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Abstract
We study the dynamics of two charged point particles settling in a Stokes flow.We findwhat ranges of
initial relative positions andwhat ranges of systemparameters lead to formation of stable doublets.
The system is parameterized by the ratio of radii, ratio ofmasses and the ratio of electrostatic to
gravitational force.We focus on opposite charges.We find a new class of stationary states with the line
of the particle centers inclinedwith respect to gravity and demonstrate that they are always
locallyasymptotically stable. Stability properties of stationary states with the vertical line of the particle
centers are also discussed.We find examples of systemswithmultiple stable stationary states.We show
that the basin of attraction for each stable stationary state has infinitemeasure, so that particles can
capture one another evenwhen they are very distant, and even if their charge is very small. This
behavior is qualitatively different from the uncharged casewhere there only exists a bounded set of
periodic relative trajectories.We determine the range of ratios of Stokes velocities and ratiomasses
which give rise to non-overlapping stable stationary states (given the appropriate ratio of electrostatic
to gravitational force). For non-overlapping stable inclined or vertical stationary states the larger
particle is always above the smaller particle. The non-overlapping stable inclined stationary states
existonly if the larger particle has greater Stokes velocity, but there are non-overlapping stable vertical
stationary states where the larger particle has higher or lower Stokes velocity.

1. Introduction

Motion of particles in a Stokes flow, such as sedimentation, [1–3] has applications includingmedical technology
[4–6], microfluidics [7–11], swimming ofmicroorganisms [12–14], deformation of vesicles [15], waste water
treatment [16], marine snow [17], mantle plums [18] andmotionwithin volcanicmagma [19, 20]. There are
many introductions to the physics of Stokesflows, introduced in [21], such as [22–30] and the included
references.

There has recently been interest in bound states of particles in viscousflows. For example, formation of
doublets and other bound states of particles in viscousflows have been explored for drops [31], pairs of
magnetically active rollers near a repellingwall [32] and for pairs of identical rigid spheres in a background flow
withwalls [33]. There are also results about large scale spontaneous self-organization into ordered structures
withmany drops [34] ormany rollers [35].

There is also a rich literature in bound states of sedimenting particles. A fundamental problem for the
motion of a group of particles close to each other is understandingwhether they stay together for a long time or
disperse andwhat are the physicalmechanisms responsible for keeping them together, see [36–45]. Tomake the
notion of capturing precise, we define a capturing state of two particles as a configurationwhose relative
trajectories do not go to infinity in future time. The capturing set is then the set of all capturing states.

In [46] it is shown that there can exist a capturing set of afinite non-zeromeasure for two uncharged
spherical particles of different radii and differentmasses settling under gravity in a Stokes flow. This set consists
of neutrally stable periodic orbits. Because of the neutral stability, there are no basins of attraction, so that even a

OPEN ACCESS

RECEIVED

10May 2021

ACCEPTED FOR PUBLICATION

27May 2021

PUBLISHED

6 July 2021

Original content from this
workmay be used under
the terms of the Creative
CommonsAttribution 4.0
licence.

Any further distribution of
this workmustmaintain
attribution to the
author(s) and the title of
thework, journal citation
andDOI.

© 2021TheAuthor(s). Published by IOPPublishing Ltd

https://doi.org/10.1088/2399-6528/ac060c
https://orcid.org/0000-0003-3134-460X
https://orcid.org/0000-0003-3134-460X
mailto:mekiel@ippt.pan.pl
https://crossmark.crossref.org/dialog/?doi=10.1088/2399-6528/ac060c&domain=pdf&date_stamp=2021-07-06
https://crossmark.crossref.org/dialog/?doi=10.1088/2399-6528/ac060c&domain=pdf&date_stamp=2021-07-06
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0


small perturbation can have a destabilizing effect. Further, because the capturing set hasfinitemeasure, if
particles begin very distantly they come closer to each other but latermove away, and are not trapped. This
structure of the capturing set is often used to predict that trajectories of two captured particles are likely to be
disturbed by the presence of other particles in a suspension, and therefore capture will probably have no
significant effect on the dynamics of sedimenting suspensions e.g., [47–50].

In this paperwe study pairs of charged sedimenting particles, in order to see if the charge can create large
basins of attraction for bound states. Our interest in electrostatic forces originates from the simple observation
that systems of charged particles settling in viscousfluids are common, and therefore stable doublets of charged
particles could be potentially used inmany practical applications. In a vacuum, electrostatic interactions are
destabilizing. This fact is known as Earnshaw’s Theorem.However, in [51] it was shown that even a very small
charge can stabilize pairs of sedimenting particles; two charged spherical particles of different radii and different
masses settling under gravity in a Stokes flow can have locally asymptotically stable stationary states with particle
centers in linewith gravity.

The stability result in [51] is local. To understand the practical significance of this local result, in this paper
wewill investigate how two charged point particles sedimenting in a Stokesflow can capture one another,
depending on the characteristic parameters of the system: the ratios of the particle radii andmasses.Wewill
determine the regions in the phase space of these parameters where stable stationary states of a given
interparticle distance can exist.Wewill determine the capturing set and its structure.Wewill alsofind a new
class of stable stationary states with particle centers inclinedwith respect to gravity.Wewill show that the
capturing set of a stable stationary state for two charged point particles settling in a Stokesflow is infinite in
measure and consists of one or several basins of attraction to a stable stationary state. These findings open the
path toward future experimental observation of these stable doublets. Such doublets could have relevance in
dilute charged suspensions [52], for particles in flows at non-zero Reynolds number [53–55] and in plasma [56].

We start our investigationwith themathematicalmodel of point-like particles in section 2.We examine the
benchmark case of uncharged pairs of sedimenting point particles (as in [46]) in section 3. In section 4we
present the stability conditions by looking at the linearized dynamics near three kinds of stationary states: centers
of particles alignedwith gravity with larger particle up, centers of particles alignedwith gravity with larger
particle down and stationary states where centers of particles are inclinedwith respect to gravity. In section 5we
discuss generic examples of the relativemotion. The vector field of the particle relative velocities and relative
trajectories determined numerically on a grid of initial conditions for the case when the larger particle has a
greater Stokes velocity.Wefind the capturing set in physical space of the relative positions using the Poincare-
Bendixson theorem. The other case—when the smaller particle has a greater Stokes velocity—is examined in
section 6. In section 7we give the phase diagram for non-overlapping stable stationary states in terms of the ratio
of Stokes velocities and ratio of particle radii.We concludewith a summary of our results.

2.Mathematical & physicalmodel

We investigate the dynamics of pairs of charged spherical particles of different radii andmasses settling under
gravity in a viscous fluid, in the range of the Reynolds numbermuch smaller than unity. A schematic of the
system is shown infigure 1.Our goal is to construct the simplest possible analyticalmodel. Therefore, we assume
that the particles are point-like and useCoulomb force tomodel their electrostatic interactions.We also use the
point-likemodel to describe the hydrodynamic interactions. Itmeans that the two-particlemutualmobility is

Figure 1.A representation of the geometry of two charged particles with different reducedmassesm1 &m2 and radii a1 & a2 settling
under gravity in a viscous fluid. The directions of g & d are the directions of the gravitational and electrostatic forces respectively. The
angle θ of the interparticle position d from the direction perpendicular to gravity is shown.
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given by theOseen tensor [26], taken at the relative position of the particles, and self-mobility follows from the
Stokes law. The hydrodynamic point-likemodel is validwhen the particles are distant. Further, the electrostatic
point-like Coulomb force does not describe effects of, e.g., anisotropic distribution ofmobile charges on the
particle surface, nor electrostatic screening. Therefore, our approach is an approximation.

The particle pair is labeled so that radius a1 of particle 1 is less than or equal to the radius a2 of particle 2. Via
the Stokes equations, wewill arrive at equations ofmotion in terms of the electrostatic and gravitational forces.
These are then non-dimensionalized, parameterized and expressed in terms of coordinates.

2.1. Force diagramanddynamics in the point-force approximation
2.1.1. External forces
We start our diagramof forceswith gravity. Let ẑ be a unit vector pointing anti-parallel to the constant
gravitational field g . Further, letmi be the reducedmass of particle i=1, 2. Thismeans that the particle weight
is corrected for the buoyancy force of the fluid. If thefluid has density ρ and the particle has radius ai andmass
Mi, p r= -m M ai i i

4

3
3 . The gravitational force on particle i is

ˆ ( )= -m gf z 1m i i,

In this paper, wewill assume thatmi>0. The case ofmi�0 can be studied in an analogousway as seen in the
supplementalmaterials of [51]. Nowwemove on to the electrostatic field. Let r1 and r2 be the positions of the
centers of particle 1 and 2, so that the relative positionis

( )= -d r r 22 1

Wenowmove on to the electrostatic forces.We denote the charge on particle i by qi. Then theCoulomb
electrostatic forcewhich acts on particle i is

( )
∣ ∣

( )= - kq qf
d

d
1 3q i

i
i j, 3

where k is Coulomb’s constant and = -j i3 . The sumof the external forces acting on particle i is

( )= +f f f . 4i m i q i, ,

2.1.2. Fluid forces and point force dynamics
Wenowmove on to discuss thefluid forces.We assume that the particles are suspended in an infinitefluidwith
viscosityμ.We assume that Brownianmotion,fluid compressibility and inertia are irrelevant andwe describe
thefluidflowby the Stokes equations.

( )m -  =pu 0 52

· ( ) =u 0 6

where p is the pressure and u is the velocity field of afluid [22, 23]. Physically,modeling fluid interactions by
equations (5)& (6) entails that the external forces on the particles in a Stokes fluid are in balancewith the
resistance forces exerted on the particles by the fluid so that inertiamay be neglected.

In the point particle approximation, the hydrodynamic interactions between the particles are described by a
linear dependence of the particle velocities ri on the external forces f j acting on them. Themutual interaction is
determined by theOseen tensor [26]

( )
∣ ∣

(
∣ ∣

) ( )= +
Ä

G d
d

I
d d

d

1
7

2

where ∣ ∣d is the length of the vector d, I is the identity tensor and⊗ is the tensor product.We assume the self-
interaction is determined by the Stokes velocity for the particle given by the external forces the particle is
experiencing. To sumup, our dynamic equationwill be of the form

( ) · ( )
pm pm

= +
a

r G d f f
1

8

1

6
8i j

i
i

where = -j i3 . Notice the above dynamics arefirst order, whichmeans that the velocities of the particles are
given by their positions. This is themathematical expression of the irrelevance of inertia.

2.2. Characteristic dimensions
In order to aid our analysis wewill choose characteristic dimensions. In particular, we choose

( )= +L a a , 91 2
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( )
pm

=V
m g

L6
102

as our characteristic length and velocity scale. The time scale is thereforeT=L/V.Wewill use the non-
dimensional separation vector

( )a =
d

L
11

and the time normalized byT to nondimensionalize (8).We further define three independent non-dimensional
numbers

( )b = -
kq q

L m g
121 2

2
2

( )g =
a

a
, 131

2

( )d =
m

m
141

2

which parameterize our equation ofmotion. One can see thatβ is the ratio of characteristic electrostatic force to
characteristic gravitational force, γ is the ratio of particle radii and δ is the ratio of reduced particlemasses. Our
assumption thatmi>0 entails that δ>0 and our labeling convention entails γ�1. An important physical
parameter is also the ratio δ/γ of the particle Stokes velocities.

2.3.Dimensionless equations ofmotion and their basic properties
Having set up our diagramof forces and nondimensionalization choices, starting from the point-forcemodel (8)
we arrive at the following non-dimensional dynamical equation [51]

· ( ) ( ) · ˆ ( )( ) ˆ ( )a a a
a

b b
g

ga
d

g d g
g

= -
+

+ - -
- +

  z z
3

2

1 3

4
1

1
15

3

2

3

where dot denotes the non-dimensional time derivative, ∣ ∣aa = and  is the non-dimensional Green tensor
given by

⎛
⎝

⎞
⎠

( ) ( )a a a
a a

= +
Ä

 I
1

16
2

It is helpful towrite equation (15) in terms of coordinates ofa. To give a convenient geometry towork in, we
will choose x and y axes of the coordinate system so that the particle centers are in the plane y=0 (the direction
of gravity has been already chosen along the z axis). Any orbit with an initial condition in this planewill never
experience a force pointing out of this plane, sowewill suppress the y-coordinate for the rest of the paper. Using
these conventions, equation (15) transformed intoCartesian co-ordinates becomes

( ) ( ) ( )a b
a
a

b
g

g
a
a

d a a
a

= -
+

+
-

3
1 3 1

4
17x

x x x z
4

2

3 3

( ) ( ) ( )( ) ( )a b
a
a

b
g

g
a
a

d a a
a

g d g
g

= -
+

+
- +

-
- +

3
1 3 1

4

2 1
18z

z z x z
4

2

3

2 2

3

A fewwords can be said aboutwhatwriting the dynamics in these coordinates entails. First of all, (17) entails
that if the particles beginwith their centers vertically aligned there are no forces pushing the particles off vertical.
Thismeans that, for instance, there is never a periodic orbit which intersects the z-axis. Looking at the signs, we
see that (17) is anti-symmetric inαx andαzwhile (18) is symmetric inαx. Because the dynamics in this
coordinate system are given by analytic functions, the pole and the zeros are always isolated points. Further, away
from the pole at the origin the dynamics are differentiable, so that orbits never intersect. Finally, the stationary
states are givenwhen the LHS of (17)& (18) are both zero, which provides limits on the count of stationary states.
When examining the dynamics it is useful to alsowrite the equations in polar co-ordinates and θ the angle from
the x-axis.We use polar rather than cylindrical coordinates because there are no forces in the y-direction. These
defined so that

( ) ( )a a q= cos 19x

( ) ( )a a q= sin 20z

whereα>0. This definition entails that the positive x-axis is the ray such that θ=0, the positive z-axis is
q = p

2
, the negative x-axis is θ=π and the negative z-axis is q = p3

2
.We could also use y q= -p

2
, the angle

from the z-axis. Applying this definition to equation (15), we derive
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⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( ) ( ) ( )( ) ( ) ( )a b
a a

g
g

d
a

g d g
g

q= -
+

+
-

-
- +3 1 3 1

2

1
sin 21

2

2

⎜ ⎟
⎛
⎝

⎞
⎠

( ) ( )( ) ( ) ( )aq d
a

g d g
g

q=
-

-
- +3 1

4

1
cos 22

Writing the dynamics in these coordinates also has a few obvious implications worthmaking explicit. First of
all, the stationary states are givenwhen the LHS of (21)& (22) are both zero. Therefore, equation (22)means that
any stationary statemust have either ( )q =cos 0 (i.e., the line of the particle centersmust be parallel with
gravity) or have radial coordinateα equal to

( )
( )( )

( )†a
d g

g d g
=

-
- +

3 1

4 1
23

Becauseα>0, this second option exists only if

( )( ) ( )d g d- - >1 0 24

3.Dynamics of uncharged particles

Webegin our enumerative strategy by considering the case when at least one particle is uncharged and there is no
electrostatic interactions between them.Our analysis will demonstrate the importance of non-stable stationary
states in establishing the qualitative global dynamics aswell as allowus to discuss later the limit of b  0.We
will also compare the output of thismodel to the classical results [46].

We start by giving the dynamical equations. If there is at least one uncharged particle, thenβ=0 and the
equations ofmotion (21)& (22) become

⎜ ⎟
⎛
⎝

⎞
⎠

( ) ( )( ) ( ) ( )a d
a

g d g
g

q=
-

-
- +3 1

2

1
sin 25

⎜ ⎟
⎛
⎝

⎞
⎠

( ) ( )( ) ( ) ( )aq d
a

g d g
g

q=
-

-
- +3 1

4

1
cos 26

There are a few trivial cases wewill quickly deal with. If δ=1 then a stationary state only exists if γ=1 also.
In this case, the particles are totally identical and there is no relativemotion nomatter where the particles begin.
Similarly, if δ=γ, either δ=γ=1 as before or nofinite separation can be a stationary state. Eitherway, this
would eliminate any interesting behavior such as bounded orbits.Moreover, only if (24) holds can there be
stationaryα.

Finally we come to the non-trivial cases, those inwhich the above inequality is satisfied. Solving for the
stationary states gives four solutions: two horizontal and two vertical. The vertical cases haves q = p

2
* or p3

2
and

give

( )
( )( )

( )a
d g

g d g
=

-
- +

3 1

2 1
27*

The horizontal cases have †q = 0 orπ and lie at a distance (23) from the origin. A fewpoints can be
established about these stationary states just from equations (23) and (27). First we note that †a a= 2* . Next, if
δ>1, then the right hand side of (27) is an increasing function of γ in our range of 0<γ�1. Thereforewe
have that a < 1* in this case. Stationary states of particles with different radii or differentmasses can be feasible,
i.e., non-overlapping and non-touching, with a > 1* , only if δ<γ<1.

We illustrate these parameter space results infigure 2(a). The solid line is δ/γ=1, when the particles have
equal Stokes velocities. The short dashed line is equal reducedmasses δ=1. Below this line and above the solid
line stationary states do not exist (regionD), while above this line stationary states exist but are infeasible (region
E). Aswe have already shown, there is no stationary states on the solid line and short dashed lines except at
δ=γ=1where every separation is a stationary state.

The dash-dot line isα†=1, so that above this line but below the solid line (regionC) all stationary states are
feasible. On the long dashed line is a = 1* , so that above this line but below the dash-dot line (region B) vertical
stationary states are feasible but the horizontal ones are not feasible. Belowdashed line (regionA) all stationary
states are not feasible. Properties of the regions are outlined in table 1.

With the locations of the stationary states inmind, we now turn to characterizing the orbits in the large.We
can do this by solving exactly a few special cases of the equations ofmotion. If our initial condition involves
α=α* but θ is non-vertical, then the system evolves along the curve given by

5
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( ) ( )
( )

( ) ( )q g d g
g d

q= -
- +

-
1

3 1
cos 28

2 2

2

⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

( ) ( )
( )

( )q
p g d g

g d
+ = -

- +
-

- k t
2

2 tan exp
1

3 1
291

1

2 2

2

where k1 is from the initial condition. This solution forms two heteroclinic curves, so designated because each
connect two stationary states in infinite time.

The other pair of heteroclinic curves are vertical, q = p
2

* or p3

2
. These heteroclinic are symmetric. In this

case the equations ofmotion are

⎜ ⎟
⎛
⎝

⎞
⎠

( ) ( )( ) ( )a d
a

g d g
g

= 
-

-
- +3 1

2

1
30

Table 1.Properties of stationary states of uncharged particles.

Region Do stationary Are vertical Are horizontal

states exist? stationary states stationary states

feasible? feasible?

(A) d
g

g
g

-
-

 2 1

2
yes no no

(B) g
g

d
g

g
g

-
-

<
+
+

2 1

2

4 1

4
yes yes no

(C) g
g

d
g

+
+

< <
4 1

4
1 yes yes yes

(D) d
g g

g ¹ 1
1

and 1 no N/A N/A

(E) d
g g

>
1 yes no no

Figure 2.Dynamics of uncharged particles. (a)Phase space of the ratio γ of particle radii and the ratio δ/γ of the particle Stokes
velocities, with the indicated regions defined by equations in table 1. Feasible horizontal and feasible vertical stationary states exist only
in region (C). Properties of other regions are given in table 1. (b)Example of relative trajectories for δ =.986& γ = .988. The orbits
of the larger particle, labeled 2, are shown in the reference frame of particle 1, located at the origin. The open circles represent not
stable stationary states. The colors are used to facilitate tracing streamlines close to each other.
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( )( )
( )

( ) ( )
( )

( )( )
( )g

g d g
a

d g
g d g

a
d g

g d g
 = -

- +
-

-
- +

-
-

- +
t k

1

3 1

2 1
ln

3 1

2 1
312

2

2 2

where k2 is from the initial conditions. This formof the solutionmakes it clear that a particle approaches θ* in
infinite time.

Collectively, the curves sketched out by these four heteroclinic orbitsmake two half circles. The interior of
the curves contain two neutrally stable stationary states at (23). Finally, the two vertical stationary states at (27)
are not stable but rather saddle points.

We can now fully characterize the orbit traced out by any initial position. By the Poincare-Bendixson
theorem every point on the interior of those closed heteroclinic curves willmove in periodicmotion:moving
toward a stable fixed point is ruled out by linear stability analysis, the heteroclinics have all been found and
wandering to infinity is impossible because they cannot touch the closed curves which initially bound them.
Finally, every point not vertical and exterior to the circle with radiusα*will go to infinity, by similar reasoning.

We complete the analysis by returning tofigure 2(a) in order to characterize the qualitative dynamics as a
function of the parameters. Regions (A)–(C)& (E) have qualitatively similar dynamics: in all cases there is
periodic behavior. Region (D) has no stationary states and therefore all orbits are unbounded. Region (C) has the
special property that some of the periodic orbits found are non-overlapping. This case is themost physically
interesting and the corresponding relative trajectories are illustrated infigure 2(b). This completes the analysis of
the qualitative behavior of uncharged point particles settling in a Stokes flow.

Wewill nowbriefly compare the results in this section to those in [46]. This seminal paper uses a precise
model of hydrodynamic interactions, allowing formore realistic treatment offinitely sized particles. For
reference, figure 2(a) can be compared directly tofigure 5 in [46].

The essential similarity between the results of both approaches is that there appear such regions of the phase
space γ& δ/γ that all the trajectories are unbounded, and such regions that some of the trajectories are
unbounded, but the other ones are bounded. In case of the point-particlemodel, one should focus on the orbits
(or their parts) outside the particle ‘surface’ determined by its radius. For the point-particlemodel, region (A)
and regions (D) and (E) offigure 2(a) contain only unbounded feasible orbits. Regions (D) and (E), where the
larger particlemoves slower than the smaller one, are the same as the region of unbounded orbits in [46]. Region
(A), inwhich the larger particlemoves faster than the smaller one, is smaller than the region of unbounded orbits
in [46].

In the region labeled (C) the feasible point-particle orbits are periodic or unbounded. Analogous (but lager)
rangewas also found in [46] for themore precise hydrodynamicmodel. In the point-particle region (B) there are
feasible unbounded orbits and feasible parts of periodic orbits, bounded owing to the non-overlapping vertical
stationary states while the horizontal stationary states responsible for periodicity are overlapping. For themore
precise hydrodynamic interactions used in [46], the analogous (but smaller) range exists. However, in this range
there are no horizontal stationary states and the bounded orbits are not periodic. Rather, the bounded orbits are
heteroclinics going fromone vertical stationary state to the other. This comparison suggests that the existence of
periodic or bounded orbits is predicted by the point-particle and themore precise hydrodynamicmodel in a
qualitatively similar waywhen all or at least some of the stationary states are feasible.

4. Linear stability analysis of pairs of charged sedimenting particles

Following the discussion of equation (22), we have divided all the stationary arrangements into three categories.
In thefirst, the particle centers are aligned vertically and the larger particle is above the smaller particle, i.e.
θ=π/2 (see figure 1 for illustration).Wewill call these larger up vertical stationary states. In the second case, the
particle centers are also aligned vertically but the larger particle is below the smaller particle, therefore θ=3π/2.
Wewill call this second configurations larger down vertical stationary states. Finally, there are the inclined
stationary states where θ takes on any other value.

The conditions for stability of vertical stationary states were found in [51]. Herewe add a systematic analysis
of vertical stationary states1, both stable and not stable. In this sectionwe also investigate a new class of stationary
states: the inclined configurations, focusing on their stability.

1
Though [51] usedCartesian co-ordinates, the resulting stability conditions of vertical stationary states are of course the same as in polar

coordinates.
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4.1. Vertical larger up stationary states
Wewillfirst analyze properties of vertical stationary states with the larger particle above the smaller one, i.e.
θ=π/2. In this case equation (21) becomes

( ) ( ) ( )( ) ( )a a b b
g

g
a

d
a

g d g
g

a= -
+

+
-

-
- +

3
1 3 1

2

1
323

2
2 3

This equation gives rise to the following condition (equivalent to (14) in [51]) for a stationary stateα=α*

and q = p
2

( ) ( ) ( )( ) ( )gb b g a g d a g d g a= - + + - - - +0 6 2 1 3 1 2 1 332 2 3* * *

It follows from this condition that it is possible to choose aβ tomake any particularα* stationary. Therefore,
there are stationary states that have no analoguewith the uncharged case.Wewill return to the parameter space
(γ, δ) behavior of vertical stationary states in a later section. For instance, in the range 1>δ>γ, there are no
stationary states for uncharged particles, but there are some if a charge is added.Wenow address linear stability
of a stationary state ( )a p,

2
* , given by equation (33). If we assume that a a= + r* and q = +p

q2
, then the

dynamics linear in epsilon are

( ( ) ( ) ( )( ) ) ( )
ga

b g g d a g d g a» - + - - + - + 1
1 3 1 3 1 34r r3

2 2

*
* *

( ( ) ( )( ) ) ( )
ga

g d g d g a» - - - - +q q 1

4
3 1 4 1 35

2*
*

Because thematrix of coefficients is diagonal, the constants withing the parenthesesmust be positive in order for
the system to be linearly stable. That is,

( ) ( ) ( )( ) ( )b g g d a g d g a< + - - + - +0 1 3 1 3 1 362 2* *

( ) ( )( ) ( )g d g d g a< - - - +0 3 1 4 1 37*

It can be shownby Lypunov’smethod that equation (33) and inequalities (36)& (37) formnecessary and
sufficient conditions for a stationary stable state.

4.2. Vertical larger down stationary states
Wewill nowdiscuss the stationary states with the larger particle below the smaller one. Similarly to
equation (32), on the ray θ=3π / 2, equation (21) becomes

( ) ( ) ( )( ) ( )a a b b
g

g
a

d
a

g d g
g

a= -
+

-
-

+
- +

3
1 3 1

2

1
383

2
2 3

This gives rise to the following equations for the stationary state ( )a p, 3

2
*

( ) ( ) ( )( ) ( )gb b g a g d a g d g a= - + - - + - +0 6 2 1 3 1 2 1 392 2 3* * *

and for the local dynamics

( ( ) ( ) ( )( ) ) ( )
ga

b g g d a g d g a» - + + - - - + 1
1 3 1 3 1 40r r3

2 2

*
* *

[ ( ) ( )( ) ] ( )
ga

g d g d g a» - - - + - +q q 1

4
3 1 4 1 41

2*
*

In order to be linearly stable, the constants within the parenthesesmust be positive. That is,

( ) ( ) ( )( ) ( )b g g d a g d g a< + + - - - +0 1 3 1 3 1 422 2* *

( ) ( )( ) ( )g d g d g a< - - + - +0 3 1 4 1 43*

Wehave previously shown in [51] that there are no stable stationary states with the larger particle below the
smaller one if we also require the particles do not overlap (α* > 1). However, conditions (42)& (43)will still aid
in our understanding of the global dynamics because of the properties of non-stable stationary states.

4.3. Inclined stationary states
In theprevious section,we showedhow to count and classify the vertical stationary states of chargedparticles.Wewill
now showhow todo the same fornon-vertical stationary states,whichhave a simpler form, givenby equations (21),
(22)& (23). This simplicitywill allowus also to easily analyze typical behaviors in theparameter space (γ, δ).

We can discuss the stationary states of charged particles using figure 2(a) and relations in table 1. The same
parameter space curves and regions are of interest but require new interpretations when conceived as relating to
charged inclined stationary states.We start from considering two special cases. The short dashed line in
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figure 2(a) represents equal reducedmasses, δ=1. Equation (22) entails that there exists an inclined stationary
state of charged particles only if further δ=γ=1. Similarly, the solid line, the special case of equal Stokes
velocities δ/γ=1, has an inclined stationary state only if further δ=1. That is to say, those lines are consistent
with the existence of an inclined stationary state only on their intersection point. However, the interpretation of
that point is different between the uncharged and the charged inclined case. In the uncharged case, all the relative
positions of identical particles are stationary, while in the charged case only stationary states of identical particles
must have separation distance †

( )
a = g

g+
3

1 2 (and an arbitrary orientation). This never feasible distance is the

same for all b ¹ 0.Moving on to the general case of unequal Stokes velocities & unequal reducedmasses, a
general inclined stationary statemust have

( ) ( )( ) ( )
( )

( )†q b
g d g d g dg

g d
=

- + + - -
-

sin
16 1 1 3 3

9 1
44

2

2 3

( )
( )( )

( )†a
d g

g d g
=

-
- +

3 1

4 1
45

Equation (45), identical to (23), corresponds to a =q 0. Therefore, the RHS of (45) cannot be negative, and
there are no inclined stationary states of charged particles in the region (D)defined in table 1 and shown in
figure 2(a).Moreover, the distance between the particles in an inclined stationary state is independent of the
charge/mass ratioβ. However, unlike the uncharged case, the condition (44) for a = 0r has a nontrivial form
that does not allow for stationary states if charges are too large, because the sine of the stationary angle θ† is
proportional to charge/mass ratioβ. In terms of phase diagram as infigure 2(a), equation (45) entails that all and
only values of the parameters γ and δ in region (C), given in table 1 have feasible inclined stationary states of
charged particles, providing that value ofβ is sufficiently small to satisfy (44). Horizontal stationary states,
generic for the dynamics of uncharged particles, are exceptional for charged systems. One can see from
equation (44) that there is a horizontal stationary statewith the particle centers aligned perpendicular to gravity
(i.e ( )q =sin 0) if and only if either a) the particles are uncharged (β= 0) or b) the particles have Stokes velocity
ratio given by the relation

( )
=d

g
g

g g
-
-

3 1

3
(and they overlapwith †

( )
a = g

g+
3

1 2 ). Because the curve traced by this

relation is lower than the dash dot line representing the boundary of feasible inclined stationary states (except at
their intersection δ= γ= 1) the angular part of an inclined feasible stable stationary is always less thanπ, which
means that the larger particle is higher than the smaller one.

We now analyze the conditions for linear stability of inclined stationary states. Let †a a= + r and
†q q= + q where òr and òθ arefirst order perturbations. One finds that to a first order

( )( ) ( ) ( )†
† b

a
g d g

g
q» - +

- +
q  3 1

cos 46r r4

( )( ) ( ) ( )†
† g d g

a g
q» -

- +
q 1

cos 47r2

The above linearized dynamics can be easily analyzed. A linear systemofODEwith amatrix of constant
coefficients is called stable if and only if the real parts of eigenvalues of thematrix are negative. Recall that the
determinant is the product of the eigenvalues and the trace is the sum. Therefore, a necessary and sufficient
condition for this stationary state to be linearly stable is the determinant to be positive and the trace negative. The
determinant

( ) ( ) ( ) ( )†
†g d g

a g
q

- +1
cos 48

2 2

2 2
2

is positive if and only if the particles have different Stokes velocities (recall that ( )†q ¹cos 0 for inclined
stationary states),

( )d
g

¹ 1 49

Further, the trace is equal to

( )†
b

a
-

3
, 50

4

which is negative if and only if

( )b > 0 51

Inequalities (49)& (51) entail that if the charges on the particles are opposed then the stationary states are
stable whenever they exist: off of the solid and short dashed line infigure 2(a) andwithβ small enough that
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equation (44) has a solution. It is interesting to note that the particles having opposite charges, expressed in the
inclined case by inequality (51), is also a necessary condition for a vertical stable steady state [51]. Therefore in
the next sections wewill focus on systemswith oppositely charge particles (i.e.β>0).

5. Example dynamics of systems of pairs of charged particles

The local information derived in the previous section can be used tofind the qualitative behavior of pairs of
charged particles sedimenting in a Stokes flow. For instance, as justmentioned, we have shown that the local
analysis entails that if there is to be a stable stationary state then the charges on the particlesmust be opposed. In
this sectionwe show some generic examples of the dynamics of charged sedimenting particle doublets with large
capturing sets. Itmeans that starting from awide range of initial relative positions, both particles andwill not
separate from each other, and, on the contrary, theywill decrease their distance for ever.

We choose four sets of parameters to demonstrate a variety of behaviors with the above capturing property.
In this sectionwewill choose parameters withβ>0 and δ/γ<1, so that the particles have opposite charges
and the larger particle has greater Stokes velocity when the particles are well separated. The dynamics for when
δ/γ>1will be discussed in the next section.We organize by the count and arrangement of stable stationary
states: one stable vertical stationary state, two stable vertical stationary states, two stable inclined stationary states
andfinally two stable inclined stationary states with one stable vertical stationary state.

Example orbits solving the nonlinear vector ordinary differential equation (15) are plotted infigure 3. Each
orbit describes the relativemotion of the larger particle 2with the origin as the center of the smaller particle 1,
andwith the given initial relative positions of the larger particle. The orbits were calculated using a fourth order
Runga-Kuttamethodwith constant step sizeΔt=.1.We have decided to use (αx,αz) space in this figure and
this section for easy comparisonwith observations. One can see visually that the basins of attraction in our
characteristic cases are large.We have also provided infigure 4 a visual way of demonstrating the local stability
(or instability) of vertical stationary states. The solid curves are the vertical velocity az of particle 2 relative to
particle 1when their line of centers is vertically aligned and the relative vertical position isαz. On vertical axis,
 a a=z which can be obtained from (32)& (38).When the solid curve goes down through the horizontal dash-
dot line (which corresponds to a = 0z )whenαz is increased, then separation between the particle centers is a
stationary state which is vertically stable as given by inequalities (36)& (42). The two dashed lines capture the
angular stability conditions (37)& (43) for the given parameters, separately forαz>0 andαz<0. In each of
these ranges ofαz, if a stationary state is to the left of a dashed line, then it is horizontally stable. In the following
wewill demonstrate that using properties of the stationary states we are able to determine basic features of the
dynamics and qualitatively describe the boundary of the basin of attraction in all of these generic cases.

5.1.One vertical stable stationary state
Wewill now apply the results we have derived tofind a typical phase portrait of the relative dynamics. As an
example, we look at a systemwith a single stable stationary configuration.We choose the parameters δ=0.986
& γ=0.988 from the region (C) andβ=0.01 too large for the existence of inclined stationary states. In this
case all of the stationary states have particle centers aligned in the direction of gravity. Relative orbits for different
initial positions are illustrated infigure 3(a). It seems that there are two generic classes of orbits visible in this
figure, a capturing set and a separating set. In the first one, the particle come closer to each other. In the second
one, the particles separate from each other. This informal visual analysis can be deduced by classifying the local
behavior of the stationary states and examining the behavior of separatrix and other special orbits. Figure 4(a),
which illustrates the behavior of the systemwhen the particle centers are aligned vertically, is helpful for
classifying the stationary states. There are three stationary states and a discontinuity at the origin. The stationary
state with the larger particle directly above the smaller isαz=2.31.... This is the sole ‘larger up’ stationary state.
The stationary states with the larger particle directly below the smaller one areαz=−6.56... andαz=−.588....
Wewill call these the ‘far’ and ‘close’ larger down stationary states respectively.We can now classify the
stationary states based on their local behavior. Again referring to 4(a), we see the larger up stationary state is
stable while the stationary states on the negative z-axis are saddle points. Further, one can see that the far larger
down state is stable with respect to horizontal perturbations and unstable with respect to vertical perturbations.
Similarly, the close larger down state is unstable with respect to horizontal perturbations and stable with respect
to vertical perturbations. Finally, if we briefly and informally consider the origin by considering a point in a
punctured neighborhood of the origin we see that it is unstable in the sense that all arrows sufficiently near the
origin lead away from the origin.

Nowwe supplement the local information by considering some special orbits. To simplify language, wewill
use ‘end’ tomean the limit in positive infinite time and ‘begin’ tomean the limit in negative infinite time, taking
care to only use this languagewhen itmakes sense. There are four special orbits which end on the saddle points.
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Two vertical special orbits end on the close larger down stationary state: onewhich begins on the origin and one
which begins on the far larger down stationary state.

Themost important special orbits, however, are the pair which end on the far larger down stationary state.
These non-vertical orbits form the separatrix curve of the system.Weuse ‘separatrix’ informally tomean a curve
which separates the plane into two sets where the interior and exterior have different qualitative behavior. It is
clear to the eye from figure 3(a) that the separatrix cuts the plane into two sets. In fact, the separation property
follows from the local information about saddle stationary states.

The separatrix and its interior form the capturing set of the system. In fact, the topology of the vector field
shows us a stronger result: all orbits on separatrix or in its interiormust go to a stationary state.We start by
considering the off vertical orbits on the interior of the separatrix. Such an orbit cannot go to infinity because the
orbit cannot cut the separatrix. The orbit cannot be periodic, as a closed orbit in the planemust have a stationary
state in its interior—the Poincare-Bendixson theorem—and there are no stationary states off the vertical axis.
With periodicmotion and separation eliminated, we have shown that all non-vertical orbits on the interior of
the separatrix go to a stationary state.Mopping up the remaining special orbits, by examining 4(a)we see the
vertical orbits on the interior of the separatrix go to the close larger down stationary state or the stable stationary
state. Finally, the orbits thatmake up the separatrix end on the far larger down stationary state by definition.We
have now shown that all orbits in the capturing set go to a stationary state. The demonstration that all orbits in
the exterior of the separatrix have the particles drift apart is similar.

This is already a powerful qualitative characterization of the orbits. The local information tells us evenmore
than this. In fact, because any state close to the higher larger down stationary statewith non-zero horizontal

Figure 3.These orbits illustrate the relativemotion of the larger particle with the origin defined as the center of the smaller particle.
The parameters are (a)β=.01, δ=.986& γ=.988, (b)β=.125, δ=.875& γ=.885, (c)β=0.22, δ=0.45& γ=0.5 and (d)
β=.42, δ=.47& γ=.5. The colors are used to facilitate tracing streamlines close to each other.
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component is repelled, we see that the vertical special orbits that end on the higher larger down stationary state
are the only orbits on the interior of the separatrix which end on the higher larger down stationary state at all.
Therefore, almost all points on the interior of the separatrix end on the stable stationary state. This includes, for
instance, those orbits on the interior of the curve formed by special orbits which begin on the close larger down
stationary state and end on the stable stationary state, which appears as a teardrop shape infigure 3(a).

We have now shown themanner inwhich the local behavior of the stable and not stable stationary states
come together to give us the global dynamics by applying some simple topological reasoning. This completes the
description of the qualitative dynamics for this example.We end by again noting that any set of parameters
which gives rise to the same structure of stationary states will result in the same qualitative dynamics.

5.2. Two stable vertical stationary states
Similar to the previous example, we can give the global dynamics for when all stationary states are vertical and
there are two stable stationary states. As an example of such a systemwe chooseβ=.125, δ=.875& γ=.885.
Orbits of particle 2, relative to particle 1, in such a system are illustrated infigure 3 (b). One can see that the
capturing set is still large in this case.

Infigure 4(b), we plot the relative vertical velocity of the systemwhen the particle centers are aligned
vertically, find all vertical stationary configurations and determine their stability against vertical and horizontal
perturbations. As before, we can reason from the local information about the stationary states to the global
dynamics. The larger up stationary states atαz=1.242... andαz=4.130.... are stable.Wewill call them the near
and far stable stationary states, respectively. The stationary state atαz=3.429... is a saddle point not stable to
vertical perturbations, sowewill call it the not stable larger up stationary state. Similarly, the two larger down
stationary states atαz=−10.829... andαz=−0.615... are saddle points andwill be called near and far larger
down stationary states, respectively.

Figure 4. Stability analysis of the vertical stationary configurations shown infigure 3. The dash-dot lines are axes; the horizontal one
corresponds to the stationary condition a = 0z . The solid curves are the vertical relative velocities  a a=z , evaluated as functions of
αz from (32)& (38).When the solid curve goes down through the horizontal dash-dot linewhenαz increases from the stationary
position, then that stationary state is vertically stable. In each of the rangesαz>0 orαz<0, if a stationary state is to the left of a
dashed line, given by (37) or (43), then it is horizontally stable.

12

J. Phys. Commun. 5 (2021) 075005 C ITrombley andMLEkiel-Jeżewska



We shall soon see that all orbits in the capturing set go to a stationary state and furthermore almost all go to a
stable steady state.We do this by examining some important orbits and the curves they trace. Once again, the
curvemade up of orbits which end on the far larger down stationary state is the separatrix that forms the
boundary of the capturing set. One can use the argument from the last section to show the separatrix is
unbounded. Another important curve ismade of the orbits that end in the not stable larger up stationary state.
All points on the interior of this curve go to the far stable stationary state and,more obviously, no point on its
exterior goes to the far stable stationary state. This curve is also a separatrix, since it is the boundary between
basins of attraction of both stable stationary states. It’s easy to see that all the orbits off the vertical go to one of
these two stable stationary states. Fromfigure 4(b) it is clear that some vertical orbits go to the far larger up stable
stationary state, and others go to the near larger downunstable stationary state. This gives us all the qualitative
dynamics for systemswith two stable vertical stationary states.

5.3. Inclined stable stationary states
Wewill now examine a characteristic example of dynamics when there are inclined stable stationary states, and
they are the only stable stationary states.We choose as our parameters β=0.22, δ=0.45 and γ=0.5. This
results in a stable stationary state withα=2.75..., θ=0.722... and another one symmetric across the z-axis.
One can see byfigure 4(c) that these parameters entail there are no vertical stable stationary states. All vertical
stationary states are saddle points.

Orbits are illustrated infigure 3(c). Once again, the capturing set is quite large, even though there are no
vertical stable stationary states.

We nowdiscuss how the global dynamics is related to the local properties of the stationary states. Once again
all orbits in the capturing set go to a stationary state and almost all go to a stable stationary state. However
because there are inclined stationary states wemust use a newmethod to show this. Consider pair of orbits that
begin on the close larger down saddle point and end on an inclined stable stationary state. These prevent periodic
orbits, because any periodic orbit would have to contain an inclined stationary state and therefore cut one of
these orbits which is impossible. Further we oncemore see the boundary of the capturing set is a separatrix
coming from infinity and going into the far larger down saddle point.With periodic and unbounded orbits
eliminated as possibilities for orbits in the capturing set, the Poincare-Bendixson theorem entails theymust all
go to some stationary state. The only orbits in the capturing set that do not go to an inclined stationary state are
thosewith initial conditions such that the particle centers are alignedwith gravity, which separate the orbits that
go to different stable stationary states.We have see again the importance of saddle stationary states in
characterizing the qualitative dynamics of particlemotion. In this case, the orbits coming out of a saddle point
prevented periodicmotion. Further, we have repeatedly seen that the seperatrices that form the boundary of the
capturing set contain a saddle stationary state.Wewill see this pattern again in the next case.

5.4.Dynamicswith both inclined and vertical stable stationary states
Inclined and vertical stable stationary states can coexist. For example, the parametersβ=.42, δ=.47& γ=.5
have inclined and vertical stationary states. The dynamics of this case can be seen infigure 3(c).We analyze the
vertical dynamics in figure 4(d). This example hasfive vertical and two inclined stationary states. The only
vertical stable stationary state has the large particle over the smaller one atαz=1.15.... The inclined stable
stationary states are atα=4.41.. and θ=1.15.... The not stable stationary states are the far larger down
stationary state atαz=−10.6..., the close larger down stationary state atαz=−.548..., the close larger up
stationary state atαz=2.22.. and the far larger up stationary state atαz=5.45.... All the not stable stationary
states are saddle points.

All orbits in the capturing set go to some stationary state, for the same reason as the previous case. In
particular, the orbits coming out of the far larger up stationary state approach the inclined stable stationary states
and therefore prevent periodic orbits as seen infigure 3(c). As before, the separatrix which bounds the capturing
set ismade up of the orbits which end in the far larger down stationary state. The orbits coming from infinity and
ending at the the close larger up stationary state form the boundary between the basins of attraction of the
inclined and vertical stable stationary states. This completes our analysis of the global dynamics from the local
behavior of the stationary states for a systemwith both stable and inclined stable stationary states.

6. Inverted stokes velocity ratio dynamics

In all the cases of the previous section, when particle separation is large the larger particlemoves in the direction
of gravity relative to the smaller particle. This is because in all the cases examined the ratio of Stokes Velocities δ /
γ<1. It is also possible to have δ / γ�1, so that the larger particlemoves against gravity relative to the smaller
particle when the particle separation is large.Wewill call this case that of ‘inverted Stokes velocity ratio’. The
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stability considerations from section 4 do not change in form for Inverted Stokes velocity ratios.Wewill see by
example that the Poincare-Bendixson theoremused throughout the previous section still allows us tomake
qualitative conclusions about the global dynamics.

As our example, we choose parametersβ=.293... δ=.82& γ=.8. This corresponds to the range (D) of
the phase space γ& δ/γ, seefigure 2(a) and table 1. The corresponding orbits of the larger particle (with the label
2) relative to the smaller particle (with the label 1) are illustrated in figure 5(a). One can see that even though the
stable stationary state is still ‘larger up’ (αz> 0), the part of the capturing set when the larger particle is above the
smaller particle is nowbounded, whereas infigure 3 it was not bounded. The part of the capturing set with the
larger particle below the smaller particle is nowunbounded, whereas before it was bounded. This property of the
capturing set corresponds to the inverted direction of the relative trajectories, which have now vertical
components coming from-¥while in the previous section, they arrived from+¥, in agreement with the
inverted Stokes velocity ratio.

We can now extract qualitative information about the dynamics of this system. The dynamics when the
particle centers are alignedwith gravity are displayed infigure 5(b). The stationary state at a = 1.01 ...z* is stable
and the stationary states at a = 2.12z* and a = -0.63z* are saddle points. There are no inclined stable stationary
states. The separatrix coming into the larger up saddle pointmust come in from infinity. This is due to the
Poincare-Bendixson theorem: the only other place the separatrix could begin is the larger down saddle point, but
this would require a closed curve of orbits without a steady state in the interior. The heteroclinics coming out of
the larger down saddle pointmust go to the stable stationary state. This is also an application of the the Poincare-
Bendixson theorem: the orbit cannot divergewithout crossing over the heteroclinic coming into the larger up
saddle point and cannot be closed because there is no inclined stationary state to be on a closed orbit’s interior.
Therefore itmust end in a stationary state and the only choice is the sole stable one. The curve ending in the
larger saddle point is the boundary of the capturing set. Almost all the orbits on the interior of these curves end
up on the stable stationary state. All the orbits on its exterior diverge, which corresponds to separation of the
particles.

7. Phase diagram for stationary states

In section 3, we gave a phase diagramof the potential stationary states of the pair of uncharged point-particles as
a function of the ratio δ/γ of Stokes velocities and the ratio γ of particle radii. Further, in subsection 4.3, we
demonstrated how to reinterpret this graph in the case of inclined stationary states of charged particles. In this
sectionwewill give the phase diagram appropriate to the case of ‘larger up’ vertical stationary states, including a
heatmapwith information about the separation of particle centers at the stable stationary state.We concentrate

Figure 5.An example systemwith inverted Stokes velocity ratio δ / γ�1.One can see from the example orbits in (a) that the larger
particlemoves against gravity relative to the smaller particle when the separation between them is large. The dynamics when the
particle centers are alignedwith gravity can be read from (b). The parameters chosen areβ=.293... δ=.82& γ=.8.
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on such stationary states becausewe have already shown that ‘larger down’ vertical stationary states are never
stable [51].Wewill also compare the phase diagrams and heatmaps for vertical and inclined stationary states.

In the remainder of this sectionwewill consider particles of the opposite charges,

( )b > 0, 52

because only in this case there exist stable stationary states, as shown in [51].Wewill also assume, again following
[51], that at the stationary state the particles are non-overlapping (feasible), that is,

( )a<1 53*

This inequality alongwith equation (33) and inequalities (36)& (37) formnecessary and sufficient
conditions for a ‘larger up’ feasible locally asymptotically stable vertical stationary state.

To complete the list of the bounds imposed on the parameters, we remind that

( )g d< >0 1, 0. 54

Our goal is to identify the characteristic regions in the parameter space of δ/γ and γ appropriate for feasible
vertical ‘larger up’ stable stationary states of charged point particles, for certain values ofβ&α*. In fact, wewill
start by solving equation (33) forβ as a function ofα*

( ) ( )( )
( )

( )b
g d g d g a

g a g
a=

- - - +
+ -

3 1 2 1

2 1 6
55

2
2*

*
*

The conditions (52) and (55) give the following bound on δ/γ as a function ofα* and γ,

( )
( )

( )d
g

g a
g a g

>
+ -
+ -

*

*

2 1 3

2 1 3
. 56

Because the right hand side of (56) is an increasing function ofα*, the greatest lower bound for the ratio of
Stokes velocities of oppositely charged particles at a feasible stationary state is reached atα*=1. This bound is

( )d
g

g
g

>
-
-

2 1

2
. 57

The bound d g g g= - -2 1 2 is plotted by dashed line (green online) infigure 6(a). Below this line, in
the range (A), there are no feasible stationary states.

We now analyze angular stability of stationary states.Wewrite inequality (37) as

( )
( )

( )d
g

g a
g a g

>
+ -
+ -

4 1 3

4 1 3
58

*

*

Theminimumof the right hand side, reached atα*=1, is the greatest lower bound in the phase space (δ/γ,
γ) for existence of feasible stationary states stable against angular perturbations,

( )d
g

g
g

>
+
+

4 1

4
59

The bound is plotted by dash-dot line (blue online) infigure 6(a). Below this line, in the range (B), all feasible
stationary states are angularly unstable.We now analyze radial stability of stationary states.We use equation (55)
to eliminateβ from (37). After a careful analysis of signswe obtain

( ) ( )d
g

g a< P , 60*

where

( ) ( ) ( )( )
( ) ( )( )

( )g a
g g a g g a
g g a g g g a

=
+ + - + +
+ + - + +

P ,
18 4 1 3 1 1 7

18 4 1 3 1 7
. 61

3 2

2 3 2
*

* *

* *

It leads to the following least upper bound in the phase space (δ/γ, γ) for existence of stationary states stable
against radial perturbations,

( ) ( )d
g

g< R , 62

where

⎧
⎨⎩

( )
( )

( )g
g

g g
=

-

> -


R

P

1 for 2 3

, 1 for 2 3
63

The bound (62)–(63) is plotted infigure 6(a) as the sumof the boundaries between regions (C) and (H)&
regions (G) and (H). Above it, in the range (H), all stationary states are radially unstable.
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Basic properties of ‘larger up’ vertical stationary states in the regions (A)-(H) are outlined in table 2. Recall
that the ratio of forcesβ>0 has been eliminated using the stationary condition (33) and so remarks about
stability should be interpretedwith theβ so derived. For δ/γ<1 the requirement of the opposite charges (56)
and the angular stability condition (58) give the upper bounds on the interparticle distance at a stationary state,

( )a d g g< M2 ,* and ( )a d g g< M ,* , respectively, with

( )
( )

( )( )
( )d g g

g

g
=

-

- +
g

d
g

d
g

M ,
3

4 1 1
. 64

1

In general, for a givenβ, γ and δ/γ theremight be several stable ‘larger up’ vertical stationary states with
different values of the distanceα*.We focus on the largest of them.Wefind the upper bound on the separation
of particle centers, which is graphed infigure 6(b), where the regions of increasingly bright color correspond to
regions of increasing separations. Thewhite space corresponds to regionswhich do not have feasible stable
stationary states. Analytically, we chooseαmax as the least upper bound of theα

*which satisfy inequalities (58)&

Figure 6.Phase diagrams of stationary states in the parameter space of the ratio of particle radii γ and the ratio of the particle Stokes
velocities δ/γ. (a)Non-overlapping ‘larger up’ stable stationary states exist in regions (C) and (G) but not in (A), (B) and (H). See
table 2 for the properties of ‘larger up’ stationary states in different regions. Vertical and inclined stable stationary states exist in the
colored regions of (b) and (c), respectively. Brighter colors correspond to greater values of themaximumdistanceαmax between the
particle centers at the stationary state, as indicated in the color bar.

Table 2.Properties of ‘larger up’non-overlapping vertical stationary states (eachwith a certain value ofβ > 0).

Region Properties of stationary states

(A) d
g

g
g

<
-
-

0
2 1

2
or γ=1 There are no stationary states with a > 1* .

(B) g
g

d
g

g
g

-
-

<
+
+

2 1

2

4 1

4
For any ( )a d g g< < M1 2 ,* there exists a stationary state. There are no stationary

states with ( )a d g g> M2 ,* . Each stationary state is unstable with respect to angular

perturbations.

(C) g
g

d
g

+
+

< <
4 1

4
1 For any ( )a d g g< < M1 2 ,* there exists a stationary state. There are no stationary

states with ( )a d g g> M2 ,* . For ( )a d g g< < M1 ,* there exist stable stationary

states. For ( ) ( )d g g a d g g<M M, 2 ,* stationary states are angularly unstable.

(G) ( )d
g

g< R1 and g- < <2 3 1 For any a > 1* there exists a stationary state. Each stationary state is stable against angu-

lar perturbations. There exist stable stationary states.

(H) ( )g d
g

R For any a > 1* there exists a stationary state. Each stationary states is radially unstable

and angularly stable.
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(60) andwe derive the following relation in region (C),

( )
( )

( )d
g

g a
g g a

=
- +
- +

3 4 1

3 4 1
65max

max

In region (G) this relation is

[ ( )] ( )d
g

g a= Pmax 1, , 66max

For comparison, we graph infigure 6(c) the separations of particles for inclined stationary states given by
equation (45). Aswe previously noted, these are feasible only in region (C). Onemust take care during
interpretation becausewhat is plotted in thisfigure is the exact value rather thanmerely an upper bound.One
can see that for inclined equilbria the lines of constant interparticle separation aremonotonically functions of γ,
that is that it takes an increasing ratio of Stokes velocities to balance a systemwith increasing reducedmasses at
the same separation distance.

8. Conclusions

Wehave shown that coexistence of hydrodynamic and electrostatic interactions between particles sedimenting
in Stokes flows leads to the dynamics essentially different than in the absence of charge or in the absence offluid.
Using the point-particlemodel, we demonstrated analytically that charged particles can form stable doublets
with basins of attraction in the space of the particle relative positionswhich are very large in comparison to
particle radius. This result indicates that charged sedimenting particles can capture one another, even if the
initial distance between them is large. The captured particles tend to a certain stable relative position, where the
distance between the particle centers is larger than the sumof their radii, so that their surfaces are separated from
each other by afluid. In particular, there exist stable stationary configurations of charged particles separated by
large distances, with large basins of attraction, within the rangewhere the hydrodynamic interactions can be
approximated as point-like.

Moreover, even if the ratioβ of electrostatic to gravitational forces is very small, the dynamics of pairs of
charged particles is both quantitatively and qualitatively different from the dynamics in the absence of any
electrostatic interactions. Themain qualitative difference is the structure of the capturing set in the space of
relative positions. For charged particles, the capturing set consists of trajectories tending to a stationary state
while for uncharged particles, it consists of neutrally stable periodic orbits.

The existence of a capturing set in the space of the relative positions is associatedwith the existence of stable
stationary configurations of two charged sedimenting particles. However, stable stationary states are formed
only for certain ranges of the ratio of particle radii γ and the ratio of Stokes velocities δ/γ. Therefore, we have
determined the region in the parameter space of γ and δ/γwhere stable stationary configurations exist for
certain values ofβ, and for a certain range of values of the distanceα*>1 between the particles at the stable
stationary state. In this way, we have shown that the capturing of charged particles takes place in a large region in
the parameter space of γ and δ/γ. Interestingly, for some values ofβ, γ and δ/γ there existmultiple stable
stationary states inside the capturing set.

We have found stable stationary states with the line-of-centers at an angleψ inclinedwith respect to gravity.
In the point-particlemodel, ( )ycos is proportional to the ratioβ of electrostatic to gravitational forcewhile the
particle-to-particle separation distanceα† at the inclined stationary state does not depend onβ.

By analyzing examples of capturing sets, we have found that the basin of attraction of all stable stationary
states has a boundarywhich is a surface of revolution of a trajectorywhich ends on a saddle point stationary state
with the particle centers vertically aligned. It seems that the difference between vertical positions of the particles
at this stationary state can be used as an estimate of ‘the cross-section’ of the capturing set. For example, in
figure 3(b) and 3(d) the cross section ismore than 10 times the sumof the particle radii +a a1 2, and particle at
the stable stationary configuration are separated bymore than 4 (a1+ a2). For large capturing sets and large
particle separations, the particle dynamics is well-approximated by the point-particlemodel. Therefore, the
analysis presented here suggests that the existence of stable doublets could be confirmed by future experiments.
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