processes, respectively. In such case,

�̄�∞(𝜃) = 𝜎y
(

1 +
(

𝜏0 ̇̄𝜀
)𝑚)

+ 3 𝑐 𝐺v
∗(𝜃) ̇̄𝜀, (36)
9

0 1 − 𝑐 1 − 𝑐
here
v
∗(0) = 𝐺v

∗(𝜋∕3) > 𝐺v
∗(𝜋∕6). (37)

For other values of 𝜃, the condition (29) is not fulfilled and in such
case Eq. (36) provides only the work-conjugate equivalent stress such
that �̄�∞ ⋅ ̇̄𝜺 = �̄�∞(𝜃) ̇̄𝜀, however, �̄�∞ ≠

√

2∕3�̄�∞(𝜃)𝐍. Recall that a closed-
form expression for 𝐺v

∗(𝜃) is not available so that it must be evaluated
numerically.

In agreement with Eqs. (36)–(37), a higher value of �̄�∞ for uni-
xial tension than for pure shear was found by Nebozhyn and Ponte
astañeda (1999) using second-order variational estimates for two-
hase viscoplastic composites, and also noted by Ponte Castañeda and
uquet (2001) in FFT-based full-field simulations reported therein. Note
hat, although the second stress moments were used by Nebozhyn and
onte Castañeda (1999) to obtain the estimates of the flow stress, the
iscussed sensitivity to the Lode angle 𝜃 was a direct consequence of
he anisotropy of the tangent stiffness. This feature is shared by the
resent model employing only the first moments. The final predictions
ill thus be qualitatively the same for both approaches, while the use
f the second-order moments may lead only to quantitative differences
n the predicted values.

Next, we consider the case of the isotropized viscoplastic Hill tensor.
n this case, proportionality conditions (22) hold, and the value of
v
∗ defined by Eq. (25)2 is independent of 𝜃. By combining Eq. (35)

with Eqs. (7) and (26)2, and with the formula for 𝐺v
∗, Eq. (32) or (34)

depending on the isotropization variant, the asymptotic macroscopic
stress is obtained in the following form

�̄�∞,sof t = 𝜎y0

(

1 +
(

1 + 3
2
𝑚𝑐

)

(

𝜏0 ̇̄𝜀
1 − 𝑐

)𝑚)

(38)

for the soft isotropization, and in the following form

�̄�∞,hard = 𝜎y0

(

1 + 6
5
𝑐 +

(

1 + 3
10

(4 + 𝑚) 𝑐
)

(

𝜏0 ̇̄𝜀
1 − 𝑐

)𝑚)

(39)

for the hard isotropization. In the limit case of 𝜏0 ̇̄𝜀 → 0, the asymptotic
tresses simplify to �̄�∞,sof t = 𝜎y0 and �̄�∞,hard = 𝜎y0 (1 +

6
5 𝑐).

It is noted that, upon isotropization, the response predicted by the
T model, including the asymptotic stress �̄�∞, does not depend on the

Lode angle 𝜃, while it does depend on 𝜃 in the anisotropic case. This
an be considered a limitation of the isotropized additive tangent MT
odel. However, in the anisotropic case, the predicted impact of 𝜃 on

�̄�∞ is in most cases mild. The maximum difference between the limit
cases of 𝜃 = 0 (tension) and 𝜃 = 𝜋∕6 (shear) increases with decreasing
strain rate and with decreasing 𝑚. The extreme case, independently of
𝑚, is obtained for the strain rate approaching zero, when the ratio of
�̄�∞ for shear and for tension is equal to 1∕(1 + 0.923𝑐), according to
Eq. (36) evaluated numerically. For a realistic range of volume fractions
and for the normalized strain rate 𝜏0 ̇̄𝜀 greater than 0.01, the maximum
difference does not exceed 10%, and typically it is visibly smaller.

The asymptotic macroscopic stress �̄�∞ can now be compared to the
macroscopic yield stress �̄�y, Eq. (30), and the condition �̄�∞ < �̄�y implies
he following condition for the macroscopic strain rate,

≤ 𝜏0 ̇̄𝜀 < 𝑝⟨𝑞⟩1∕𝑚, (40)

here the coefficients 𝑝 and 𝑞 depend on the material properties and
n the isotropization variant, viz.

sof t = (1 − 𝑐)
( 2𝑐
2 + 3𝑚𝑐

)1∕𝑚
, 𝑞sof t = 𝛼

𝐺1
𝐺0

− 1, (41)

𝑝hard = (1 − 𝑐)
(

10𝑐
10 + 3(4 + 𝑚)𝑐

)1∕𝑚
, 𝑞hard = 𝛼

𝐺1
𝐺0

− 11
5
, (42)

and ⟨𝑥⟩ = (𝑥 + |𝑥|)∕2. It follows that the coefficient 𝑝 = 𝑝(𝑚, 𝑐) is
lways greater than zero, 𝑝 > 0, while the sign of the coefficient
= 𝑞(𝐺1∕𝐺0, 𝜈0) depends on the material parameters through the term
𝐺1∕𝐺0,
𝐺1 =

15(1 − 𝜈0)𝐺1 , (43)

𝐺0 (7 − 5𝜈0)𝐺0 + 2(4 − 5𝜈0)𝐺1
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Fig. 9. Coefficient 𝛼𝐺1∕𝐺0 as a function of 𝐺1∕𝐺0 and 𝜈0, cf. Eq. (43). The horizontal
dashed and dotted lines indicate the values of 𝛼𝐺1∕𝐺0 for which, respectively, 𝑞sof t = 0
and 𝑞hard = 0, cf. Eqs. (40)–(42).

Fig. 10. Three domains in the space parameterized by 𝐺1∕𝐺0 and 𝜏0 ̇̄𝜀 for the case of
he soft isotropization, 𝑚 = 1, 𝜈0 = 0.3 and 𝑐 = 0.1. The domain of �̄�∞ < �̄�y (lower-right
orner) is bounded by the line 𝜏0 ̇̄𝜀 = 𝑝⟨𝑞⟩1∕𝑚, cf. Eq. (40). The line of �̄�∞ = �̄�max, which
pecifies the domain of no softening, is given by a closed-form expression only for the
oft isotropization with 𝑚 = 1, see Section 4.4.

s illustrated in Fig. 9.
An interpretation of the condition in Eq. (40) is provided in Fig. 10

hich shows three domains in the space parameterized by 𝐺1∕𝐺0
nd 𝜏0 ̇̄𝜀. The shaded domain in the lower-right corner indicates the
ombination of parameters for which �̄�∞ < �̄�y, as specified by the
ondition in Eq. (40). The diagram in Fig. 10 corresponds to the case of
he soft isotropization with 𝑚 = 1 in which the line separating the other
wo domains can be found in terms of the analytical solution discussed
n Section 4.4.

Fig. 11 shows the lines of 𝜏0 ̇̄𝜀 = 𝑝⟨𝑞⟩1∕𝑚 corresponding to the soft
sotropization for selected values of 𝑚 and 𝑐. It can be seen that the
omain of �̄�∞ < �̄�y increases with increasing 𝑐, which is consistent with
he results reported in Fig. 3. On the other hand, the domain of �̄�∞ < �̄�y

ignificantly decreases with decreasing 𝑚 (note the logarithmic scale
n Fig. 11b). The corresponding diagrams for the hard isotropization
not shown for brevity) indicate that the domain of �̄�∞ < �̄�y is then
ignificantly smaller than in the case of the soft isotropization. This is
onsistent with the observation that the condition 𝑞 > 0 is satisfied
nly for relatively high ratios 𝐺1∕𝐺0 and only for a limited range of 𝜈0,
pecifically for 𝜈0 > 13∕35 ≈ 0.37 (which includes the case of elastically
ncompressible matrix, 𝜈0 = 0.5), see also Fig. 9.

In Fig. 12, the lines bounding the respective domains �̄�∞ < �̄�y

re shown for the case of no isotropization, cf. Eqs. (30) and (36),
10

or 𝜃 = 0 (tension) and 𝜃 = 𝜋∕3 (pure shear). As a reference, the 𝜎
espective lines corresponding to the soft isotropization, cf. Fig. 11a,
re also included in Fig. 12. It follows that the range of parameters for
hich the condition �̄�∞ < �̄�y is met is smaller in the anisotropic case

han in the case of the soft isotropization and it is smaller for tension
or compression) than for pure shear, which are two limit cases. This
s consistent with the sample results reported in Figs. 6 and 7, where
he softening is weaker (or even absent) in the anisotropic case, as
ompared to the soft isotropization.

Concluding, we recall that the condition �̄�∞ < �̄�y is a sufficient,
ut not a necessary condition for the softening in the macroscopic re-
ponse. As illustrated in Figs. 2–5, the response may exhibit a maximum
ollowed by a softening branch towards an asymptotic value �̄�∞ that is
igher than the macroscopic yield stress �̄�y (this case is studied in detail
elow for the soft isotropization with 𝑚 = 1). Nevertheless, the analysis
arried out above and the condition in Eq. (40) in particular give an
ndication which range of material parameters may lead to softening.

.4. Analytical solution for the soft isotropization with 𝑚 = 1

In the case of the soft isotropization with 𝑚 = 1 and no hardening
�̂�y0 = 𝜎y0 ), the viscoplastic Hill tensor Lv,iso

∗ is constant and so is the
calar coefficient 𝐺v

∗ = 𝐺v,sof t
∗ = 𝜏0𝜎

y
0∕2, cf. Eq. (33). As a result, the

overning equations are then linear and can be reduced to a system of
inear ordinary differential equations with constant coefficients, viz.

̇ = 𝐀𝐲 + 𝐛, 𝐲 =
[

𝜎0
�̄�

]

, (44)

where the components of matrix 𝐀 and vector 𝐛 are given in Ap-
pendix A. Note that matrix 𝐀 depends on the elastic properties of the
phases, on the yield stress 𝜎y0 and on the volume fraction 𝑐, while vector
𝐛 additionally depends on the strain rate 𝜏0 ̇̄𝜀, but does not depend on
the yield stress 𝜎y0 .

The analytical solution can now be easily found by enforcing the
initial conditions at the instant of the elastic-to-plastic transition (at
𝑡 = 0), namely 𝜎0(0) = 𝜎y0 and �̄�(0) = �̄�y. In particular, the macroscopic
stress �̄� is found in the following form,

̄ = �̄�∞ + 𝑎I𝑒
−𝑡∕𝜏I + 𝑎II𝑒

−𝑡∕𝜏II , (45)

where 𝜏I and 𝜏II are two relaxation times (equal to the eigenvalues
of 𝐀) and 𝑎I and 𝑎II are the corresponding integration constants (the
respective formulae are quite involved and are not provided here).
The response exhibits thus a qualitative difference with respect to the
case of a homogeneous elasto-viscoplastic material in which only one
relaxation time is involved, namely 𝜎0 = 𝜎∞0 + 𝑎I𝑒−𝑡∕𝜏I . It can be
checked that, in the limit of 𝑐 = 0, we have 𝜏I = 𝜏0𝜎

y
0∕(3𝐺0) and

𝑎II = 0 so that the analytical solution (45) reduces to the analytical
solution for a homogeneous material (e.g., de Souza Neto et al., 2008,
Section 11.2.7).

The analytical solution can now be used to examine the situation
when the macroscopic stress increases, reaches a maximum, and then
decreases towards the asymptotic stress �̄�∞. Such a situation occurs if
̇̄ > 0 for 𝑡 = 0 and ̇̄𝜎 < 0 for 𝑡 → ∞. If the relaxation times are ordered
such that 𝜏II > 𝜏I > 0, this holds for 𝑎II > 0 and 𝑎II∕𝜏II < −𝑎I∕𝜏I. The
maximum, if exists, occurs at 𝑡 = 𝑡max, where 𝑡max is determined from
the condition ̇̄𝜎 = 0 thus yielding

𝑡max =
𝜏I𝜏II

𝜏II − 𝜏I
log

(

−
𝑎I𝜏II
𝑎II𝜏I

)

. (46)

The limit case of no softening corresponds to 𝑎II → 0 and the corre-
sponding macroscopic strain rate 𝜏0 ̇̄𝜀 can be determined numerically by
solving the non-linear equation 𝑎II = 0 for given 𝑐, 𝐺1∕𝐺0, 𝜈0 and 𝜎y0 .
Sample results are provided in Fig. 13. For the interpretation, refer to
Fig. 10, where the line corresponding to the condition 𝑎II = 0 separates
the domain of no softening (upper-left corner) from the domain of
max ∞ y
̄ > �̄� > �̄� . Comparing Fig. 13 to Fig. 11a, it can be seen that
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Fig. 11. Shown are the lines of 𝜏0 ̇̄𝜀 = 𝑝⟨𝑞⟩1∕𝑚 bounding the respective domains of �̄�∞ < �̄�y , cf. Eq. (40) and Fig. 10, for the soft isotropization and for (a) 𝑚 = 1 and (b) 𝑚 = 0.1
𝜈0 = 0.3). In each case, the domain of �̄�∞ < �̄�y is limited to 𝐺1∕𝐺0 > 1 since 𝑞sof t = 0 for 𝐺1∕𝐺0 = 1, cf. Eq. (41).
o
i
a

Fig. 12. Shown are the lines bounding the respective domains of �̄�∞ < �̄�y , cf. Eqs. (36)
and (30), for the case of no isotropization (for tension and pure shear) and, as a
reference, also for the soft isotropization, cf. Fig. 11a. The results correspond to 𝑚 = 1,
0 = 0.3 and 𝑐 = 0.1 (dashed lines) and 𝑐 = 0.2 (solid lines).

Fig. 13. Shown are the lines of 𝑎II = 0 bounding the region of �̄�max > �̄�∞ > �̄�y ,
f. Fig. 10, for 𝜈0 = 0.3 (the respective analysis is limited to the case of the soft
sotropization with 𝑚 = 1).

he range of parameters in which softening occurs is significantly larger
han the domain of �̄�∞ < �̄�y, as also illustrated in Fig. 10.

Referring again to Fig. 10 we notice that the zones in which soften-
ng occurs (the shaded zones in Fig. 10) appear only for 𝐺 ∕𝐺 > 1, i.e.
11

1 0
nly when the inclusions are elastically stiffer than the matrix. Indeed,
t can be checked that the two conditions 𝑞sof t = 0 and 𝑎II = 0 at 𝜏0 ̇̄𝜀 = 0
re satisfied exactly for 𝐺1∕𝐺0 = 1 (recall that those two conditions are

relevant for the soft isotropization, the latter additionally for 𝑚 = 1). In
the case of the hard isotropization, the condition 𝑞hard = 0 can only be
satisfied for 𝐺1∕𝐺0 > 1, see Fig. 9. The respective zones of �̄�∞ < �̄�y do
not exist for 𝜈0 < 13∕35 ≈ 0.37, see Fig. 9, and otherwise are relatively
small.

5. Comparison to unit-cell computations

5.1. Spherical unit cell

In this section, the predictions of the MT model in the various
versions discussed above are compared to the results obtained for a
spherical unit cell illustrated in Fig. 14. Motivated by the composite
sphere model (Hashin, 1962), see also Kursa et al. (2018), the spherical
unit cell is composed of a single elastic spherical inclusion located in the
centre of the unit cell and surrounded by an elastic–viscoplastic matrix.
The unit cell is subjected to isochoric tension along the 𝑧-direction so
that the problem is axisymmetric, and the corresponding finite-element
computations are carried out for one quarter of the cross-section, as
sketched in Fig. 14, with adequate symmetry conditions enforced along
𝑟 = 0 and 𝑧 = 0.

Two canonical types of boundary conditions are applied. In the
case of the linear displacement boundary conditions (LDBC), the dis-
placement on the boundary is prescribed as 𝐮 = �̄�𝐱, where �̄� is the
macroscopic strain, cf. Fig. 14b. In the case of the uniform traction
boundary conditions (UTBC), the traction on the boundary, 𝐭 = �̄�𝐧, is
derived from the macroscopic stress �̄�, where 𝐧 denotes the unit outer
normal, cf. Fig. 14c. However, since the material response is here rate-
dependent, a special treatment is needed in the UTBC case in order to
ensure that the macroscopic strain rate ̇̄𝜺 is constant and prescribed to a
desired value. Specifically, the UTBC have been prescribed by enforcing
the so-called minimal kinematic boundary conditions (Mesarovic and
Padbidri, 2005) which are actually equivalent to the UTBC, except that
the macroscopic strain �̄� is prescribed and the macroscopic stress �̄�
is obtained as a result of the micro–macro transition scheme (Woj-
ciechowski and Lefik, 2016). Accordingly, the same macroscopic strain
rate (assumed constant) can be applied in both cases (LDBC and UTBC)
thus facilitating a meaningful comparison of the results. As demon-
strated by Ostoja-Starzewski (2006), for a proportional loading process
for which the prescribed macroscopic strain �̄� is given by Eq. (21),
the LDBC and UTBC lead to, respectively, an upper and lower bound
on the effective properties. It should be noted that, strictly speaking,
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Fig. 14. Spherical unit-cell: (a) schematic of the axisymmetric problem, (b) linear displacement boundary conditions (LDBC) and (c) uniform traction boundary conditions (UTBC).
Fig. 15. Predictions of the MT model with and without isotropization are compared to the spherical unit-cell results for the rate-sensitivity parameter 𝑚 = 1. The macroscopic
stress–strain response is shown for 𝑐 = 0.1 and (a) 𝜏0 ̇̄𝜀 = 0.01, (b) 𝜏0 ̇̄𝜀 = 0.1, (c) 𝜏0 ̇̄𝜀 = 1. The shaded areas indicate the regions bounded by the FE unit-cell results with LDBC and
UTBC. The black markers indicate the limit of the elastic response for the MT model (dots) and for the unit cell with LDBC (triangles) and UTBC (squares). The elastic-to-plastic
transition is magnified in the insets.
the notion of bounds applies here to the particular configuration of
the unit cell adopted and to the related composite microstructure
in which a specific gradation of composite sphere sizes down to an
infinitesimal size is assumed so that the whole representative volume
is filled (Hashin, 1962).

The unit-cell problem is solved using the finite element method,
and the standard incremental formulation of the small-strain Perzyna-
type elasto-viscoplasticity is employed (de Souza Neto et al., 2008). The
standard details of the finite-element implementation are omitted here
for brevity.

Material parameters are adopted equal to those used in Section 3.
In particular, as before, no strain hardening is considered so that the
transient response during the elastic-to-plastic transition is apparent.
Figs. 15 and 16 show the results obtained for 𝑐 = 0.1 and for three
representative macroscopic strain rates 𝜏0 ̇̄𝜀 = 0.01, 0.1 and 1. The rate-
sensitivity parameter is adopted equal to 𝑚 = 1 in Fig. 15 and to
𝑚 = 0.1 in Fig. 16. In each case, the MT results are reported for the
soft and hard isotropization as well as without isotropization with the
viscoplastic modulus 𝐺v

∗(𝜃) corresponding to uniaxial tension and pure
shear. The case of shear is provided for completeness only, considering
that the unit cell in finite-element calculations is subjected to tension.
Note that, when the soft or hard isotropization is applied in the MT
model, the resulting response is the same independently of the Lode
angle 𝜃. As mentioned above, the results corresponding to the finite-
element unit-cell model provide a kind of upper and lower bound when
the LDBC and UTBC, respectively, are used, hence a shading has been
added in Figs. 15 and 16 to indicate the possible intermediate values.
Black markers superimposed on the stress–strain curves indicate the
12
limits of the elastic response. In the case of the unit-cell models, the
markers correspond to the first instant at which the state changes from
elastic to plastic in at least one Gauss point.

The results reported in Figs. 15 and 16 again illustrate the spu-
rious softening response resulting from the MT model with the soft
isotropization and with no isotropization (pure shear case). Impor-
tantly, for 𝑚 = 0.1, the softening is observed for all strain rates. Of
course, the softening is not observed in the case of the unit-cell model.
Moreover, the plastic zone in the matrix grows gradually, which leads
to a more pronounced apparent hardening in the unit-cell models.
Clearly, this effect is missing in the MT model in which uniform
deformation is assumed in the matrix. In all cases, in view of no strain
hardening, the macroscopic stress tends to its asymptotic value that
depends on the macroscopic strain rate.

Interestingly, for 𝑚 = 0.1, the results corresponding to the three
macroscopic strain rates shown in Fig. 16 are qualitatively very similar,
only the stress level increases with increasing strain rate. This obser-
vation can be explained as follows. Qualitative differences between
the stress–strain curves obtained for the anisotropic and isotropized
viscoplastic Hill tensor result from the degree of anisotropy of the
tensor Lv

0, Eq. (12), which can be quantified by the factor 𝛿 = (𝑔2 −
𝑔1)∕𝑔2, where 0 ≤ 𝛿 < 1. For the Perzyna viscoplasticity model, this
factor can be specified in terms of 𝑚 and the equivalent strain rate in
the matrix as follows:

𝛿 = 1 − 𝑚 + 𝑚 1 . (47)

1 + (𝜏0�̇�0)𝑚
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Fig. 16. Predictions of the MT model with and without isotropization are compared to the spherical unit-cell results for the rate-sensitivity parameter 𝑚 = 0.1. For the detailed
description, see the caption to Fig. 15.
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It is easily verified that, for a decreasing 𝑚, the strain rate has a
econdary impact on 𝛿 thus in such cases the shape of stress–strain
urves is governed mainly by 𝑚.

.2. Periodic unit cell with 30 inclusions (Czarnota et al., 2015)

In this section, comparison is made with respect to the results of
he finite-element computations carried out by Czarnota et al. (2015)
or a periodic unit cell with 30 spherical inclusions. Here, both the
atrix and the inclusions are elastic–viscoplastic and are governed

y the Perzyna model with linear isotropic hardening. The material
arameters can be found in Table 3 in Czarnota et al. (2015), and a
onstant overall strain rate is prescribed, 𝜏0 ̇̄𝜀 = 3.33. The periodic unit
ell is shown in Fig. 17a.

In the description of the MT model in Section 2, the inclusions
ave been assumed elastic. Extension of the model to the case of
lastic–viscoplastic inclusions, employed in the present example, is
mmediate and amounts to replacing the elastic constitutive equation
f the inclusions, Eq. (2)2, by the elastic–viscoplastic one. Eqs. (3) and
4) and the definitions of Me

∗ and Mv
∗ remain unchanged. Anyway, the

ffect of plastic deformations in the inclusions is here relatively small
ecause their yield stress is significantly higher than that of the matrix,
ee Czarnota et al. (2015).

Predictions of the MT model with the soft and hard isotropization
nd with no isotropization are compared to the finite-element results
f Czarnota et al. (2015) in Fig. 17. Two volume fractions of inclusions
ave been considered, 𝑐 = 0.1 and 0.25, and in both cases the soft
sotropization leads to the softening in the stress–strain response, which
s observed at each instant of the elastic-to-plastic transition. During
he first loading, the softening is partially mitigated by the strain hard-
ning in the matrix. However, during the subsequent unloading and
eloading, the softening is visibly stronger, which is due to the higher
nternal stresses that build up in the microstructure. The softening is
ot observed in the other two cases. These two cases show also a very
ood agreement with the finite-element results, while the agreement is
ignificantly worse in the case of the soft isotropization. Note that the
ery good agreement between the predictions of the additive tangent
T model employing the anisotropic viscoplastic Hill tensor and the

inite-element results has already been demonstrated by Czarnota et al.
2015). The only difference in the present treatment of the additive
angent MT model with respect to that of Czarnota et al. (2015) is the
ime integration scheme, namely the implicit backward-Euler scheme
as been used here, while the explicit forward-Euler scheme was used
y Czarnota et al. (2015).
13

t

. Mori–Tanaka model in multiscale finite-element computations

In this section, concurrent multiscale finite-element computations
re carried out in order to illustrate the impact of the spurious softening
n the efficiency and robustness of the overall computational scheme.
o this end, the additive tangent MT model has been implemented

n a finite-element code as a material model at the Gauss-point level.
he respective incremental formulation has been obtained by applying
he implicit backward-Euler integration scheme to the rate equations
resented in Section 2. More details are provided in Appendix B, see
lso Sadowski et al. (2017a).

Sample computations are here carried out for a rectangular plate of
he length 𝐿 = 20mm and cross-section of 10 × 1 mm with a hole of
he diameter of 5mm, see Fig. 18a. The plate is loaded in tension in the
isplacement-control mode with a constant elongation rate �̇�∕𝐿. A fine

mesh of about 370,000 eight-node hexahedral elements is used, which
leads to nearly 1.2 million degrees of freedom (note that, for a better
visibility, Fig. 18a shows a coarse mesh with the element size increased
4 times with respect to the actual mesh used in the computations).
Accordingly, with eight Gauss points per element, the finite-element
model involves about 3 million Gauss points at which the incremental
equations of the MT model are solved at each global Newton iteration.
It is thus a severe test of the robustness of the model both in terms of
the local convergence at each Gauss point and in terms of the global
performance. Recall that the spurious effects of the MT model are more
pronounced at very small strain rates, and thus, for a problem with
a highly non-uniform deformation, the chance of encountering such
effects increases with an increasing size of the problem.

The composite material, governed by the MT model, is composed of
elastic spherical inclusions and elastic–viscoplastic matrix. The elastic
properties are specified by the Young’s modulus and Poisson’s ratio of
the matrix, 𝐸0 = 75GPa and 𝜈0 = 0.3, and inclusions, 𝐸1 = 400GPa and
1 = 0.2. Perzyna-type viscoplastic model is adopted for the matrix with
he isotropic hardening specified by

̂ y0 (𝜅0) = 𝜎y0 +𝐻0𝜅0 + 𝜎∞0 (1 − 𝑒−𝛿0𝜅0 ), (48)

ith the following hardening parameters: 𝜎y0 = 75MPa, 𝐻0 = 100MPa,
∞
0 = 100MPa and 𝛿0 = 10. Two elongation rates are considered such
hat 𝜏0�̇�∕𝐿 = 0.01 and 1. To illustrate the deformation mode, Fig. 18b,c
hows the distribution of the accumulated plastic strain in the matrix
t the elongation 𝛥𝐿∕𝐿 = 0.001 and 0.02.

An adaptive time-stepping procedure has been used in the com-
utations such that the current time step is increased or decreased
epending on the number of global Newton iterations at the previous

ime step, with the desired number of iterations set to 8. The time step
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Fig. 17. Predictions of the MT model are compared to the results of the finite-element unit-cell model: (a) periodic unit cell with 30 spherical inclusions (Czarnota et al., 2015,
with permission from Elsevier); macroscopic stress–strain response for 𝑐 = 0.1 (b) and 𝑐 = 0.25 (c). Finite-element results of Czarnota et al. (2015), see their Fig. 9, are labelled
‘FEM–30’ and are depicted by dotted lines. The rate-sensitivity parameter is in all cases equal to 𝑚 = 0.1.
Fig. 18. Perforated plate in tension: (a) a coarse finite-element mesh (the computations were performed for a fine mesh with the element size reduced by the factor of 4);
(b) equivalent plastic strain in the matrix at the elongation Δ𝐿∕𝐿 = 0.001 and (c) Δ𝐿∕𝐿 = 0.02 (hard isotropization, 𝑐 = 0.2, 𝑚 = 0.1, 𝜏0�̇�∕𝐿 = 1).
is halved if convergence is not achieved in 12 iterations. The number
of time steps needed to complete the simulation can thus be used as an
indicator of the robustness of the model.

Figs. 19 and 20 show the load–elongation curves obtained for the
soft and hard isotropization, respectively. As a reference, the results
obtained for a homogeneous material are also included in the figures.
These results are labelled as 𝑐 = 0. The respective computations have
been carried out using the MT model with 𝑐 = 0 and also using
the classical model of elasto-viscoplasticity. The obtained responses
are identical and so is the time-stepping history, which illustrates the
robustness of the present implementation of the MT model.

In the case of the soft isotropization, the computations could not
be completed for 𝑚 = 1 due to convergence problems caused by the
spurious softening discussed in the preceding sections, see the case of
𝑐 = 0.2 in Fig. 19a. For 𝑚 = 0.1, the effect of the softening is weaker
and only leads to an increase of the number of time steps needed to
complete the simulation. This is more pronounced in the case of the low
loading rate 𝜏0�̇�∕𝐿 = 0.01 which required 18 time steps, as compared
to 5–11 time steps needed in all the remaining cases. Recall that the
soft isotropization with 𝑚 = 1 leads not only to the softening in the
macroscopic response (observed for 𝑚 = 0.1 as well), but also to a non-
smooth elastic-to-plastic transition, see Section 4.2. The latter effect
may adversely affect the convergence behaviour and may explain the
significant difference in the robustness of the model in the two cases.
14
As discussed in the preceding sections, the spurious softening is
practically not observed in the case of the hard isotropization. Accord-
ingly, no difficulties are encountered during the simulations, and the
performance of the MT model is then comparable to that of the simple
elastic–viscoplastic Perzyna-type model.

7. Conclusion

We have explored intrinsic features and possible simplifications
of the additive tangent Mori–Tanaka model that affect computational
efficiency of its finite-element implementation as a material model at
element Gauss points. In the analysis, the Perzyna-type viscoplasticity
model has been assumed for the elastic–viscoplastic matrix phase, while
the inclusions are purely elastic. In particular, an issue related to the
elastic-to-(visco)plastic transition has been identified, which signifi-
cantly affects robustness of the model. Specifically, a spurious non-
monotonic macroscopic stress–strain response under strain-controlled
proportional loading is predicted for some sets of material parameters
and loading conditions. This type of behaviour is not observed in
the reference case of a homogeneous elastic–viscoplastic material nor
in more elaborate micromechanical schemes, e.g., in finite-element
unit-cell computations. Such non-monotonic macroscopic response pre-
dicted by the MT model is often associated with an abrupt stress drop
which cannot be compensated by strain hardening of the constituent
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Fig. 19. Performance of the MT model (soft isotropization) in the finite-element computations: load–elongation curves for (a) 𝑚 = 1 and (b) 𝑚 = 0.1. The markers indicate the
ctual time steps resulting from the adaptive time-stepping procedure. Note that the simulation could not be completed for 𝑚 = 1 due to convergence problems caused by the
purious softening.
Fig. 20. Performance of the MT model (hard isotropization) in the finite-element computations: load–elongation curves for (a) 𝑚 = 1 and (b) 𝑚 = 0.1. The markers indicate the
ctual time steps resulting from the adaptive time-stepping procedure.
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hases. Moreover, a non-smooth elastic-to-plastic transition has been
bserved at the macro level, while a smooth transition is expected, as
t is characteristic for elastic–viscoplastic materials.

Since the MT model is a mean-field model, the stress and strain
ields are assumed to be homogeneous within the constituent phases,
nd stress concentrations at inclusions are thus disregarded. This fea-
ure of mean-field models seems to be responsible for the spurious
ffects under consideration. In particular, in the MT model the elastic-
o-plastic transition occurs at a single well-defined instant when the
ield criterion is met in the (homogeneous) matrix. This is in contrast
o the gradual growth of plastic zones, which is captured by the full-
ield models, such as those employed in Section 5. Accordingly, the
acroscopic yield stress may be significantly overestimated by the MT
odel, see e.g. Figs. 15 and 16. When combined with the release of

he internal stresses that accumulate in the elastic regime due to the
lastic mismatch between the phases, this may lead to the softening
n the macroscopic response. Actually, related effects may possibly
e characteristic also for other mean-field models. Note that a non-
onotonic response similar to that observed in this work has been

ecently reported by Zecevic and Lebensohn (2020), see their Fig. 3, in
he context of a self-consistent model which apparently also employs
he additive tangent interaction law of Molinari et al. (1997), Molinari
2002). The mentioned deficiencies of the mean-field approach may
ossibly be mitigated, at least partially, by resorting to mean-field
15

q

odels employing second-order moments (e.g., Ponte Castañeda, 1996;
ahellec and Suquet, 2007), but these models are significantly more
nvolved, which makes their application in concurrent finite-element
omputations problematic.

The original formulation of the additive tangent MT model employs
n anisotropic viscoplastic Hill tensor derived from an anisotropic
iscoplastic compliance tensor. Calculation of the Hill tensor is thus
ecessarily performed by means of numerical integration, which neg-
tively affects efficiency and robustness of the computational scheme.
ccordingly, the possible strategies of model isotropization have been
iscussed. As it has been demonstrated, such strategies must be em-
loyed with care, since some of them may lead to amplification of
he spurious effects mentioned above. Specifically, such negative im-
act has been found to be particularly pronounced in the case of the
oft isotropization. The related effects are more severe for the rate-
ensitivity parameter 𝑚 = 1 and for relatively low strain rates. On
he contrary, for the hard isotropization, this effect is only observed
n a narrow range of material parameters. Additionally, the latter
sotropization method has been shown to provide a significantly bet-
er agreement with the finite-element unit-cell computations reported
y Czarnota et al. (2015). It should be noted that, contrary to the MT
odel for rate-independent elastic–plastic composites, in the case of

lastic–viscoplastic composites, isotropization seems not to improve the
uality of predictions, as compared to the model with no isotropization.
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Considering that the soft isotropization amplifies the spurious soft-
ening effects and delivers less accurate predictions, a general conclu-
sion is that it should be avoided in the context of MT-based modelling of
elastic–viscoplastic composites. On the other hand, the spurious effects
are practically eliminated by the hard isotropization. At the same
time, the hard isotropization has been found to provide satisfactory
predictions in a realistic case studied in Section 5.2. The stiffening
introduced by the hard isotropization is more visible in the range of
parameters studied in Section 5.1, however, this example considers a
less realistic case of no strain hardening at relatively low strain rates
at which the stiffening effect is more pronounced. Importantly, the
corresponding MT model is significantly cheaper and more robust than
that with no isotropization. Hence the additive tangent MT model with
the hard isotropization can be considered a reasonable compromise
between accuracy on one hand and efficiency and robustness on the
other hand.

The additive tangent MT model has been finally employed in con-
current multiscale finite-element computations. The respective incre-
mental formulation has been obtained by applying the fully implicit
backward-Euler integration scheme to the rate equations of the model.
The results obtained for a sample boundary value problem illustrate
a significant impact of the spurious softening on the efficiency and
robustness of the overall computational scheme. On the other hand, in
the softening-free cases, the present finite-element implementation of
the MT model performs very well with the robustness comparable to the
simple elastic–viscoplastic model. This has been tested for a relatively
large-scale problem with the number of degrees of freedom exceeding
one million.
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Appendix A. Components of matrix A and vector b in Eq. (44)

The components of matrix 𝐀 and vector 𝐛 in Eq. (44) are the
following:

𝐴11 =
𝐺0

(

3𝐺1 (𝑐 − 1) − 5𝐺e
∗
)

𝜂𝜎y0
,

𝐴12 =
2𝐺0𝐺e

∗

𝜂𝜎y0
,

𝐴21 =
(𝑐 − 1)

(

3𝐺0𝐺1 + 𝐺e
∗
(

5𝐺0 − 2𝐺1
))

𝜂𝜎y0
,

𝐴22 =
2 (𝑐 − 1)

(

𝐺1 − 𝐺0
)

𝐺e
∗

𝜂𝜎y0
,

(A.1)

and

𝑏1 =
3𝐺0

(

(1 − 𝑐)𝐺1 + 𝐺e
∗
)

𝜂
+

3𝐺0
(

𝐺1 + 𝐺e
∗
)

𝜂
𝜏0 ̇̄𝜀,

𝑏2 =
3 (1 − 𝑐)𝐺0

(

𝐺1 + 𝐺e
∗
)

𝜂
+

3
(

𝑐𝐺e
∗
(

𝐺1 − 𝐺0
)

+ 𝐺0
(

𝐺1 + 𝐺e
∗
))

𝜂
𝜏0 ̇̄𝜀,

(A.2)

here

= 𝜏0(𝑐𝐺0 + (1 − 𝑐)𝐺1 + 𝐺e
∗). (A.3)
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Appendix B. Finite-element implementation of the additive tan-
gent MT model

The present finite-element implementation of the additive tangent
MT model relies on the implicit backward-Euler integration scheme
applied to the rate equations presented in Section 2. In the time-
discrete formulation, the governing equations are enforced at time
instant 𝑡 = 𝑡𝑛+1, while the rates are approximated by the respective
finite differences, e.g., �̇�𝑖 = Δ𝜺𝑖∕Δ𝑡, where Δ𝜺𝑖 = 𝜺𝑛+1𝑖 − 𝜺𝑛𝑖 and
Δ𝑡 = 𝑡𝑛+1 − 𝑡𝑛. The quantities pertaining to the previous time instant
𝑡 = 𝑡𝑛 (those with the superscript 𝑛) are known from the solution of the
problem at the previous time step. The resulting non-linear algebraic
equations are then solved using an iterative–subiterative scheme.

At the lowest level of constitutive equations of the individual
phases, the incremental equations of Perzyna-type elasto-viscoplasticity
are solved using the standard predictor–corrector algorithm (de Souza
Neto et al., 2008, Section 11.6.4). The resulting stress-update algorithm
is consistently linearized so that it can be effectively incorporated in
the upper-level iterative scheme in which the interaction equation (3)
is solved.

Application of the backward-Euler scheme to the interaction equa-
tion (3) leads to its following time-discrete form,

Δ𝜺1 − Δ𝜺0 = −Δ𝑡Mv,𝑛+1
∗ (𝐬𝑛+11 − 𝐬𝑛+10 ) −Me

∗(Δ𝝈1 − Δ𝝈0), (B.1)

here the viscoplastic compliance Hill tensor Mv,𝑛+1
∗ is evaluated in

erms of the current stress 𝝈𝑛+1
0 . By exploiting the averaging rule (4)1,

he local strains 𝜺𝑛+1𝑖 can be expressed in terms of the overall strain
̄𝑛+1, considered to be known,

𝜺𝑛+10 = �̄�𝑛+1 − 𝑐𝝐𝑛+1, 𝜺𝑛+11 = �̄�𝑛+1 + (1 − 𝑐)𝝐𝑛+1, (B.2)

where 𝝐𝑛+1 = 𝜺𝑛+11 − 𝜺𝑛+10 is an unknown tensor. As a result, the time-
discrete interaction equation (B.1) has been formulated as a non-linear
equation with an unknown 𝝐𝑛+1, while the current stresses 𝝈𝑛+1

𝑖 depend
on 𝝐𝑛+1 through the stress-update algorithm described above with the
local strains given by Eq. (B.2).

The Newton method is then applied to solve Eq. (B.2) and the
macroscopic stress is obtained by averaging the local stresses, �̄�𝑛+1 =
(1 − 𝑐)𝝈𝑛+1

0 + 𝑐𝝈𝑛+1
1 . The corresponding macroscopic stress-update algo-

rithm is consistently linearized, thus yielding the macroscopic tangent
stiffness operator. This tangent operator is needed at the structural level
at which the equilibrium equations are solved, again using the Newton
method. The overall computational scheme is thus a doubly-nested
iterative–subiterative Newton scheme, while consistent linearization
at each level leads to a computationally efficient code exhibiting a
quadratic convergence rate.

The computational treatment is here similar to that developed
by Sadowski et al. (2017a) for the case of the rate-independent elasto-
plasticity. The overall structure is essentially the same, the differences
are in the interaction equation (B.1), here resulting from the additive
tangent MT scheme, and in the constitutive equations of the phases,
here corresponding to Perzyna-type viscoplasticity. The reader is re-
ferred to Sadowski et al. (2017a) for the details of the computer
implementation that is based on the automatic differentiation (AD)
technique (Korelc and Wriggers, 2016).

References

Abdul-Latif, A., Kerkour-El Miad, A., Baleh, R., Garmestani, H., 2018. Modeling
the mechanical behavior of heterogeneous ultrafine grained polycrystalline and
nanocrystalline FCC metals. Mech. Mater. 126, 1–12.

Agoras, M., Avazmohammadi, R., Ponte Castañeda, P., 2016. Incremental variational
procedure for elasto-viscoplastic composites and application to polymer- and metal-
matrix composites reinforced by spheroidal elastic particles. Int. J. Solids Struct.
97–98, 668–686.

Barthélémy, J.F., Giraud, A., Lavergne, F., Sanahuja, J., 2016. The Eshelby inclusion
problem in ageing linear viscoelasticity. Int. J. Solids Struct. 97–98, 530–542.

http://refhub.elsevier.com/S0997-7538(21)00107-8/sb1
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb1
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb1
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb1
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb1
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb2
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb2
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb2
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb2
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb2
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb2
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb2
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb3
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb3
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb3


European Journal of Mechanics / A Solids 90 (2021) 104339P. Sadowski et al.
Berbenni, S., Capolungo, L., 2015. A Mori–Tanaka homogenization scheme for non-
linear elasto-viscoplastic heterogeneous materials based on translated fields: An
affine extension. C. R. Mec. 343, 95–106.

Berbenni, S., Dinzart, F., Sabar, H., 2015. A new internal variables homogenization
scheme for linear viscoelastic materials based on an exact Eshelby interaction law.
Mech. Mater. 81, 110–124.

Bornert, M., Masson, R., Ponte Castañeda, P., Zaoui, A., 2001. Second-order estimates
for the effective behaviour of viscoplastic polycrystalline materials. J. Mech. Phys.
Solids 49, 2737–2764.

Boyd, J.G., Lagoudas, D.C., 1996. A thermodynamical constitutive model for shape
memory materials. Part II. The SMA composite material. Int. J. Plast. 12, 843–873.

Brassart, L., Stainier, L., Doghri, I., Delannay, L., 2012. Homogenization of elasto-(visco)
plastic composites based on an incremental variational principle. Int. J. Plast. 36,
86–112.

Chaboche, J.L., Kanouté, P., Roos, A., 2005. On the capabilities of mean-field ap-
proaches for the description of plasticity in metal matrix composites. Int. J. Plast.
21, 1409–1434.

Chaboche, J.L., Kruch, S., Maire, J.F., Pottier, T., 2001. Towards a micromechanics
based inelastic and damage modeling of composites. Int. J. Plast. 17, 411–439.

Christensen, R.M., 1969. Viscoelastic properties of heterogeneous media. J. Mech. Phys.
Solids 17, 23–41.

Czarnota, C., Kowalczyk-Gajewska, K., Salahouelhadj, A., Martiny, M., Mercier, S.,
2015. Modeling of the cyclic behavior of elastic–viscoplastic composites by the ad-
ditive tangent Mori–Tanaka approach and validation by finite element calculations.
Int. J. Solids Struct. 56–57, 96–117.

de Souza Neto, E.A., Perić, D., Owen, D.R.J., 2008. Computational Methods for
Plasticity: Theory and Applications. Wiley, Chichester.

Delannay, L., Jacques, P., Pardoen, T., 2008. Modelling of the plastic flow of trip-aided
multiphase steel based on an incremental mean-field approach. Int. J. Solids Struct.
45, 1825–1843.

Doghri, I., Adam, L., Bilger, N., 2010. Mean-field homogenization of elasto-viscoplastic
composites based on a general incrementally affine linearization method. Int. J.
Plast. 26, 219–238.

Doghri, I., El Ghezal, M.I., Adam, L., 2016. Finite strain mean-field homogenization of
composite materials with hyperelastic–plastic constituents. Int. J. Plast. 81, 40–62.

Doghri, I., Ouaar, A., 2003. Homogenization of two-phase elasto-plastic composite
materials and structures: Study of tangent operators, cyclic plasticity and numerical
algorithms. Int. J. Solids Struct. 40, 1681–1712.

Dvorak, G.J., Benveniste, Y., 1992. On transformation strains and uniform fields in
multiphase elastic media. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 437,
291–310.

Eshelby, J.D., 1957. The determination of the elastic field of an ellipsoidal inclusion,
and related problems. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 241,
376–396.

Garion, C., Skoczeń, S., 2006. Constitutive modelling and identification of parameters
of the plastic strain-induced martensitic transformation in 316L stainless steel at
cryogenic temperatures. Int. J. Plast. 22, 1234–1264.

Girard, G., Frydrych, K., Kowalczyk-Gajewska, K., Martiny, M., Mercier, S., 2021. Cyclic
response of electrodeposited copper films. Experiments and elastic-viscoplastic
mean-field modeling. Mech. Mater. 153, 103685.

Hashin, Z., 1962. The elastic moduli of heterogeneous materials. J. Appl. Mech. 29,
143–150.

Hashin, Z., 1969. The inelastic inclusion problem. Int. J. Eng. Sci. 7, 11–36.
Hill, R., 1965. A self-consistent mechanics of composite materials. J. Mech. Phys. Solids

13, 213–222.
Hu, G.K., Sun, Q.P., 2002. Thermal expansion of composites with shape memory alloy

inclusions and elastic matrix. Composites A 33, 717–724.
Hutchinson, J.W., 1976. Bounds and self-consistent estimates for creep of polycrystalline

materials. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 348, 101–127.
Jeong, Y., Tomé, C.N., 2020. An efficient elasto-visco-plastic self-consistent formulation:

Application to steel subjected to loading path changes. Int. J. Plast. 135, 102812.
Korelc, J., Wriggers, P., 2016. Automation of Finite Element Methods. Springer,

Switzerland.
Kowalczyk-Gajewska, K., 2012. Estimation of overall properties of random polycrystals

with the use of invariant decompositions of Hooke’s tensor. Int. J. Solids Struct.
49, 3022–3037.

Kowalczyk-Gajewska, K., Ostrowska-Maciejewska, J., 2009. Review on spectral decom-
position of Hooke’s tensor for all symmetry groups of linear elastic material. Eng.
Trans. 57, 145–183.

Kowalczyk-Gajewska, K., Petryk, H., 2011. Sequential linearization method for
viscous/elastic heterogeneous materials. Eur. J. Mech. A Solids 30, 650–664.

Kursa, M., Kowalczyk-Gajewska, K., Lewandowski, M.J., Petryk, H., 2018. Elastic–plastic
properties of metal matrix composites: Validation of mean-field approaches. Eur.
J. Mech. A Solids 68, 53–66.

Lahellec, N., Suquet, P., 2007. On the effective behavior of nonlinear inelastic
composites: I. Incremental variational principles. J. Mech. Phys. Solids 55,
1932–1963.

Lahellec, N., Suquet, P., 2013. Effective response and field statistics in elasto-plastic and
elasto-viscoplastic composites under radial and non-radial loadings. Int. J. Plast. 42,
1–30.
17
Lebensohn, R.A., Turner, P.A., Signorelli, J.W., Canova, G.R., Tomé, C.N., 1998. Cal-
culation of intergranular stresses based on a large-strain viscoplastic self-consistent
polycrystal model. Modell. Simul. Mater. Sci. Eng. 6, 447–465.

Lue, A.H.Y., Tomota, Y., Taya, M., Inoue, K., Mori, T., 2000. Micro-mechanic modeling
of the stress–strain curves of a TiNiCu shape memory alloy. Mater. Sci. Eng. A 285,
326–337.

Marfia, S., Sacco, E., 2018. Multiscale technique for nonlinear analysis of elastoplastic
and viscoplastic composites. Composites B 136, 241–253.

Mercier, S., Jacques, N., Molinari, A., 2005. Validation of an interaction law for
the Eshelby inclusion problem in elasto-viscoplasticity. Int. J. Solids Struct. 42,
1923–1941.

Mercier, S., Kowalczyk-Gajewska, K., Czarnota, C., 2019. Effective behavior of compos-
ites with combined kinematic and isotropic hardening based on additive tangent
Mori–Tanaka scheme. Composites B 174, 107052.

Mercier, S., Molinari, A., 2009. Homogenization of elastic–viscoplastic heterogeneous
materials: Self-consistent and Mori-Tanaka schemes. Int. J. Plast. 25, 1024–1048.

Mesarovic, S.D., Padbidri, J., 2005. Minimal kinematic boundary conditions for
simulations of disordered microstructures. Philos. Mag. 85, 65–78.

Molinari, A., 2002. Averaging models for heterogeneous viscoplastic and elastic
viscoplastic materials. J. Eng. Mater. Technol. 124, 62–70.

Molinari, A., Ahzi, S., Kouddane, R., 1997. On the self-consistent modeling of
elastic–plastic behavior of polycrystals. Mech. Mater. 26, 43–62.

Mori, T., Tanaka, K., 1973. Average stress in matrix and average elastic energy of
materials with misfitting inclusions. Acta Metall. 21, 571–574.

Msolli, S., Martiny, M., Costa Cardoso, M., Pessanha Moreira, L., Mercier, S., Moli-
nari, A., 2016. Numerical modeling of the deformation of AISI 304L using a tangent
additive Mori-Tanaka homogenization scheme: Application to sheet metal forming.
J. Mater. Process. Technol. 235, 187–205.

Nebozhyn, M.V., Ponte Castañeda, P., 1999. The second-order procedure: exact vs
approximate results for isotropic, two-phase composites. J. Mech. Phys. Solids 47,
2171–2185.

Nemat-Nasser, S., Obata, M., 1986. Rate-dependent, finite elasto-plastic deformation of
polycrystals. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 407, 343–375.

Ostoja-Starzewski, M., 2006. Material spatial randomness: From statistical to
representative volume element. Probab. Eng. Mech. 21, 112–132.

Perzyna, P., 1963. The constitutive equations for rate sensitive plastic materials. Q.
Appl. Math. 20, 321–332.

Pettermann, H.E., Huber, C.O., Luxner, M.H., Nogales, S., Böhm, H.J., 2010. An incre-
mental Mori-Tanaka homogenization scheme for finite strain thermoelastoplasticity
of MMCs. Materials 3, 434–451.

Pierard, O., Doghri, I., 2006. Study of various estimates of the macroscopic tangent
operator in the incremental homogenization of elastoplastic composites. Int. J.
Multiscale Comput. Eng. 4, 521–543.

Ponte Castañeda, P., 1996. Exact second-order estimates for the effective mechanical
properties of nonlinear composite materials. J. Mech. Phys. Solids 44, 827–862.

Ponte Castañeda, P., Suquet, P., 1997. Nonlinear composites. Adv. Appl. Mech. 34,
171–302.

Ponte Castañeda, P., Suquet, P., 2001. Nonlinear composites and microstructure
evolution. In: Aref, H., Phillips, J.W. (Eds.), Mechanics for a New Millennium.
Springer, Dordrecht, pp. 253–274.

Ravichandran, G., Liu, C.T., 1995. Modeling constitutive behavior of particulate
composites undergoing damage. Int. J. Solids Struct. 32, 979–990.

Ricaud, J.M., Masson, R., 2009. Effective properties of linear viscoelastic heterogeneous
media: Internal variables formulation and extension to ageing behaviours. Int. J.
Solids Struct. 46, 1599–1606.

Rychlewski, J., 1995. Unconventional approach to linear elasticity. Arch. Mech. 47,
149–171.

Sabar, H., Berveiller, M., Favier, V., Berbenni, S., 2002. A new class of micro–macro
models for elastic–viscoplastic heterogeneous materials. Int. J. Solids Struct. 39,
3257–3276.

Sadowski, P., Kowalczyk-Gajewska, K., Stupkiewicz, S., 2017a. Consistent treatment and
automation of the incremental Mori–Tanaka scheme for elasto-plastic composites.
Comput. Mech. 60, 493–511.

Sadowski, P., Kowalczyk-Gajewska, K., Stupkiewicz, S., 2017b. Response discontinu-
ities in the solution of the incremental Mori–Tanaka scheme for elasto-plastic
composites. Arch. Mech. 69, 3–27.

Tandon, G.P., Weng, G.J., 1988. A theory of particle-reinforced plasticity. J. Appl.
Mech. 55, 126–135.

Walpole, L.J., 1981. Elastic Behavior of Composite Metarials: Theoretical Foundation.
In: Advances in Applied Mechanics, vol. 21, Academic Press, New York.

Wang, H., Wu, P.D., Tomé, C.N., Huang, Y., 2010. A finite strain elastic–viscoplastic
self-consistent model for polycrystalline materials. J. Mech. Phys. Solids 58,
594–612.

Willis, J.R., 1981. Variational and Related Methods for the Overall Properties of
Composites. In: Advances in Applied Mechanics, vol. 21, Academic Press, New
York.

Wojciechowski, M., Lefik, M., 2016. On the static nature of minimal kinematic boundary
conditions for computational homogenisation. Eng. Trans. 64, 581–587.

Zecevic, M., Lebensohn, R.A., 2020. New robust self-consistent homogenization schemes
of elasto-viscoplastic polycrystals. Int. J. Solids Struct. 202, 434–453.

http://refhub.elsevier.com/S0997-7538(21)00107-8/sb4
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb4
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb4
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb4
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb4
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb5
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb5
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb5
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb5
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb5
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb6
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb6
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb6
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb6
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb6
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb7
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb7
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb7
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb8
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb8
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb8
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb8
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb8
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb9
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb9
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb9
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb9
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb9
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb10
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb10
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb10
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb11
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb11
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb11
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb12
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb12
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb12
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb12
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb12
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb12
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb12
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb13
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb13
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb13
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb14
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb14
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb14
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb14
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb14
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb15
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb15
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb15
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb15
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb15
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb16
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb16
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb16
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb17
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb17
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb17
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb17
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb17
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb18
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb18
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb18
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb18
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb18
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb19
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb19
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb19
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb19
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb19
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb20
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb20
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb20
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb20
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb20
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb21
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb21
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb21
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb21
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb21
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb22
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb22
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb22
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb23
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb24
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb24
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb24
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb25
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb25
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb25
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb26
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb26
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb26
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb27
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb27
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb27
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb28
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb28
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb28
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb29
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb29
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb29
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb29
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb29
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb30
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb30
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb30
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb30
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb30
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb31
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb31
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb31
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb32
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb32
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb32
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb32
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb32
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb33
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb33
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb33
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb33
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb33
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb34
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb34
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb34
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb34
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb34
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb35
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb35
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb35
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb35
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb35
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb36
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb36
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb36
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb36
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb36
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb37
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb37
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb37
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb38
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb38
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb38
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb38
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb38
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb39
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb39
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb39
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb39
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb39
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb40
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb40
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb40
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb41
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb41
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb41
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb42
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb42
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb42
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb43
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb43
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb43
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb44
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb44
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb44
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb45
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb45
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb45
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb45
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb45
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb45
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb45
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb46
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb46
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb46
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb46
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb46
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb47
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb47
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb47
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb48
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb48
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb48
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb49
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb49
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb49
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb50
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb50
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb50
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb50
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb50
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb51
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb51
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb51
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb51
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb51
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb52
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb52
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb52
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb53
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb53
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb53
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb54
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb54
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb54
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb54
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb54
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb55
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb55
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb55
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb56
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb56
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb56
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb56
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb56
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb57
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb57
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb57
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb58
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb58
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb58
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb58
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb58
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb59
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb59
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb59
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb59
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb59
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb60
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb60
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb60
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb60
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb60
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb61
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb61
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb61
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb62
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb62
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb62
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb63
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb63
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb63
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb63
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb63
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb64
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb64
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb64
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb64
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb64
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb65
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb65
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb65
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb66
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb66
http://refhub.elsevier.com/S0997-7538(21)00107-8/sb66

	Spurious softening in the macroscopic response predicted by the additive tangent Mori–Tanaka scheme for elastic–viscoplastic composites
	Introduction
	Mori–Tanaka model for elastic–viscoplastic composites
	Additive tangent Mori–Tanaka scheme
	Perzyna-type viscoplastic model
	Viscoplastic compliance and stiffness tensors
	Elastic and viscoplastic Hill tensors

	Illustration of selected effects resulting from the Mori–Tanaka model
	Analysis of the softening in the macroscopic response
	Proportional deviatoric loading
	Elastic-to-plastic transition
	Asymptotic macroscopic stress 
	Analytical solution for the soft isotropization with m=1

	Comparison to unit-cell computations
	Spherical unit cell
	Periodic unit cell with 30 inclusions Czarnota et al. (2015)

	Mori–Tanaka model in multiscale finite-element computations
	Conclusion
	Declaration of competing interest
	Acknowledgements
	Appendix A. Components of matrix A and vector b in Eq. eq:ODE
	Appendix B. Finite-element implementation of the additive tangent MT model
	References


