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The paper presents the application of the discrete element method to modelling of
granular material filling and discharge in 3D flat-bottomed hopper. A mathematical
model, as well as the developed software code, operates with spherical visco-elastic
non-cohesive frictional particles. The evolution of granular flow, internal forces and
densification (rarefaction) are characterized by macroscopic parameters such as the
discharge rates, the porosity fields and the wall pressures, as well as by microscopic
evaluations in terms of coordination number, velocity patterns and inter-particle con-
tact forces. It was shown that qualitative characterization of flow may be done even
by relatively rough models with small number of particles, which required to be
increased, however, for more precise description of the localized phenomena. Unsat-
isfactory evaluation of the stress peak during discharge is presented as an illustrative
example. The main focus of the paper is the analysis of particle friction effect and
the consistency of micro and macro-phenomena in the time-dependent flow process.
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1. Introduction

The physics of granular materials spans a wide variety of intriguing phe-
nomena, the explanation of which remains still a challenge for various research
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and engineering areas [1–5]. Actually, theoretical understandings about the gran-
ular phenomena are largely empirical, while the influence of microscopic granular
properties and inter-granular relations on the macroscopic dynamical behaviour
of the whole granular material is highly complicated.

The investigations of granular material behaviour in hoppers have become
an actual problem in view of their broad engineering applications, where fill-
ing and discharge of granular material in hoppers are important industrial op-
erations. Comprehensive historical review on the matter, along with handling
technology as well as characterization procedures and designed methodologies
presented from the engineering point of view, may be found in the works by
Roberts [6, 7].

Fundamentals of analytical continuum-based modeling of granular mater-
ial flowing in silo/hoppers have experienced significant theoretical development
since the days of Janssen [8], when the best-known method of calculating wall
pressure had been introduced. So far, the continuum models have been used in
analyzing the stress states and deformation modes of granular materials, assum-
ing the combined models of elastic, plastic or viscous response. A comprehensive
review of experimental observations and theoretical models can be found in books
by Drescher [9] and Nedderman [10].

The analytical models for evaluation of the filling and discharge state of the
elastic and elastic-plastic matter is presented by e.g., Mróz and Szymański
[11], Mróz and Sielamowicz [12]. Non-analytical density dependent contin-
uum model termed as granular elasticity was suggested by Krimer et al. [13]
and extended in the later work by Bräuer et al. [14] by considering stress distri-
bution in silos under point loads. Discussions of the above mentioned Janssen’s
wall pressure evaluation and various modifications are given in [3, 15, 16].

The principal category within these approaches is attributed to the applica-
tion of the Finite Element Method (FEM). An assessment of the state of art on
the implementation of latter technique has been performed by Holst et al. [17].
They have involved a large number of different research groups from different
countries, each using their own programs, showing the strengths and weaknesses
of the FEM in modelling the silo filling processes.

The continuum approach does not permit any behaviour occurring at the
scale of individual particles. Therefore, it is difficult to establish the stress state
within a granular material and changes in direction of sliding surfaces during
filling and discharge, as well as to capture dynamical response of granules when
transition from the unsteady to the steady flow is required. To improve the men-
tioned shortcomings, sophisticated models were proposed, in particular, within
the elasto-plastic Cosserat type theory, Tejchman and Gudehus [18], visco-
elastic-plasticity, the non-associated viscoplasticity, Elaskar et al. [19], the
polar-hypoplasticity, Tejchman and Ummenhofer [20].
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Recently, the discrete element method (DEM) introduced by Cundall and
Struck [21] has been developed and applied in the analysis of flow of granular
materials (e.g. [22, 23]). This method constitutes an useful and powerful alter-
native for numerical simulation of granular media. It is based on application of
Newton’s law specifying the dynamic equilibrium of grains with account for grain
contact slip and frictional interaction. Campbell and Brennen [24], Walton
[25], Thornton [26] were the first to apply discrete methods to the silo flow
problems. In this method, a limited number of particles was used and, in spite
of this fact, Thornton [26] obtained some interesting results concerning the
flow rate and velocity profiles. However, the analyses operating with spherical
particles have mainly been attributed to the several cases of granular flow in 2D
plane-shaped [27, 28], or cylindrical [29] silos. Rather than apply non-spherical
particles, Ferellec et al. [30] used spherical particles by imposing an additional
elastic spring, dashpot and a slider resisting the rotation of granules during the
discharge from a flat-bottomed silo in 2D discrete particle simulation. In this way,
flow patterns were investigated. The functional dependences of the orifice size on
the flow discharge rates under steady state conditions in cylindrical rough-walled
silo have also been studied by Hirshfeld and Rapaport [31]. The discrete el-
ement method was also applied to multi-objective optimization of parameters
of granular flow by specifying geometric and frictional hopper parameters [32].
Probably the most detailed study concerning transition from 2D to purely 3D
particle state was considered by Landry et al. [15]. Recently, the sophisticated
treatments to simulate granular flow in hoppers by using non-spherical discs and
cylinders and sphero-discs have been applied by Langston et al. [33], Li et al.
[34]. The cohesive bonds at particle contacts were studied in some papers, cf.
Leszczyński [35, 36].

One of the most serious drawbacks of the DEM simulations may be attributed
to validation of models by experiments. Lack of the predictable microscopic data
of particles may be partially compensated by experimentally obtained macro-
scopic data. Therefore, elaboration of experimental data and calibration of nu-
merical models appears to be a proper way in development of both the DEM
and the reliable design of silos.

In the present paper, the filling and discharge processes in a 3-D flat-bottomed
hopper are analyzed by applying the discrete element method. Spherical parti-
cles are applied in modelling by assuming non-cohesive frictional and viscoelastic
contact interaction. The evolution of granular flow, internal forces and densifi-
cation (rarefaction) are characterized by macroscopic parameters such as the
discharge rates, the porosity fields and the wall pressures, as well as by micro-
scopic evaluations in terms of the coordination number, velocity patterns and
inter-particle contact forces. A qualitative characterization of the filling and dis-
charge processes is obtained by models operating with quite small numbers of
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particles. Unsatisfactory evaluation of the stress peak during discharge is pre-
sented as an illustrative example. The main focus of the paper is the analysis
of particle friction effect and the consistency of micro and macro-phenomena in
the time-dependent flow process.

An outline of the paper is as follows. The concept of the DEM and governing
relations are briefly presented in Sec. 2. The hopper geometry, material data
and description of numerical experiment are given in Sec. 3. Description of the
microscopic and macroscopic analysis and discussions are presented in Sec. 4 and
Sec. 5, respectively. Conclusions are drawn in Sec. 6.

2. Governing relations

The granular material is considered as N number of discrete spherical parti-
cles referred to as discrete elements with geometric representation of their sur-
faces and description of physical state. The composition of the media is time-
dependent since individual particles undergo variation of their position due to
free rigid body motion or because of contact with the neighboring particles or
the walls. Accordingly, Newton’s second law is applied to each particle i in order
to describe its translational and rotational motion according to:

mi
d2xi

dt2
= Fi(2.1)

Ii
d2

θi

dt2
= Ti(2.2)

where xi, θi are the vectors of the position of the center of gravity and the
orientation of the particle, mi is the mass of the particle i (i = 1, N), Ii is the
inertia moment of the particle, t is the time.

Vectors Fi and Ti present the sums of the resultant contact forces Fij (in-
cluding the gravity force) and torques Tij , that act on the particle i, respectively:

Fi =
N∑

j=1,j 6=i

Fij + mig(2.3)

Ti =
N∑

j=1,j 6=i

Tij =
N∑

j=1,j 6=i

dcij × Fij(2.4)

g is the vector of gravity acceleration, dcij is the vector specifying a position of
the contact point with respect to the centers of the contacting particles [37].

The mutual impact of particles is approximated by a representative overlap
area of particle shapes in the vicinity of the point of contact. This allows for the
application of the contact mechanics laws a single particle. Hence, the resulting
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contact force Fij arising from a visco-elastic collision between particles i and j
and acting on this point is expressed in terms of the normal and the tangential
components:

(2.5) Fij = Fe
n,ij + Fv

n,ij − tij min
(∣∣Fst

t,ij

∣∣ ,
∣∣∣Fdyn

t,ij

∣∣∣
)

where Fe
n,ij and Fv

n,ij are the vectors of elastic and viscous damping force normal

to the contact surface, Fst
t,ij and F

dyn
t,ij are the vectors of static and dynamic

friction force in tangential direction to the contact surface, tij is the unit vector
of tangential direction following the orientation of tangential velocity vt,ij of
colliding particles i and j [37].

Normal repulsion forces between the particles i and j arising from their visco-
elastic collision are expressed as follows, according to [22] and [37]:

Fe
n,ij =

2

3
· E

(1 − ν2)
Rijhijnij(2.6)

Fv
n,ij = −γ nmijvn,ij(2.7)

where E and ν are the elastic modulus and Poisson’s ratio of the particle mate-
rial, hij is the overlap between two contacting particles [37], Rij and mij are the
reduced radius and reduced mass of two contacting particles i and j [37], nij is
the unit vector normal to the contact surface and directed towards the particle
i [37], vn,ij = (vij · nij)nij is the normal component of relative contact velocity,
where vij is relative velocity of particles at the contact point [37]; γn is a viscous
damping coefficient in normal direction.

The formulation of a model for the tangential force is more complicated,
since the phenomena of tangential deformation and friction have to be modeled,
whereas in general, they depend on the normal force Fn,ij and depth of overlap
hij , as well as on the history of the tangential slip vector δt,ij . The friction force
describes the friction prior to a gross sliding, while the dynamic friction force
delineates the friction after a gross sliding. The most general form of the static
friction was proposed by Kohring [38] in terms of simplified expressions of
Mindlin’s theory [39]:

(2.8) Fst
t,ij = −8

3
· G
√

Rijhij

(2 − ν)
δ t,ij − γ tmijvt,ij

where δ t,ij =
∫

vt,ij (t) dt, G is shear modulus of the particle material, γt is
viscous damping coefficient in tangential direction.

The dynamic friction force is expressed by Coulomb’s law:

(2.9) F
dyn
t,ij = −µ

∣∣Fe
n,ij + Fv

n,ij

∣∣ tij

where µ is the particle friction coefficient.
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The numerical solutions of differential Eqs. (2.1)–(2.2) for each particle i at
the time t + ∆t (where ∆t is the time step) is performed by using the 5-th
– order Gear’s predictor-corrector [40] scheme. A detailed description of DEM
technique used in the present investigation can also be found in [41] and [42].

In general, formulation of DEM model comprises not only formulation of the
equations of motion (2.1)–(2.2) with respect to (2.3)–(2.9) but also the boundary
conditions. The boundary conditions represent a unilateral constraint restricting
the motion of particles outward to the computational domain. It is convenient to
implement the geometry of the boundary plane surface by using the equations
of infinite planes [37]. However, this approach is useful when the configuration
of computational domain is of a relatively simple, continuous shape and does
not require the inward/outward contact detection between the particle and the
boundary plane. To create the computational domain reflecting the configura-
tion of 3D hoppers having, for example, the bottom with the orifice, the planes
of a finite size have to be implemented. Such planes form the shape of a hopper,
controlling the granular material flow inside the hopper (in the case of filling)
and outside the hopper (in the case of discharge). The geometry of each bound-
ary surface is sketched in the global coordinates system by using three plane
corner vectors, whilst the constraints as well as particle-wall overlapping are
checked in the local coordinate frame. The hopper walls (including the bottom)
are assumed to be rigid and are considered as the fixed boundaries possessing
friction.

3. Numerical experiment

The geometry of flat-bottomed hopper is depicted in Fig. 1. The characteristic
dimension of the outlet D is assumed to be related to the average diameter d of
the particle as D = 10 d. The thickness of the hopper at the bottom is assumed
to be b = 5 d. The dimension of the top hopper edge is L = 2.33 D, while the
overall height of the hopper is H = 3.33 D. Assuming that d = 0.06 m, the main
geometrical parameters of the hoppers are defined as: b = 0.3 m, H = 2.0 m,
L = 1.4 m, D = 0.6 m.

The granular matter is represented as an assembly of N = 1,980 close-size
distributed particles. The values of the particle radii Ri varying over the range of
0.03 and 0.035 m are generated assuming a uniform diameter distribution. The
particle physical data for the assumed visco-elastic material are given in Table 1.
The assumed value of the normal viscous damping coefficient constitutes about
10% of the critical damping coefficient in collision of two particles. Inter-particle
and particle-wall friction is specified by the same friction coefficient µ, indicating
the case of fully rough walls.
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Fig. 1. The geometry of the pyramidal hopper.

Table 1. Basic data on granular material.

Quantity Symbol Value

Density, kg/m3 ρ 500

Poisson’s ratio ν 0.30

Elasticity modulus, Pa E 0.3·106

Shear modulus, Pa G 0.11·106

Normal viscous damping coefficient, 1/s γn 60.0

Tangential viscous damping coefficient, 1/s γt 10.0

In general, filling comprises the settling of the material into the hopper. The
discharge means a flow of material from the hopper due to the orifice opening.
Processes of the filling and discharge can be performed by different simulation
scenarios which can affect the stress transmission within granular matter, as well
as the geometry of granular structure. The choice of simulation scenario must
highlight an attempt to achieve as close as possible, the situation encountered
in real hoppers, as well as to save the computation time needed.

To obtain the compromise between these requirements, the filling is simulated
by sedimentation of particles en masse, i.e. all particles start to fall due to gravity
acceleration and to mix up when the initial particle velocities are also artificially
imposed. During the particles settling on the bottom in the filling process, the
orifice is kept closed until a quasi-static state occurs. The discharge process
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begins after an instant opening of the orifice. During the discharge no material
re-supply from above is made.

By following the above scenario, the initial state for commencing of the fill-
ing is generated in the following manner. The space within and above the hop-
per was divided into the cubic cells as an orthogonal and uniform 3D grid of
0.1 m. Initially, at time t = 0, the particles are embedded free of contact into the
centers of these cells. The fields of initial velocities are defined randomly with uni-
form distribution, to have their magnitude varying in the range from
0 to 0.3 m/s.

The behaviour of a granular material during filling was controlled by the
evolution of the total kinetic energy of granular material, expressed as the sum
of all particle energies due to translational and rotational motion. The evolution
of the kinetic energy to zero value is assumed to be a stabilization indicator
of the filling process of granular material, allowing de facto to interrupt the
simulation.

The time-evolution of kinetic energy reflects a sophisticated integral behavior
of the flow. Generally, frictional particles lose energy not only due to material
viscous damping but additionally due to friction. In this case, the particles start
to rotate, affecting the translational motion. The effect of friction is manifested
throughout the competition between static and dynamic friction forces. This
competition leads to significant fluctuation of relative inter-particle contact ve-
locities vt,ij , particle velocities vi and, in turn, the evolution of the total kinetic
energy. Frictionless material is subjected, however, to a higher fluctuation since
particles are able to dissipate the kinetic energy only due to the damping in
the normal direction. Stabilization of the total kinetic energy means that most
of the particles have dropped on the bottom and cannot essentially change the
positions relatively to their neighbours.

Stabilization of the granular flow is a rather hypothetical state which may be
achieved within the limits of the required tolerance. On the basis of computa-
tional experience, the state of rest is indicated by the level of total kinetic energy
equal to 0.3·10−6 J which specifies the average particles flow velocity equal to
10−6 m/s and practically negligible small average acceleration. It is indicated
as time instant t1 required for interrupting of filling. It depends on the friction
coefficient value. Hereby, the end the filling is defined as t1=10 s for the friction-
less material (µ = 0) and t1 = 6.59 s for frictional (µ = 0.3) and t1 = 6.09 s for
highly frictional materials (µ = 0.6), respectively.

Consequently, all dynamical parameters of particles obtained at the end of
the filling process are assumed to be the initial conditions for simulation of the
discharge process, while a new time scale referred to initial discharge time t = 0
is employed for the sake of similarity
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4. Microscopic analysis

Application of the DEM to simulation of granular flow opens new vistas to
highlight the microscopic nature of granular material phenomenon in hand. In
the framework of current approach, microscopic analysis comprises investigation
of a time-evolution of the mean coordination number of the particulate mate-
rial during filling, variation of the inter-particle contact forces within granular
material and the analysis of the particles velocity fields.

The coordination number is the number of contacts for a given particle. It
represents microscopic parameter of the granular material which has been widely
used for characterization of homogeneity of granular structure. Its mean value
characterizes an assembly of particles and is computed as the sum of all particle
contacts divided by the number of particles. The time evolution of this state
variable during filling is plotted in Fig. 2.

Fig. 2. Time evolution of the mean coordination number of the material during filling.

As it can be seen in Fig. 2, the higher values of coordination number are ob-
tained for frictionless material, while for frictional media, this number decreases
with increasing of the particle friction coefficient. The values of the mean coordi-
nation number fluctuate in time, and it should be noted that these fluctuations
have similarity with the total kinetic energy of particles.

The time evolution of the mean coordination number of the particle may be
conditionally distinguished in three stages. The initial stage indicates densifi-
cation phase. It illustrates that the particles gradually come into contact each
with other, transforming from the contactless particles settling indicated by the
“zero” coordination number, up the maximal number indicating contact with the
hopper’s bottom. It can be clearly seen in the graph (Fig. 2), where at time in-
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stant 1 s the material is characterized by the maximal value of the coordination
number, varying in the range between 6.5 and 8, depending on the inter-particle
friction coefficient.

The second stage indicates rarefaction phase. By passing a very short pe-
riod of the contact, the particles rebound from the bottom leading to a drastic
material rarefying and decrease of the mean coordination number of particles.
In particular, for frictionless particles, this reduction is up to 1.5 while the fric-
tional assemblies are less sensitive to this loosening of the packing (coordination
number is of about 4), since the particles additionally dissipate their energy due
to friction and undergo the confined motion.

Starting from 2–3 s, the evolution of the mean coordination number of parti-
cle transforms into the stage of stabilization which is characterized by the values
equal to 7.34, 6.38, 5.96 for µ = 0, µ = 0.3, µ = 0.6, respectively, remain-
ing almost constant until the end of the filling. Actually, the results obtained
depend on the hopper parameters and filling scenario; however, the peculiarly
lower connectivity of the granular structure formed by frictional particles can be
attributed to the formation of small arches within the material. It is noticeable
that the maximal values of the mean coordination number of particles obtained
before the first material rarefying (due to contact with the bottom) cannot later
reach the prior maximal value until the end of the filling process.

The microscopic state of the particles may be defined by the contact forces
acting on the individual particles, while capturing the values of these forces ren-
der the quantitative information about the nature of granular structure. In other
case, the analysis of contact force network provides the qualitative information
about the heterogeneity of granular structure. Consequently, following this con-
cept, let us consider the contact force distribution obtained during the filling and
discharge periods.

The character of filling and discharge, indicating the transitional and final
stages of the flow in hoppers, is illustrated in Figs. 3 and 4. The colour-bar plotted
in these figures quantitatively represents the particle contact forces,

∑
i6=j

|Fij |.

The transitional and the final stages for frictionless (µ = 0) and frictionally
rough (µ = 0.6) material clearly exhibit granular material flow during the filling
process (Fig. 3). It is easy to indicate forming of the material layers having
different contact force transmission within the hopper. In the upper layers of
granular structure these forces are distributed more uniformly, while the layers
above the bottom are characterized by non-uniformly distributed contact forces.
The magnitudes of contact forces at the top surface are much lower as compared
to those at the bottom layer, since they grow along the direction of gravity force.
Comparing the transitional and final stages, it can be seen that the particle
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acceleration during the filling flow affects the magnitudes of particle contact
forces. In particular, the maximal value of these forces in transitional state is to
a higher than in the final stage. In transitional state, it can also be seen that
frictionless particles are subjected a higher maximal contact force of magnitude
equal to 155 N as compared to frictional forces (140 N), since the latter dissipate
additional portion of kinetic energy during frictional contacts. As it can also be
seen, the particle friction produces an increase of the local heterogeneity of the
particle contact force transmission, which is higher for rough particles (µ = 0.6)
than for smooth ones (µ = 0). It can also be demonstrated that there are some
rough particles subjected to much higher contact forces, in comparison with the
smooth ones in the lower part of the hopper. It is also seen that due to arching,
rough particles located at the vertical wall (Fig. 3, d) form unfilled voids unlike
the frictionless particles (Fig. 3, c).

a) µ = 0 b) µ = 0.6

c) µ = 0 d) µ = 0.6

Fig. 3. Filling flow and contact forces (measured in newtons): a, b) transitional (t = 1 s);
c, d) final stages.
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In general, the discharge process in flat-bottomed hopper starts with pro-
gressing dilation wave which spreads up to the top surface of the material. The
depression zone above the orifice occurs at some material height and deepens
with continuation of the discharge process. Its sides become steeper and when
the slope of these sides reaches the angle of repose, some of the particles cas-
cade down to the central part of the material which moves faster. The nature
of granular flow in the flat-bottomed hopper contains characteristic features of
a funnel flow. For brevity, the transitional stages of the discharging flow for fric-
tionless (µ = 0) and for rough (µ = 0.6) particles are captured at time instance
t = 0.2 s as depicted in Fig. 4. These plots demonstrate the mentioned ten-
dencies about the local heterogeneity of the particle contact force transmission
within a granular material. It is also indicated that there are much more rough
particles subjected to higher contact forces in comparison with the smooth ones.
A common feature of the discharge in the flat-bottomed hopper can be observed,
namely the particles located above the orifice up to the top surface of material
are practically unloaded when the orifice is opened. On the contrary, for parti-
cles located at corners of the hopper walls (stagnant material zones) the contact
forces remain almost unchanged during the discharge period. These particles are
compressed by the material flowing from above.

a) µ = 0 b) µ = 0.6

Fig. 4. Discharge flow and contact forces at time instance t = 0.2 s (forces measured
in newtons).

The significant information about the particle connectivity and contact forces
can be obtained by considering the particle contact forces network. Figure 5 and
6 show such a network which is represented by lines connecting the contacting
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particles. Thickness of these lines is scaled proportionally to the force magni-
tude which is fixed by the magnitude of the maximum contact force, hence only
qualitative comparison between the networks can be obtained.

a) µ = 0 b) µ = 0.6

Fig. 5. Contact forces network at the end of filling.

As the graphs in Fig. 3 and the plots in Fig. 5 show, the particle contact
forces grow along the gravity force. For frictionless particles, the contact force
magnitude network is quite uniform and isotropic within the material depth as
well as over all particle contacts. The particle friction induces an increase of local
heterogeneity in contact force transmission. Frictional contacts provide a lower
connectivity; however, large contact forces can be observed by particles located
in lower part of the material and close to the walls. Large contact forces are able
to form stress arches leading to the material weight transmission towards the
hopper’s walls. The experimental demonstrations of such force network can be
found in [43].

The spatial contact force evolution within material during the discharge is
plotted in Fig. 6. It can be indicated that large forces are experienced by particles
located at the walls around the bottom corner. Particles located in the upper
part have smaller contact forces. Small forces are also found by particles located
in a region of a “free-fall arch” which is adjacent to the orifice where particles
can accelerate almost freely.
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a) µ = 0 b) µ = 0.6

c) µ = 0 d) µ = 0.6

Fig. 6. Contact forces network during discharge at : a, b) t = 0.04 s; c, d) t = 0.2 s.
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From plots depicted in Figs. 6b, d it can be evidently seen that the height of
“free-fall arch” region at the initiation of the discharge (t = 0.04 s) is of the order
of 1/2 of the orifice width, D (see Fig. 1), while later (when flow becomes steady)
it remains constant and approximately equal to D. Above this region the particles
are packed together confining each other’s motion, while below it can be seen
that particles fall almost without contacts. In the case of frictionless particles
(Fig. 6a,c), it can be demonstrated that the region of “free-fall arch” does not
exist and particles outflow depends on the material height.

Let us consider the discharge flow kinematics. The distribution of velocity
fields has been extensively studied by the macroscopic experiments and simu-
lations, cf. e.g. [10], [28]. However, the detailed motion of individual particles
in the discharge flow is difficult to measure experimentally, particularly in the
case of 3D. Thus, following the classical macroscopic description of the discharge
flow, there are five zones of flow inside the flat-bottomed hopper: stagnant zones
located at the bottom corners, a plug flow zone in the upper part, a converging
flow zone in the lower part, a transition zone from plug flow to converging flow
(where particles move toward the orifice), and a free particle fall zone. From
the initial transient stage (t = 0.04 s) up to the pseudo-steady (t = 0.4 s) flow,
such flow patterns can be observed by the obtained velocity vectors of individual
particles plotted in Fig. 7.

a) µ = 0 b) µ = 0.6

[Fig. 7a, b]
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c) µ = 0 d) µ = 0.6

e) µ = 0 f) µ = 0.6

Fig. 7. Contact forces network during discharge at: a, b) t = 0.04 s; c, d) t = 0.2 s;
e, f) t = 0.4 s.

The initial transient stage of the discharge runs in the same manner for
frictionless and frictional particles (Figs. 7a, b), however the latter flow proceeds



Microscopic and macroscopic analysis ... 247

quite differently. Particularly, in Figs. 7e, f it is seen that the converging flow
zone is enclosed on both sides by stagnant zone of material with “zero” particle
velocities. Stagnant zones form two flow converging boundaries whose shape
changes during the discharge. The inclination of these boundaries depends on
the particle and wall friction. It is seen that the frictionless particles have a less
sharp flow convergence than particles with friction contacts (Figs. 7e, f). It is also
observed that a plug flow zone in the case of frictionless particles runs almost
vertically and can rather be treated as a mass flow zone (Figs. 7c, e).

5. Macrosopic analysis

The simulation is also utilized to calculate the normal and shear stresses
acting on the hopper walls. The values of the wall stresses at different heights
are obtained by averaging over the height equal approximately to four particle
diameters. The results obtained are compared with the well-known Janssen’s
analytical solution [8] which, with certain corrections [10], is used in most stan-
dards for predicting the filling pressures in flat-bottomed sections of hoppers.
The identification of Janssen’s macroscopic parameters from the simulation cor-
responds to the bulk density values equal to 335, 325 and 320 kg/m3 for cases of
µ = 0, µ = 0.3 and µ = 0.6, respectively. The internal friction angle, φ, following
[44], is determined by the angle of stagnant boundary zone assumed to be an
internal slip plane. By the additional examination of particles funnel-flow fields,
values of φ = 6 ÷120 are obtained. The pressure fields obtained at the end of
the filling hopper wall and Janssen’s macroscopic prediction are shown Fig. 8a.

Despite the quite small number of particles used in simulation, the obtained
pressure dependence on material height is quite consistent with macroscopic
prediction. As it can be seen in Figure 8a, the increased values of the friction
coefficient results in a transition from fluid-like to granular material behavior.

The pressure distribution captured during discharge is plotted in Fig. 8 b.
As it can be seen, the wall pressure during discharge is lower than at the end of
filling. This result contradicts a well-known experimental fact that upon opening
of the orifice in a large silo, the wall pressure significantly increases in compari-
son with the pressure observed at the end of filling. This increase is always very
remarkable in the wedge-shaped hopper, where due to the converging flow to-
wards the orifice, the passive stress state can develop, while in the flat-bottomed
hopper this increase is lower and mainly depends on the hopper geometry and
the angle of stagnant zone resulting in the converging flow. In our case, the drop
in lateral wall pressure during discharge is mainly attributed to a relatively large
size of orifice and a squat shape of hopper, resulting in a quick reduction of
material weight as well as its dilation upon orifice opening. The propagation of
material dilation is studied below.
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Fig. 8. Evolution of wall pressure at the end of fill a) and during the discharge b). Bold line
– Janssen’s prediction.

Thus, the macroscopic variable, such as the bulk porosity, reflecting the pack-
ing structure of the material within the hopper and directly affecting the bulk
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density, can be considered in terms of the spatial distribution of the porosity
fields within the granular material. The porosity is specified by averaging of
particles volume within the chosen elementary volumes represented by spheres.
The volume of the granular structure computed within the representative sphere
is defined by excluding the overlaps of the particles. The volume of the repre-
sentative sphere adjacent to the wall is also defined relying on the sphere-wall
intersection geometry. Finally, the computed volumetric data of the porosity are
displayed on a spatial grid (Fig. 9).

In general, it has been well-established that the coordination number de-
creases with the porosity. Such correlation can be easily kept to track within
the whole period of the material packing history plotted in Fig. 2. For brevity,

a) t = 0 s b) t = 0.04 s

c) t = 0.2 s d) t = 0.4 s

Fig. 9. Time evolution of the porosity fields during discharge (µ = 0.6).
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the spatial evolution of the porosity within the hopper is restricted here for the
frictionless particles with µ = 0.6 (Fig. 9).

The obtained spatial distribution of the porosity at the end of filling is shown
in Fig. 9a. Independently of the roughness of the particle, formation of the dens-
est assemblies is characterized by the lowest values of the porosity which is
observed in the lower part of the hopper, while the loose granular structures
are located in the upper part, near the walls and in the narrow boundary layer
above the bottom. Thus, in the case of frictionless granular material (µ = 0, the
dominating porosity values are n = 0.27÷ 0.3, while for µ = 0.3 and for µ = 0.6
these values are n = 0.29÷ 0.32 and n = 0.33÷ 0.36, respectively. The depth of
the dominating porosity zones is spread up to the elevation of 0.7 ÷ 0.9 m.

The captured evolution of the porosity fields (Figs. 9 b–d) within the hopper
clearly exhibits the well-known phenomenon that the orifice opening generates
a dilation of the bulk material. At the short time instance after orifice opening
(t = 0.04 s), the zone of material rarefying with porosity n = 0.39÷ 0.42 begins
to form in vicinity of the outlet (Fig. 9b). At time instance t = 0.2 s this porosity
wave reaches in about 0.8 m of the material height, while the dilation above the
orifice increases up to the porosity values n = 0.5 ÷ 0.53 (Fig. 9c). Later (at
t = 0.4 s), each zone of material up to the top of the filling is reached by this
dilatancy wave (Fig. 9d).

In addition, by considering the plots shown in Figs. 9 b–d and Figs. 7 b,d,e, it
is simple to note that high porosity corresponds to high velocities of the particle.

Let us examine the discharge flow rate (i.e. mass discharged flux) trough
the orifice. By generalization of numerous empirical observations of the granular
flow [10], the main conditions defining a constant discharge rate, when the rate
is effectively independent of the quantity of material in hopper characterized by
material height z, have been established: z > 2D and L > 2.5D. Actually, these
conditions highlight the fact about the sufficient material quantity within the
hopper which allows to obtain a constant flow rate in time. Hence, for appropriate
z and L, the rate depends only on the bulk density, the orifice diameter, gravity
acceleration and the material friction. Oppositely, for inviscid liquid the discharge
flow rate is proportional to D2

√
2gz (where g is the gravity acceleration). For a

rectangular orifice, the discharge rate can be calculated by the following relation
[10]:

(5.1)
dm

dt
=

8C

π
√

2
ρ∗
√

g
((D − kd) (b − kd))3/2

(D + b − 2kd)1/2

where ρ∗ is the bulk density near the orifice, kd is the width of the so-called
“empty annulus”, C is the material constant which, following [10] is assumed to
be 0.64 for exceptionally smooth spherical particles and 0.58 for the rough ones.
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The empirical factor k must be determined experimentally and is claimed
to be derived from the concept of the obstruction surrounding region near the
orifice generating the flowing particle interaction. This is consistent with the
concept of an “empty annulus” proposed by Brown and Richards [45]. Values
of k may vary in a broad range, in particular, from 0.94 for the glass bed [46] up
to 4 for sand [47].

However, the region near the orifice surround obstructing the passage of
particles is difficult to be observed experimentally. It can simply be defined
visually by observing time evolution of particle flow trough the orifice, captured
in Fig. 10. It is seen that less particles can be detected close to the orifice corners
than in the central region, clearly confirming the concept of “empty annulus”.
This effect is also familiar as “vena contracta” meaning the reduced size of the
effective flow area with respect to the geometrically specified area. The effect
of “vena contracta” is clearly seen in Fig. 10. In particular, it can be seen that
kd changes from zero to grain diameter (Fig. 10a), over the range of 0.5÷1
(Fig. 10b, d) by about 2 (near #825 particle in Fig. 10c). Hence, it is reasonable
to assume k = 0.75.

a) t = 0.2, µ = 0.3

b) t = 0.2 s, µ = 0.6

[Fig. 10a, b]
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c) t = 0.4 s, µ = 0.3

d) t = 0.4 s, µ = 0.6

Fig. 10. Time evolution of particles flow trough the orifice.

Thus, the material flow rate is measured in the discharge simulation and is
compared with the theoretical prediction specified by Eq. (3.4) (see Fig. 11).
The bulk density near the orifice is derived by the averaged porosity (Fig. 9)
within the “free-fall arch” region with its height equal to D. In particular, it has
the values of 295, 270 and 260 kg/m3, for cases of µ = 0, µ = 0.3 and µ = 0.6,
respectively. These values indicate approximately 13÷23% reduction of the bulk
material density packed at the end of the filling.

As it can be seen in Fig. 11, the current simulation indicates the empirical
evidence that for the increasing particle friction coefficient, the rate of discharge
is reduced. It is seen that this reduction represents a mild function of the particle
friction coefficient and is adequate to the experimental observations. For friction-
less particles (µ = 0), an expected nonlinear variation of mass discharged flux is
observed. For frictional particles, the discharge rate exhibits some fluctuations
in time however, in the case of µ = 0.6 the constant rate can be observed in the
time period from 0.2 s to 1 s.
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Fig. 11. Evolution of the discharge rate. Bold line – macroscopic prediction by (5.1).

The agreement between the prediction based on Eq. (5.1) and the results
of the simulation would be closer, if the particle sizes were smaller resulting in
a much greater number of particles and a closer approach to the continuum.
Furthermore, the variation of the discharge flow rate in time is generally at-
tributed to small height of the hopper. In such case, the material resupply into
the hopper during discharge allows to obtain more steady discharge flow with
fewer fluctuations [28].

6. Concluding remarks

Filling and discharge processes of the granular material in a flat-bottomed
rough-walled hopper are simulated by the three-dimensional discrete element
model. The model is based on a single particle contact mechanics constitutive
laws with Hooke’s spring interaction, static and dynamic frictions as well as
viscous damping forces. The main focus of the paper was a qualitative illustration
of the physical processes inside the time-dependent flow of granular material and
the consistency of micro and macro descriptions.

Generally, despite the small number of particles in the current analysis, the
consistency of micro and macro-descriptions has been proved. The microme-
chanical aspect of the macroscopically observable phenomenon is additionally
exhibited by introducing the microscopic variables, such as coordination num-
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ber, inter-particle contact forces or particle displacements and velocities defined
at the particle scale. The analysis performed has shown that particle friction has
a major influence on the material flow kinematics, the changes in porosity and
stress fields. On the basis of numerical simulation, the following conclusions may
be summarized as follows:

• The consistency between the obtained wall pressure and its macroscopic
equivalent based on Janssen’s formula was found by considering the end
of filling stage for frictional and frictionless particles. In the discharge, the
obtained drop in pressure was affected due to squat shape of hopper and
relatively large orifice inducing a sudden reduction of the material weight.

• Evolution of material packing during filling illustrates that the final quasi-
static state in the hopper is characterized by the lower coordination number
as compared to the highest value reached by the first densification wave.
Such aspect is relevant to the particle viscous damping/elasticity balance
and filling scenario, ensuring a close packing structure during particle set-
tling in the hopper.

• The obtained spatial distribution of bulk porosity within a granular mater-
ial has demonstrated the fact about the propagation of the experimentally
observed dilation wave occurring after opening of the orifice. During a short
period this wave reaches the top material, surface and occupies almost the
whole material causing the decompression of particle contact forces, which
in turn leads to the reduction of wall stresses.

• Microscopic motion of particles during the discharge illustrated by the ve-
locity profiles corresponds qualitatively to macroscopic profiles experimen-
tally observed in real funnel-flow hoppers. Time evolution of bulk porosity
and the individual particle velocities simply demonstrate the fact that high
porosity corresponds to high particle velocity.

• The obtained spatial distribution of the particle contact forces within the
flowing frictional particles demonstrated a decisive role of the inter-particle
friction and exhibited fundamental differences between frictionless and fric-
tional granular matter by characterization of the so-called “free-fall arch”
region.

• The concept of the so-called “empty annulus” or “vena contracta” and a
mild influence of particle friction on discharged mass flow rate have also
been highlighted in the current analysis. The existing predictions of the
steady-state discharged mass flow rate of the frictional material present
slightly lower bounds of the numerically simulated evaluations.

The results presented are considered as a preliminary investigation of real
grain materials. For more accurate simulation, the aggregate of larger number of
grains should be analyzed with a realistic grain size distribution function. This
will constitute a subject of future studies.
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