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We derive a scheme to calculate the Tomonaga-Luttinger liquid’s (TLL) parameters and the holon velocity
in a quasi-one-dimensional (quasi-1D) material that consists of two-leg ladders coupled through Coulomb
interactions. First, we obtain an analytic formula for electron-electron interaction potential along the conducting
axis for a generalized charge distribution in a plane perpendicular to it. Then, we introduce many-body screening
that is present in a quasi-1D material by proposing an approximation for the charge susceptibility. Based on
this we are able to find the TLL’s parameters and velocities. We then show how to use these to validate the
experimental angle-resolved photoemission spectroscopy data measured recently in p polarization in NbSe;.
Although we focus our study on this specific material, it is applicable for any quasi-1D system that consists of

two-leg ladders as its basic units.
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I. INTRODUCTION

A quasi-one-dimensional (quasi-1D) material can be imag-
ined as a set of many conducting columns, where quantum
coherent propagation is possible along each column but not
in-between them. Such situation can be realized in a bundle of
nanotubes, in a network of dislocation in topological insulator,
but also in certain materials with a characteristic columnar
structure. Since carriers cannot avoid each other in their mo-
tion, we expect that collective behavior will dominate, the
metallic phase breaks the Fermi-liquid paradigm and becomes
Tomonaga-Luttinger liquid, as first proposed by Haldane [1].

The most outstanding hallmark of a collective, non-Fermi-
liquid behavior in 1D metals is the fact that spin and charge
excitations propagate with different velocities. Probing this
spin-charge separation in quasi-1D materials has been one
of the long-standing [2] challenges in experimental solid-
state physics of strongly correlated systems. Although the
task of detecting two electronic dispersions sounds relatively
simple, it is actually not so due to broadness of the peaks
of the Tomonaga-Luttinger liquid (TLL) spectral function
A(g, w) and anomalously low intensity of some of them.
These are generic, unavoidable properties of the collective
TLL state [3,4]. To overcome these difficulties and produce
an unambiguous proof of the spin-charge separation, most of
the recent experimental evidences [5—7] are combined with a
theoretical estimate of the expected ratio of the two velocities
to obtain a quantitative agreement between the experiment
and the theory. The situation on the theory side is, however,
far from trivial. While there are many [8] numerical [9-11]
and Bethe ansatz [12] methods and spectroscopy-matching
procedures [6] for materials described by Hubbard-type mod-
els, with short-range interactions, only few theoretical studies
are available for systems with long-range interactions. This
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is despite the fact that systems with long-range interactions
are more frequently encountered in nature. Carbon nanotubes
are one realization where, for the single-wall metallic achiral
tubes, the analytical theory has been provided in a seminal
work [13]. However, this works only for the specific class
of highly symmetric systems. One of the key findings of our
work is that the distribution of charge density within a cross
section of the 1D column, in other words on the circumference
of the tube, does affect the holon velocity. Actually, knowl-
edge of this density is sufficient information to determine the
holon velocity. This explains the importance of our aim: to
derive a general theory applicable to systems where the charge
distribution has a lower local symmetry. We provide analytical
expressions for the desired quantities, which, contrary to nu-
merical results, are easily transferable from one experimental
realization to another.

We choose to study a model of two-leg ladders with long-
range interactions. The underlying reason why the models
with long-range interactions are more appropriate to describe
(quasi-)1D materials is because 1D metals cannot screen long-
range interactions. To be specific, let us consider a material
with several occupied bands, where only one of them crosses,
with strongly anisotropic dispersion, the Fermi energy, while
all other orbitals are semiconducting as it is [14] in the case
of NbSe; as well as other 1D materials e.g. Lip9MogO;7
[15]. For example, this can be the #,, manifold of d orbitals
with d,, electrons constituting an anisotropic metal while
dyy, dy; play the role of “other” semiconducting orbitals. The
model with short-range Hubbard UV interactions is valid for
a quasi-1D material only when the “other” two-dimensional
(2D) [or three-dimensional ( 3D)] bands can provide screen-
ing. Namely, to provide enough screening these other orbitals
should fall sufficiently close (a fraction of a bandwidth) to
the Er. However, the opposite situation is more frequent,
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where the other bands overlap (in energy) only with the very
bottom of the 1D band. Then there is a broad energy window
where the unscreened 1D metal exists. In this situation, the
expressions derived in this work have to be used.

The reason why we decided to study two-leg ladders is
related to underlying crystal-lattice effects. The simpler the
1D column is, the more likely it is that it will undergo
the Peierls transition, effectively obscuring low-energy TLL
behavior. Hence, our search for the TLL realization should
move to slightly more complicated systems. The next simplest
one is that where two Fermi points split in four making a
complete nesting (commensurability) much harder to achieve.
This is a two-leg ladder model for the 1D column, the subject
of this study. From a theoretical perspective the price to pay
is that the more complicated 1D column will most likely
have lower internal symmetry, hence, a generalization of past
works [13] is a necessity.

In an overwhelming majority of works on the 1D quantum
liquids the TLL parameters, velocity, and compressibility of
the modes are considered to be known input variables. It is
usually assumed that the TLL parameters are extracted from
numerics [8,9] (see, for example, [10,11]). The philosophy of
this work is opposite: We aim to provide a close analytic for-
mula for TLL parameters and then to confront this prediction
with experimental results. In the past there were analytical
works for two-leg ladders, but these were relying on an emer-
gent SO(8) symmetry at the ultimate fixed point [16,17].
These high-symmetry point values will be measurable only at
the lowest temperatures and frequencies when the emergent
symmetry settles, which in case of long-range interactions
may fall at a fraction [13] of mK, while in the frequency and
temperature range realistically accessible in angle-resolved
photoemission spectroscopy (ARPES) experiments [3] one is
always probing a system with lower symmetry. This is the
reason why it is also worthwhile to provide the theory for the
lower-symmetry system and why here we aim for analytical
formulas for such a case.

The model that we propose is indeed sufficient to allow
for an experimental observation of TLL phase. Our study is
motivated by a recent experimental report [18,19] of 1D TLL
states observed in p polarization in NbSes;. We can summarize
those findings as follows: (i) At each Fermi point there are two
linear dispersions [19], at the inner band (following Ref. [18]
we shall call this antibonding band A1, hence the Fermi point
kr1) the two velocities converge to the same value, at outer
band A3 the two velocities are different (one A3, is equal to
those at kr; while the other A3, is a factor ~1.25 larger). (ii)
The spectral function can be fitted with a finite-temperature
expression [20] for the TLL A(w, T') with the characteristic
Green’s function exponent [19] o = 0.24. It is surprising that
with such a small ratio of velocities there is such a substantial
value of o exponent, and our aim here is to explain this
experimental finding.

The paper is organized as follows. We start in Sec. II by
introducing carefully the multimode TLL Hamiltonian and
its applicability. Then, in Sec. IIIl we derive the Coulomb
interaction’s potential along the 1D column (along crystal
b axis) without assuming that its charge density has a per-
fect cylindrical. With this, in Sec. IV, we tackle the system
of several weakly coupled columns with a partial screening
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FIG. 1. Electronic (charge and spin) densities along a 1D col-
umn. (a) Homogeneous density on a surface of a cylinder, a tube.
This is the case realized in, e.g., carbon nanotube and has been solved
in Ref. [13]. (b) The case of more complex orbital when electrons
reside only on a section of a tube, moreover with a density that is not
uniformly distributed inside the occupied zone. In the case (b) we
can define two parts connected through their respective orbital’s
hybridization #,. In both cases, the 1D column is along the b axis of a
quasi-1D crystal. Moreover, we define a local system of coordinates
(x,y, z) which is used to integrate the interaction potential. Please
note that in both cases we give a density that comes from an electron

wave function in a given conduction band (eigenorbital) ¥z o (7) in
a vicinity of the Fermi level.

incorporated in the solution: we provide analytical formula
for screening (Sec. IV A) and then the TLL parameters for
the entire quasi-1D material (Sec. IV B). Then, we focus on
the measurable quantities in a concrete realization NbSe;: we
compute the value of the ratio between holon to other mode
velocities and the single-particle spectral function exponent
(Sec. V) and derive Coulomb-potential selection rules that
govern relative intensities of various modes (Sec. VI). Then,
we can analyze the result of the ARPES experiment [18,19].
The paper is completed with discussion and conclusions in
Sec. VIL

II. TOMONAGA-LUTTINGER LIQUID

Consider a quasi-1D system consisting out of 1D units with
coherent motion of electrons only along one direction, say x
coordinate (or crystal b axis), and incoherent propagation in
the perpendicular plane. Examples of such a single column
are provided in Fig. 1 where an electronic density distribution
is shown. As mentioned in the Introduction, these 1D units are
sparse enough, so that screening is weak and interactions re-
tain their Coulomb character. The theory that we develop here
is valid for any 1D unit where the underlying, noninteracting
fermionic theory has a dispersion with four Fermi points.
This captures a broad class of materials: various tight-binding
models of ladder-type materials but also bundles of nanotubes
(based on carbon, but also silicon, tin, or bismuth) and stepped
semiconductor surfaces, e.g., silicon surface with gold atoms.
In all these cases the effective theory is that of the Tomonaga-
Luttinger liquid and what is relevant is the distribution of
electronic cloud density that, as we show below, determines
compressibility of the collective 1D electronic liquid.

The low-energy properties of such material are determined
by fluctuations around the four Fermi points. We aim for
an effective low-energy theory of the 1D fermions. We use
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quantum Grassmann field ¥z g o (F)=W1 /g« (F) exp i, (x) £
6,(x)] to describe them with the o index for instance for
spin and bonding and antibonding band. The W; g .(¥) =
exp(Zikpox)W,(7) is a Bloch-type wave function enveloped
with the high-energy atomistic wave function (in our con-
vention the last one also contains the Klein factor). The
low-energy physics is captured by slow fluctuations of the
bosonic collective modes ¢, (x)and 6, (x). The Hamiltonian
of the TLL state is written in terms of fluctuations of the
low-energy collective bosonic modes:

HPp =" / j—;[(vvm)(nm)z + (%)(axmz},
) (1)

where x || b, V¢, (x) gives the local density of fluctuation
of the vth mode n,(x) =), c];(x)f)car(x). The v index can
be spin/charge, total/transverse, while ¥ is a corresponding
operator which acts in a-space basis. For instance, if we
start with a density functional theory (DFT) result and ini-
tially define states (and densities) in the band basis (so o
is band+spin index) then ¥ is a Pauli matrix 9y or 9, (total
or transverse component) acting either on the band space
or the spin space or on both. The v,, K, are velocity and
TLL parameter (~compressibility) of a given bosonic mode
v, these depend on electron-electron interactions with small
momentum exchange that is small momentum component of
V(r)in Eq. (2). In the simplest approximation K., ~ (1 — 2g)
where g = V(¢ = 0)/VF is a strength of the electron-electron
Coulomb interaction ¢ — 0. Assuming that Galilean invari-
ance holds, the relation v, K, = VF is obeyed and gives us the
v,. One immediately realizes that pure Coulomb interactions
diverge when ¢ — 0 which makes g an ill-defined quantity. In
this paper we shall improve this simple, approximate formula
for v,,.

Please note that the Hamiltonian above is for the pure
TLL, with the backscattering cosine terms neglected. These
latter terms would turn the model into sine-Gordon problem.
Our assumption here is that the analytically solvable TLL
theory applies as long as we are at energy (frequency and
temperature) scale that is larger than the spectral gaps induced
by these perturbing terms. In the case of Coulomb interactions
Vig=~0)> V(g ~ 2r) so this assumption is reasonable.
Below we show (detail discussion in Sec. VIIB) that this
assumption remains valid also in our more general model with
lower symmetry of electronic cloud and a partial screening
included.

The advantage of starting our derivation with Eq. (1) is
that it captures the most general situation where our reasoning
applies. To be specific, and to build a connection with NbSes,
we shall now move to the ladder-type material, a system
that is built out of 1D conducting columns, where each 1D
column (along crystal b axis) consists of two identical strongly
hybridized subunits. We see an example of this kind on the
bottom panel in Fig. 1: the electronic density is split in two
parts (left and right) with a density severely depleted on the
top and bottom parts of the cylinder. Microscopically, this
corresponds to some underlying arrangement of atoms and
overlaps of their orbitals (see, e.g., Fig. 17 in Ref. [18] for
an example of such a distribution in NbSes). However, for the
purpose of this work, when we are interested in low-energy,

long-wavelength properties, the only thing that matters is how
in average the electronic density is spread for carriers on the
conducting band. Hence, the schematic picture in Fig. 1 is
sufficient.

When hybridization ¢, of the two sides in Fig. 1(b) is
strong enough, this leads to bonding and antibonding com-
binations of orbitals (bonds) through the column’s center,
hence, there are two bands crossing Fermi energy (example
of such band structure is in Fig. 4 inset) and the two-leg
ladder description indeed applies. An example of the sim-
plest tight-binding Hamiltonian for such system is given in
Appendix B, Eq. (B1). The coupling on rung ¢, is assumed
to be of the same order as the coupling along the leg of the
ladder #, and so it is incorporated into the single-particle
band structure on the top of which the bosonization is de-
fined. This is contrary to models where the ¢, is considered
perturbatively after bosonization; the in-depth discussion of
the difference between these two classes of ladders is given in
Ref. [21], while the transition from one case to another (the
commensurate-incommensurate transition) has been solved in
Ref. [22]. It is quite easy to see which case is realized: since
the split of the two bands, e.g., bonding and antibonding one in
the Fig. 4 inset, is proportional to #,, then one can immediately
diagnose which bosonization scheme applies in a given case.
In our situation, with nonperturbative ¢., the four bosonic
modes p+, o+ now describe the cases where spin or charge
oscillate symmetrically or antisymmetrically within the two
legs of the ladder, which explains why we call them later total
and transverse modes, respectively. The Fermi velocity Vi is
~2t;, (if we take tight-binding model with 1D chains arranged
along the b axis), this also determines the UV cutoff of our
theory 2f, ~ Ayy.

II1. SINGLE LADDER

The first step, in a quantitative treatment of Coulomb
interactions, is to find their dependence as a function of inter-
carriers’ distance along the 1D column. The assumption is that
we build our reasoning on the top of some single-particle DFT
calculations, which presumably provides us with electronic
density of the carriers occupying the 1D conduction band
Po(F) = Wi(F)W, (7). What such calculations are unable to
capture are electron-electron correlations inevitably present
in the 1D many-body state described by Eq. (1). We seek a
way to determine v,,, K, from the knowledge of single-particle
physics. In our QFT, the Hamiltonian for electron-electron
interaction reads as

Hin = / dxdx' Y EWIEW ¢ =, DY), (@2)

where «, B,y,8 contain spin and band indices of the
fermionic field. Using standard second quantization pre-
scription the kernel is given by a bra-ket: Vay; (F =7 =
(Fa, ¥ BIV (# — r)|Fy, 7'8). Since we are interested only in the
long-distance component along the 1D system the scattering
amplitude (that enters to second quantization Hamiltonian) of
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the Hartree type @ = y, f = § interaction is given by

Va0 = ) ey = / 471 d7 W)

ucC
X Veoul(F — W (FHWs(7).  (3)

Here, an integral is over the unit cell, i.e., the perpendicular
coordinates 7, = (y, z) of one 1D column. Since we are in-
terested in a long-distance (effective low-energy) theory the
fluctuations along the x coordinate are either assumed to be
already averaged out or are integrated out (from zero distance
up to length a ~ AG{,) at this step. The bare Coulomb poten-
tial for a 1D column of charge density can be expressed as
follows [13]:
e
V=) + 4R sin’[(y — y')/2R] + d?
“)
where the d is a thickness of the charge layer, R is an average
radius of the 1D column, and « is an effective dielectric con-
stant chosen to give a desired U in Eq. (6). The dependence
on 7 = [x,y] is set in the same way as in Ref. [13] (with
the perpendicular coordinate y as one cathetus and R a hy-
potenuse of the right-angled triangle). For a carbon nanotube
with homogeneous (angle-independent) charge distribution,
the integration over perpendicular coordinate (angle) would
result in elliptic integral of the first kind [13]. However, we
pertain to capture more complex geometry. The difference
is shown in Fig. 1 where on the top panel we show the
homogeneous nanotube case that has been solved in Ref. [13]
while on the bottom is our system which enables to model
situation where atoms of different type are located in a less
symmetric arrangement (see, e.g., Fig. 17 in Ref. [18] for the
specific NbSe; configuration). The charge density can now be
spread only over a finite angle ¢, sector of a distorted hollow
cylinder. Examples of its cross sections are in Fig. 4. We add
an extra parameter ¢ that accounts for an inhomogeneity along
the circumference where ¢ = 0 correspond to the symmetric
homogeneous distribution (and a constant radius) like in nan-
otube. Hence, we generalize the expression given in Ref. [13]
with symmetry reduced from Coo(l;) down to C4(l_5), Sy (5). We
integrate over perpendicular coordinates' to get an interaction
amplitude along the b axis V (x):

VCoul(? —r)=

. /ZnR /-2nR dy dy’ VCoul(? _ r_f/)
Vap(x —x') = - - ,
R Jor 2TR2R 1 — ¢ sin[(y — y')/2R]
(5
where { = ,/¢,¢g. The closed analytic form for the integral is
known also in this more general case:

) 2R 2
Vel gto—s))

Vix—x)=U
e @VE + AR+ (x—0))

where I1(¢; ¢|1/%) is the incomplete elliptic integral of the
third kind. The integral is parametrized by U = U/N [U =

(6

"Here the integral over short distance x < a is trivial as it is in
essence a convolution by a Dirac delta. However, this integration will
turn out to be nontrivial for exchange term below.

Log[V(a)]

FIG. 2. Fourier transform of the Coulomb interaction (6) shown
as a function of momentum and parameter ¢ that describes inhomo-
geneity (eccentricity) of the p(¥) cross section.

Vaaf (r = a) chosen appropriately depending on the ab initio
method], e.g., for constrained random phase approximation
(cRPA) we account for all screening provided by carriers
residing on all other orbitals but not the 1D d orbital which
is equivalent to saying that at a given UV cutoff A (usually
proportional to the inverse lattice spacing) the correlation
interactions saturate to a value given by local Hubbard-type
repulsion. The parameters ¢ (angle of the sector of the toroid)
and ¢ (distortion of the toroid) are determined by the geometry
of the given eigenorbital in the a-c plane perpendicular to 1D
axis. The prefactor ensures that no matter what the geometry
is, there total density of charge is normalized. We need to
perform Fourier transform of V(x); this will complete our
description of the Hartree term in a single ladder and column,
and the result is illustrated in Fig. 2.

For Coulomb electron-electron interactions there shall be
also exchange interactions o =6, 8 = y in Eq. (2). Their
value for r = a is again known from the ab initio calculations

6: 1.5

5 .

4 ?’. \\
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Log(q)[1/b]

FIG. 3. Screening effects in quasi-1D material. Logarithm of
electron-electron interactions as a function of momentum g is shown.
The yellow curve is for bare nonscreened Vc,u(q), a Fourier trans-
form of Eq. (6), while the blue line is screened by the susceptibility
given in Eq. (7). The main plot is in log-linear coordinates and mani-
fest the asymptotic ~ log(g) behavior while the inset is in linear-log
coordinates to show the real momentum dependence.
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FIG. 4. An ARPES photoemission event shown in the real space.
We see that a photon (green arrow) incoming with a finite ¢,
shall induce charge density fluctuations not only in the 1D ladder
where photohole (orange oval) has been instantaneously created,
but (through screened Coulomb interactions, orange arrows) in the
surrounding 1D systems. An inset shows the same event in a re-
ciprocal space: instantaneous recombination of a photohole with a
fermion at one of the Fermi points (together we call this object a
photodensity).

and parametrized by V;‘ f (r = a) = J. For a system with long-
range interactions, this can be thought of as an interaction of a
carrier with an exchange hole of another carrier. The exchange
hole is described by a two-body correlation function g(x, x").
This extra term will convolve one of the wave functions
W, (x") in Eq. (3). The two-body density, in a translationally
invariant TLL, has a dominant contribution that scales like
g(x') ~ (x/)~1/40/K,++3/K)+2) for large x, where in our case
K, = 1. For a sufficiently strong repulsive interaction K, <
1, we convolve Eq. (3) with the function g(x) that rapidly
decays in real space which agrees well with our intuitive
understanding of exchange. Then, the overall Fourier trans-

J

form J(g) = F[V(x) ® g(x)](qg) will be the previous Fourier
transform of screened Coulomb potential V (¢) times an in-
creasing power law F[g(x)](g). As a result, the J(g = 2kr)
may be non-negligible. Please note that the J(q = 2kr ) enters
only to g, term in TLL language while it does not enter to
backscattering terms g; ~ J(g = 0).

IV. QUASI-1D MATERIAL
A. Screening

A fundamental problem with the Fourier transform of
Eq. (6) is that in the limit ¢ — O it diverges and we find that
changing the parameters of electronic density (¢, ¢, R, d) in
Eq. (6) is not sufficient to fix this problem. Since g = V(g —
0), then this implies that TLL parameters are undefined. A
standard way to overcome this problem has been to assume
a mesoscopic realization, with some finite charging energy,
which is equivalent of imposing an arbitrary IR cutoff. Here,
we shall proceed in a different way, by considering a screening
in a realistic 3D material, a quasi-1D material, i.e., a system
that consists of multitude of parallel ladders. This is shown in
Fig. 4 where the 1D columns (each column is a ladder system)
are indicated as a set of parallel blue rods.

Here, the full modeling has to account for the fact that
we are dealing with a set of 1D systems coupled by long-
range density-density (forward scattering) interactions; these
interladder (charge) density-density terms are non-negligible,
actually they can be as large as [23] #,/2. We first compute
screening of a single TLL by other columns which is sufficient
to cut the divergence of V(q) when ¢ — 0. To this end we
take Verr(q) = V(q)/[1 + G(q, T)xtLL(q)]. Here, we take an
RPA approximation for the dielectric function. For the charge
susceptibility of the two-leg ladder x1ri(q) with one of the
velocities v,4 much different than V¢ and all other velocities
Vy— o+ ~ VF (see below) and K, ;+ ~ 1 we can generalize
the result obtained in Ref. [24]:

Ko+ | 3
Pt - (5 + )] 10? - vzg (5 ) Ky 3
xTLL(q) = 41 e 1 3 A . CXP{_”T[<L+‘)_1}5(")[‘”2_‘/1?2‘12]}
r(5+3) y (i) 4 8
Ky K,y 3 1 K+ 3\ K,. 3 VN2 . o — vl g
ot 2ot 2 2 (2 2 2ot _;1_(L+)’1_—/’+ aw, 7
x 1( 44 "8 2 s t3) 4 T3 Vi o —uigs )l @)

where Fi(...) is the Appell hypergeometric function and
fe is a Heaviside theta function that appears upon ana-
Iytic continuation. Since we are interested in the smallest
q and static response we work within the radius of con-
vergence of the Appell hypergeometric function. For the
G(q, T), which accounts for a local field corrections we take
G(q.T)=G(q,T)/(¢* + AR). It is a screened Coulomb
interaction times the static structure factor, the lesser correla-
tion function of the screening medium, hence, by definition,
what the local field correction is supposed to capture. We
take G(q, T) ~ A(q,  — 0, T; A = Ar) where the spectral
function is known from Ref. [25] and the IR cutoff Ajg =
max(T, ¢, ). With this choice the entire G(gq, T') can be inter-

(

preted as a propagator (i.e., a retarded correlation function
in the Lehmann representation) of the bosons (the holons)
carrying interactions in-between the 1D wires. Indeed, a sole
1D ladder cannot self-screen itself (and RPA expression is
exact therein, local field corrections are absent) so the entire
local field correction must originate from its environment.
This approach, based on the 7, tunneling, is sufficient to limit
the increase of V(g — 0) to a well-defined constant value,
which among other implications also gives a finite, nondiver-
gent holon’s velocity.

Although in Fig. 3 we show a quasi-1D material, our
model of screening presented here applies also for bundles
of nanotubes, rows of dislocations in 3D strong topological
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insulators (TT), or networks of domain walls in 2D TI, basi-
cally is every situation where we can define an average 7, and
its variation is not large. Detail description of a problem of 7|
can be found in Ref. [26].

B. TLL parameters K,

The bosonization transformation ¥, — ¢,, 6, is initially
performed within O/ bands so one begins with Hartree and
Fock intraband and interband interactions. In each band we
have Hartree V (¢) and Fock J(gq) and then it is known [27]
that

amn = 1/212Viuny(q = 0) = Juny(q = O/~ VEmVEn,
82mn = (V) (q = 0) + Jmun)(q = 2kFo/x )]s

— 1/2[Viun (q = 2krosz) + Jomy (@ = O/ VeEmVen,
8omn = ~Jun (@ = 0)/~/ViuVen, ®)

where m,n = o, 7 [the o has been @ = (o/7, ¢)] and we
use notation of Ref. [27] for charge-current and spin-current
processes. We took into account a possibility of different
Fermi velocities in both bands, but we assumed that interac-
tion terms do not depend on spin [otherwise, we would have
had extra terms, e.g., €500 = V4,0(0) — V4 z(0)]. The band
dependence of interaction comes from their different shapes
(see Appendix A for a detail discussion of the specific case
of NbSes3). Once the interactions are determined in a band
basis one performs S[m /4] rotation [28] to the total-transverse
basis g,. For the neutral, chargeless modes p—, o % the inter-
actions g, turn out to be small and we can use perturbation
theory result. The TLL parameters and velocities for these
three modes can be given by the following, single-ladder, for-

1—go—gav
1+§;—§jv Where 820— = (820 + 82 )/2 — &2om>

84p— = (840 + 847:)/2 — 84ons 8o+ = 8oo T &orn» and 8o— =
850 — 8on- We see that any interaction asymmetry of the two
bands has an effect of pushing K, away from 1. This can
indeed happen in our more generalized system of distorted
toroids, with distinct ¢, ¢, R, d for the two bands, to be precise
in most models we expect (see Appendix A) K, < 1. We
can also deduce that with a physically reasonable interactions
it will be the most difficult to move away from the K,_ =1
point.

In the bosonic language when interactions are spin or or-
bital independent at ¢ — 0 only the V¢, operator is coupled
with the long-range interactions, i.€., g0 X grx = gor iMplies
that g, is by far the largest. However, the quantity v, , the
holon’s velocity, that is experimentally measured is further
modified by inter-chain interactions as we discuss separately
in the following section. Here, it is worth mentioning that the
results given here are valid also for multileg ladders, hence for
a multimode TLL, with a Coulomb interactions provided that
its symmetry (namely, existence of the mirror plane in Fig. 5)
allows to separate out the total charge mode as the only one
that is strongly coupled through Coulomb interactions.

mula: K, =

V. HOLON MODE: CONNECTION WITH EXPERIMENT

Now we account for a finite aperture size in the ARPES
experiment, which we intend to use as a test of our theory.

<« »€< P< »
-« > gpe >

y
-

FIG. 5. Cross sections (in a-c plane) of three different types of
1D columns. The column was shown in Fig. 1(b). The intensity
of blue shading corresponds to product of charge densities p, (7))
appearing in the integrand in Eq. (3). We have chosen, as an example,
specific charge distributions corresponding to electronic states in
NbSe; shown in Fig. 17 in Ref. [18]. We use these simplified pictures
to obtain Hartree V,,, interactions in NbSes in Sec. IV B. The three
panels are for different orbital configurations, from left to right: V,,, ~
Po(Ys 2)Po(¥> 2)s Var ~ Pz (¥, 2)Pr (Vs 2)5 Vor Po (3> 2) 0 (¥, 2)- The hor-
izontal black lines indicate a mirror plane symmetry that goes along
the b axis and through the middle of the unit cell. The orange
dots show approximate position of niobium atoms: the core of each
trigonal biprismatic column [the entire 1D charge density shown in
Fig. 1(b) consists out of four such entities]. We observe that radius R
as well as distortion ¢ and angular section ¢ are changing from one
case to another. On the bottom left we show (y, z) local coordinates
of the cross section, while on the bottom right are the variables that
we use to perform an integral to get Eq. (6).

The finite aperture implies that the final state is a mixture of
waves with different ¢, [this is a coherent state that results
from Fresnel diffraction of electronic waves [26] (see Fig. 4)].
The problem is simplified because again only p+ modes are
exposed to these long-range interactions. The treatment of this
system can then be based directly on the solution provided by
Schulz in Ref. [29]. In that work it was found that the velocity
is equal to

1 AqL

Vpr = quVp\/(l + 4DV (1 + 28451 — 282p4),
q1 Jo

)
where 8ap+ = Zg4mn, gfpo_t’_ = 2g4p+ + 282,04,- + 21 with?
g1 = MW. We take an integral over a finite Ag,
in order to account for the finite aperture of the (Fresnel zone
focused) nanoARPES device in Ref. [18], here we take [30]
Aq, = m /6. At the same time, the exponent of the single-
particle Green’s function (momentum integrated) is equal to
a=(Cyy —i—Cp_l)/S +6/8 — 1 where 6/8 comes from the
three bosonic modes with K, & 1 and

1+2 -2
C, = +284p+ — 282p+ (1 i ZMIH[ED, (10)
1 + 2g4p+ + 2g2p+ 8 4

2Here we profit from our treatment of V. and based on result in
Fig. 3 we take €)1 () ~ (gj +m?*)~" which is equivalent to a model
with an infinitesimally small many-body gap m.
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where y; = mThe above formulas, with a phys-
ically sensible g; € (0.4,0.6), give the following esti-
mates for observable quantities v, € (1.2, 1.35)VF and o €

(0.15,0.2).

VI. RELATIVE INTENSITY OF THE FOUR MODES

For the two-leg ladder with four TLL modes one expects
four linear dispersions that start at each Fermi point. Below
we show that in a realistic setting the intensity of half of
these modes is strongly suppressed. The problem of a relation
between theory and experimentally measured intensities is not
new; its importance has been underlined, e.g., in Ref. [31].
The formula in Eq. (6) allows us not only to compute the
parameters of the stationary TLL, but also to study the dy-
namics of an excited photohole. This in turn gives an insight
into relative intensities measured for various TLL modes. To
investigate the relative intensities of the four bosonic disper-
sions we take the two-step model for photoemission. In the
first step, just after the photoemission event, the photohole
(a single-fermion state) is created in an intermediate state
Y¥;(¥) that is not an eigenstate but a localized combination of
many excited states of the system. The v;(7) is located on
atomic orbitals that fulfill dipole matrix ARPES selection rules
and among these has to have a spatial distribution matching
the evanescent wave of the emitted photoelectron, to ensure
their large overlap. The photoelectron wave function can be
computed by inverse scattering method [26] and from this
calculation we know that v;(r, ) & Hy(ry) inside the 1D col-
umn (that acts as a trap) where Hj is the lowest-order Hermite
polynomial. In the second step this initial excitation relaxes
into the collective, bosonic TLL eigenstates of the many-body
system. The relaxation is slower than for the single-particle
bands and happens through Coulomb interaction [32], given
in Eq. (6):

Hy = Z /

kphot 4

dqdwT(1,2)p(q, ®)cyi(ke)e] (kphot),  (11)

where we annihilate the photohole by recombination with
an electron from the Fermi surface. The energy momen-
tum released in this decay process goes into a particle-hole
collective density excitation, the eigenstate of the TLL,
through electron-electron interaction 77 5 ~ Veg(x). The last
two annihilation-creation operators in Eq. (11) can be together
called the photodensity p;(¥) = c(kp )cf(kphot). Since the Her-
mite polynomial Hy(r ) is a symmetric Gaussian, then the
overall symmetry of p;(r, ) is determined by a wave function
of the ca1 3(kr), i.e., Ya13(7; kr13) is a wave function (at the
Fermi level) of a matching band, see Fig. 5 for |v;(r1)|.

Contrary to the Fermi liquid, in TLL for each momenta we
have four bosonic branches and the strength of each relaxation
channel is proportional to an overlap integral between a photo-
density p;(7) (defined above) and a given collective excitation
of TLL. The amplitude of the process, when resolved among
different bosonic modes, reads as

Tl=i2=v)= /erVeff(7)pv(7)‘/fi(7)‘/fA1,3(7; kr13),
(12)

where p;(F) = ¥i(F)Ya1,3(F; kr1,3) and p,(F) = V¢,. Differ-
ent TLL modes have different symmetry with respect to the
middle horizontal plane of the two-leg ladder: the total modes
Vé,+, Voo describe in-phase oscillations of the densities
of the two legs of the ladder while the transverse modes
Vo¢,—, Vo, _ describe antiphase oscillations. On the other
hand, the difference between the two DFT bands is that one
is symmetric (the bonding one A3 in [18,19] NbSes3) and the
other antisymmetric (antibonding one A1 in [18,19] NbSe3)
on the rung that links the two legs of the ladder. Hence, we can
deduce that for (w, k) emission point close to theA3 (bonding
band) dispersion p;(7) is an electron-hole described as a wave
with two legs oscillating in phase, while for (w, k) close to
the A1 (antibonding) band p;(7) is a hole’s wave function with
an extra w phase (or a minus sign) between the two legs of
the ladder. The potential given by Eq. (5) is symmetric and,
because small-g scattering dominates (see Fig. 3), does not
allow to mix (w, k) points. Then, overall change of sign of
integrand implies that some amplitudes 7'(1, 2) in Eq. (12) are
suppressed. For (w, k) emission point close to the A3 (bonding
band) relaxation into TLL eigenstates of the total holon and
spinon modes is much more probable, while for (w, k) emis-
sion point close to the A1 (antibonding band) relaxation into
transverse holon and spinon modes is much more probable.

VII. DISCUSSION AND CONCLUSIONS
A. Comparison with experiment

We can now compare our results with a recent experi-
ment [18,19] on NbSe;. In Ref. [19] at each Fermi point two
linear dispersions were detected, precisely as it was predicted
in the previous section. For the inner (antibonding) band the
two branches are distinguishable only when the dispersion
approaches the I point of Brillouin zone since one is linear
(charge) and one is parabolic (spin). For the bonding band
Fermi point kr3, we see two different velocities already at the
Fermi level. We predict that the velocity of the spinon branch
at kp3 (total spin mode o +) should be equal to the velocities
of the transverse modes visible at kp;. This is despite the
fact that DFT dispersions, the velocities extracted from DFT
bands, are different by ~15%-20%. The experiments observe
these velocities to be equal. The holon branch visible at kg3
has been found in Eq. (10) to have velocity approximately
25% higher than other dispersions in good agreement with
experiment [19]. It should be emphasized that our selection
rule is less strict than the standard dipole-matrix selection
rule as it essentially relies on the fact that Ve (g) is strongly
decaying with g and that there are no other states available
close to Er. As we reason in Appendix C, once the dispersion
crosses the other states a recovery of p+ mode intensity in the
antisymmetric band (e.g., A1 in NbSes) is permitted. Exper-
imentally, it manifests as an emergence of a second, shifted
Dirac cone (*0.1 eV below the bottom of the p— cone) with
a velocity v, substantially larger than V. Remarkably, this
more subtle effect has been also observed in Refs. [18,19].

Other realizations. With small modifications, the result of
this work can be also applied to systems that are recently
under intense scrutiny: artificial 1D systems created (or self-
organized) on a dielectric surface. Here, it has to be noted
that our approach is complementary to the one derived in
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Ref. [33] where they have modeled a single wire of a sub-
stantial cross section, i.e., a mesoscopic charge density with
tenths or even hundreds of atoms in the cross section. Then,
charge density can be approximated as a solution of a classical
Poisson equation. However, such model, initially developed
in a very different context and hence neglecting entire atomic

J

and orbital physics, cannot be used as reliable approximation
in a sub-nm domain when the atomistic physics plays a role.
For instance, for domain walls on a surface of a topological
insulator [34], where we know that the domain wall width
covers only a few atoms, our microscopic approach can offer
a much better approximation.

B. Validity of the TLL approximation

As we have already mentioned in Sec. II, the TLL description is valid provided our temperature and frequency range lies
above any spectral gap of the system. What is missing in Eq. (1) are nonlinear cosine terms that are either due to exchange or
backscattering processes. Although the precise form of these terms will vary depending which precise microscopic model needs
to be taken, one of the most general expressions for the two-leg ladder with large 7, (so not for a double-chain problem coupled
through V,) has been in given in Ref. [28]. It reads as follows:

H{X&l) = —8lc / dr cos(2¢s4)cos(26,-) +g1a/dr c08(2¢5 1) cos(205_) — gac / dr cos(20,_)cos(2¢,—)

+ 8ua / dr cos(2y_) cos(26,_) + g1 / dr cos(2dy+) cos(2s_)

+ g / dr sin(2¢,—) sin(2py+) + gjic / dr cos(20,-) cos(26,_). (13)

We use the following notation: indices 1 to 4 refer to the
standard g-ology processes for the left and right moving car-
riers, letters a to d correspond to similar processes, when the
band’s j = o, w index is used instead of the left or right labels.
We should emphasize here that we assume to be far away from
any commensurate filling, where highly relevant umklapp and
Peierls terms will likely open large gaps in the charge sector.
The remaining nonlinear terms are usually tackled by means
of renormalization group (RG) where the highest-energy de-
grees of freedom are gradually integrated out and we analyze
towards which fixed point the system flows.

The interactions are originally defined in the band basis and
then upon performing the S[ /4] rotation to total-transverse
basis we shall also have off-diagonal terms ~g,, — g,». To
tackle these, alongside with the Fermi velocity difference
AVp = Vip1 — VEpz, we need to introduce renormalization
group (RG) procedure that involves so far neglected backscat-
tering terms. It can be shown Ref. [28] that for finite
interband backscattering terms ~V,; (2kr ), thanks to the fact
that K, < K,_, the band basis will relatively quickly flow
towards the total-transverse basis while the Fermi velocities
will flow to the average from both bands (Vgp + Vrps)/2.
Indeed, the value ~(Vrj; + Vip3)/2 has been experimentally
observed for v} ; in Ref. [19]. The terms g;» describe the
intraband backscattering, in total-transverse basis they are
competing to lock spin field at different minima, so the RG
flow away from the band basis makes it hard for these terms
to open a gap.

It is also well known that for Hubbard-type models the
above given perturbations alone lead to substantial gaps. How-
ever, for Coulomb-type models the gaps are predicted to be
several orders of magnitude smaller, down to a value so small
that will not be visible in most experiments. We want to
discuss this difference in here. In the Hubbard model close
to half-filling the gap opens first in the 6, mode which
then drives the two-leg ladder to a superconducting order
with a local d-wave symmetry, known as dSC phase (with

(

overall three gapped modes). The underlying reason for that
are substantial initial amplitudes of several nonlinear terms
that contain cos 26,_. These amplitudes are proportional to
V (2kr) and inter band exchange. Our result, Fig. 3, is remark-
able because of two reasons. Not only does it predict a finite
value of interaction at ¢ — 0, but at the same time it decreases
strongly with g. We see that screening proceeds in two stages:
the approximation that we propose (RPA plus inter-TLL in-
coherent tunneling) is sufficient to cure the divergence, but
at this level the forward scattering is still much more pre-
ferred than backward scattering. The hypothesis would be that
one needs to invoke vertex corrections, for instance, some
level of interladder coherence, to arrive in the regime where
V(2kp) =~ V(g = 0). There is also a fundamental problem
with interband exchange terms: these terms will be nonzero
only if the lattice symmetry that permitted to define bonding
and antibonding bands is broken. To be precise, since these
are defined on the top of some DFT calculation, we need the
correlation interaction that will break this symmetry. If it is the
C, symmetry with respect to central axis of the ladder, then
purely local Hubbard U on off-centered atom can break the
symmetry, but a long range V, J(g) that covers many atomic
sites in several unit cells does not break this symmetry. Hence,
this other component of the interband g1, g2, g1, amplitudes
is zero. Remarkably, in Sec. IV B, we have found K,_ < 1
and it has to stay like this because renormalization of K,
is second-order effect proportional to g> which is extremely
small in our case. For K,_ < 1 all terms in the sine-Gordon
extension [28] of our TLL model ~ cos(26,_) are irrelevant.
We can now analyze if the transition to the gapped phase
can be driven by the spin sector alone. Finite exchange and
V (2kr) processes allow for nonzero initial (UV) g, terms,
which means that K, may deviate from one. However, pro-
vided spin-rotational symmetry is preserved, the flow of this
mode would proceed towards K, =1 (provided it is not
disturbed by strong 6,_ RG flow). As for the o — sector we no-
tice the presence of cos(¢y,—) and cos(6,,—) terms. The two
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fields are canonically conjugated, so they cannot be gapped
at the same time. A characteristic aspect of Coulomb-type
interactions is that, contrary to Hubbard-type interactions,
it involves also the interaction of electrons with the same
spin g|.. This amplitude is nonzero already in the UV limit,
hence, various cosines compensate each other. This situation
persists throughout RG flow. The case K, = 1, predicted in
Sec. IV B, is marginal with cosines of neither field relevant.
To have K,_ # 1, in the UV limit, one has to have a model
with either exchange or spin-rotational symmetry breaking
that depends on the band index. We conclude that even in
the more generalized sine-Gordon two-leg ladder model, the
competition between cos(¢y,—) and cos(fr,—) remains tied.
The competition between cos(¢,—) and cos(6,_) terms, that
can be ultimately resolved only through refermionization [13],
will impede a swift spectral gap opening so the TLL phase is
not destabilized. The conclusion of Ref. [13], about the o —
gaps of order 10~* K will then remain valid as long as we are
not facing the system with strong site-dependent spin-orbit
coupling or band-dependent strong Rashba interactions. For
any temperature greater than that the system will effectively
behave like the TLL and our theory applies.

The above given arguments for the validity of TLL de-
scription can only be broken by the presence of an additional
strongly relevant backscattering term in the Hamiltonian. This
may be, for instance, charge confinement leading to Coulomb
blockade, as proposed first in Ref. [35], but also other schemes
although much milder are also possible, for instance, in nan-
otubes due to curvature-induced spin-orbit coupling [36].

C. Conclusions

In conclusion, we have given a closed analytic expres-
sion (6) for the density-density interactions in quasi-1D
materials. This generalizes the previously known formula [13]
for a homogeneous charge distribution on the circumference
of a nanotube to a more arbitrary charge distribution. This
extension can cover most experimental realizations. In partic-
ular, we showed that, for the case of long-range interactions
that obey the crystal lattice symmetries, the distribution of
charge density is a sufficient information to give the TLL
parameters and hence all correlation functions of the system.
Furthermore, in Eq. (7) we have introduced screening from
all other 1D systems in the quasi-1D material. This allows to
obtain a finite value of TLL holon velocity even in a thermo-
dynamic limit. It is an improvement with respect to numerous
studies in the past where a mesoscopic charging energy had
to be introduced artificially to avoid a divergence of holon
velocity. Our procedure provides the TLL parameters from
input parameters known from DFT calculations, such as the
orbital’s shape and a strength of local interaction (effective
Hubbard U, e.g., from cRPA). Furthermore, we showed that a
careful averaging [Eqgs. (9) and (10)] needs to be used to obtain
a quantity that can be compared with an outcome of ARPES
experiment. We also showed that our theory can predict, from
Eq. (12), relative intensities obtained in ARPES for different
bosonic branches. With these results we validate our theory by
comparing its findings to an ARPES result [18,19] on recently
studied material NbSe;. Hence, we have completed a link
between the ab initio DFT results and experimental ARPES

measurement. Our reasoning can serve as a benchmark for
future ARPES studies of similar quasi-1D compounds.
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APPENDIX A: INTERACTIONS IN THE SPECIFIC
CASE OF NbSe;

The bands’ resolved interaction amplitudes g, will de-
pend on a specific system under consideration. In the
particular case of NbSes the bonding orbital, see Fig. 5 (left
panel), is more spread (larger angle ¢), thinner and closer to
the center (smaller R and d) which results in V™™ < V. This
is compensated by the Fermi velocity difference Vi, < Vg,
SO go0 ~ gnr- The interband terms are more complicated to
analyze. We assume that the product of the two densities is
intermediate but also less homogeneous (larger ¢), see Fig. 5
(right panel), which results in larger V,,; (see Fig. 2). However,
the interband Hartree interaction is also reduced by a factor
Voor = Jo((kpo — kg )a)V,, where Jy(k) is a Bessel function
of the first kind. This is arising from computing an overlap
between two waves of slightly different periodicity: one takes
two phase-shifted waves and integrates over the phase shift.
Furthermore, the J,, = 0, a result which can be obtained
directly by noticing that integrand in an analog of Eq. (3)
(main text) has two functions of opposite parity or, if we treat
band index as pseudospin variable, then the interband scat-
tering is an antiparallel (pseudo)spin process where particles
are distinguishable so quantum exchange is zero. Treating the
band index as a (pseudospin) quantum number is admissible
only for a ¢; hybridization coupled ladders provided ¢, is
large enough such that many-body terms do not perturb bands
substantially. Overall, we find g,,/8,» ~ 1.12. To parametrize
interactions in Eq. (5) (main text), for the case of Nb atom, we
use the following cRPA value [37] U = 2.8 eV which, with
N =4, give U = 0.7 eV while for the exchange J = 0.4 V.

As it was proven in the main text (see Fig. 3), weakly
screened interaction retains predominantly long-range char-
acter and then the three modes (o0 + and p—) have velocities
that are very close to the average Fermi velocity [average
from both bands (Vpp + Vrsz)/2 where Vrp 3 are known
from DFT] and so these dispersions are rather close to each
other, while interactions affect only the total charge-mode
(p+) velocity which is noticeably larger.

APPENDIX B: FERMIONIC MODEL

The simplest, minimal lattice model that can capture the
two-leg ladder class of Hamiltonians is given by the following
tight-binding Hamiltonian:

Hexample = »_[5(c] (j. £R/2)cis1(j. £R/2) + H.e.)
i,j
+1,(c] (j, +R/2)ci(j, —R/2) + H.c.)]
+ > 1(e] (e + 1) + He),

ij

B
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where index i counts the sites along the conducting b axis
(along the column in Fig. 4) while the j index is perpendicular
to it. The ¢, is hopping on the rung of the two-leg ladder,
between the two subunits that build a column. The hopping
t;] L tp,t, is the hopping between the columns, which is
not accounted for in Eq. (1) but enters in Sec. IV. The #,
parametrizes the split between so-called bonding (“0”) and
antibonding (“zr”’) bands shown on the inset in Fig. 4. Each
subunit of the column may consist of several atomic sites; this
is a rather usual situation, for instance, in NbSes; each subunit
consists of two biprisms (two Nb and six Se atoms). Then,
each atomic site has some onsite energy, e.g.,Eses, and in the
simplest case the ratio of these energies and eigenenergies of
Eq. (B1) determine local charge densities whose distribution
may well be different for the two bands. Also, Eq. (B1) is the
simplest model while realistic description dedicated to a real
material requires several hopping paths, several tight-binding
parameters. Also, these parameters may be renormalized by
higher-order interaction processes (acquire self-energy) and
become momentum dependent. For the purposes of this paper,
we identified that the key parameter that shall determine low-
energy physics is the charge distribution p(7) irrespective of
underlying microscopic Hamiltonian.

In order to get K, # 1 in Eq. (1), one needs to supplement
the kinetic energy part of Hamiltonian [e.g., Eq. (B1)] with in-
teractions given by Eq. (2). Assuming that Eq. (B1) represents
a result of some mean-field theory (like DFT) we develop our
description around this saddle point. This means that at the
shortest distances the interactions are screened by high-energy
excitations capable of creating electron-hole pairs from bands
and orbitals that support 3D propagation. That is why the
AyV is an essential part of the theory, and in particular it can
serve to determine the U as described in the main text.

APPENDIX C: DETAILS OF COMPARISON WITH
REFS. [17,18]

The reasoning that led us to conjecture about the parabolic
and Dirac nature of spin and charge dispersions relies on
an exact analytic solution for a single-chain Hubbard model
[38]. The numerical results for extended Hubbard models
[39] suggest that there is no qualitative modification of this
spectrum as the range of interaction is changed, like in U-V-W
models. Hence, if we assume that there is no high-energy
phase transition induced by changing range of the interaction,
then the two charge modes shall cross at the I points (form-
ing structures that each resemble a Dirac point with constant
velocities) while the two spin modes shall have parabolic be-
havior [hence, v,+(g; — I') — 0] close to the I" point. This
assumption should hold provided that the hopping between
chains is not extremely strong (and on-rung interaction is
not large), i.e., the on-chain physics dominates the on-rung
physics. In that latter case, the physics of relative charge mode

can be written as a pseudospin variable and the crossover to
Coulomb interaction case can be complicated. However, this
is not the problem of our study where r;, < t, and V, < Veou-

Concerning the relative intensities of the modes at higher
energies, the situation becomes even more complex if the TLL
holon dispersion crosses a single-particle band as it happens,
e.g., with band C2 in NbSe; [19]. Then, the photohole may
relax much faster into these single-particle states especially
in the vicinity of the crossing point. For a simple set of
master rate equations nicy = re20i(t); ot = rp4pi(t), We see
that when the rate of transition into single-particle states is
higher (which is to be expected since here only one fermionic
instead of entangled bosonic states are involved) rcy > 7ot
then asymptotically the system moves to a situation with most
excitations in the auxiliary band C2. This shall manifest in
the experiment since at the crossing with the dispersion of
the single-electron b2 band we expect that 1;(¥) will sink out
into this auxiliary dispersion so the intensity of the bosonic
branches will be diminished.

When energy of the photohole is larger than that of the
electron’s bound within the band C2, then a two-stage pro-
cess is possible: in the first stage a single particle from the
C2 falls onto a photohole state and later the 52 hole re-
laxes onto Fermi level, producing the final bosonic excitation
1; = 1p4, — 2,. This is a higher-order process with two
intermediate e-h involved, but it may be favored by the faster
C2 relaxation rate. Then, the selection rule described in the
main text Sec. VI does not apply any more, instead, the
amplitude is proportional to the 7'(1;, 135+,, 2, ). Furthermore,
pi(7) is created for binding energies above 0.3 eV; then, fol-
lowing the same argument we expect that it shall have bigger
overlap with total holon modes. Hence, the intensity should
increase again and one should notice an increase of holon
velocity for the A1 band. This is what has been reported in the
experiment [19].

APPENDIX D: INTERACTION COUPLED LADDER

The results presented in this work are for a ladder coupled
through single-particle hybridization on the rung ¢, and inter-
ladder Coulomb couplings V. However, our method can be
also applied to an interaction coupled ladder, the double-chain
problem with V,. > t,. Here each 1D column would have been
built of two identical 1D clumps of charge (along the chain),
so for the entire ladder the symmetry is lowered down to
(6 (E), S> (l;). Crucially, in the interaction V, coupled ladder the
t, has to be neglected (otherwise it may produce dangerously
relevant cosine and chemical potential terms) and both K,
are determined through a split of the single leg K,, by ~V, so
we shall have two modes that are far from K, = 1 and so there
are two modes that enter Eqs. (9) and (10). This case is open
for further studies, possibly when an appropriate experimental
realization occurs.
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