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Abstract
Magnetorheological (MR) fluids are classified as smart materials whose viscoplastic characteristics change under the mag-
netic field. They are widely applied for dynamic energy dissipation due to their rapid thickening under the external magnetic 
field. In this work, the core–shell suspension of superparamagnetic iron oxide-based nanoparticles was synthesized and dis-
persed in silicone oil. Much effort has been made to prepare suspension meeting requirements of MR fluid. The experimental 
squeezing flow response was studied using a modified split Hopkinson pressure bar (SHPB) with various shear rates. Tests 
with modified SHPB show that MR fluid rapidly responds to the compression thickening and forming chain-like structures. 
MR fluid dissipates the energy generated during compression stress tests. This study presents a simple and cost-effective 
synthesis way suitable for MR fluid formation for its dynamic energy dissipation application.
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Abbreviations
AI  Cross-section area
AT  Cross-section area of the hollow
C0  Speed of a stress wave in the bar
D  Diameter of the bar
DS0  Diameter of specimen
e(t)  Axial strain
eI(t)  Incident wave
eT (t)  Reflected wave
eR(t)  Transmitted wave
E  Young modulus
FT-IR  Fourier transformed infrared spectroscopy
l0  Length of the specimen
MR  Magnetorheological

MRF  Magnetorheological fluid
�̇�ns(t)  Nominal strain rate
NP  Nanoparticle
OA  Oleylamine
�nS(t)  Nominal strain
SEM  Scanning electron microscopy
SHPB  Split Hopkinson pressure bar
SPION  Superparamagnetic iron oxide nanoparticle
SPION@OA  Superparamagnetic iron oxide nanoparticle 

capped with oleylamine
TEM  Transmission electron microscopy
TGA   Thermogravimetry

Introduction

Magnetorheological (MR) fluids are categorized as smart 
materials, and they are one of the most functional fluids 
changing rheological properties under the application of 
the external magnetic field (Acharya et al. 2020). Such 
field-responsive fluids can reverse their viscosity forming 
a chain-like structure (Ashour et al. 1996, Muhhamed et al. 
2006), while without magnetic field MR fluid behaves like 
Newtonian (Bica 2006). Formation of the solid-like struc-
tures of fibril shapes due to the dipole–dipole interactions 
between particles under the adjusted magnetic field leads 
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to the increased viscosity and strength of the fluid with sta-
ble shear resistance (Susan-Resiga et al. 2012, An 2017). 
Such unique magnetorheological properties of MR fluids 
open possibilities for their application in many fields, espe-
cially in mechanical devices like valves, dampers, clutch or 
brakes to reduce different vibrations (Kciuk and Turczyn 
2006, Pręgowska et al. 2013, Ashtiani et al. 2015, Kumar 
and Kumar 2015). MR fluids are usually made of ferromag-
netic colloidal suspension dispersed in liquid media like 
oil (Premalatha et al. 2012, Galindo-Gonzalez et al. 2016, 
Zhu et al. 2019). Although MR fluids reveal the ability to 
respond rapidly to the magnetic field, they tend to sediment 
decreasing their long-term stability (Wereley et al. 2006, 
Park et al. 2009). For that reason, much progress has been 
made towards improving the stability of MR fluids, includ-
ing fluids differing from iron particles-based have been 
investigated (Seo et al. 2016, Guo et al. 2018).

Among various ferromagnetic materials, magnetic nano-
particles (NPs) based on iron oxide have shown high mag-
netization saturation and small hysteresis values, which 
makes them a promising material for MR fluids (Espin et al. 
2005, Rabbani et al. 2019). Despite the wide application 
of the micron-sized particles in classical MR fluids, recent 
studies show the high potential of nano-sized particles in 
MR fluid preparation (Chae et al. 2015, Wu et al. 2016, Saha 
et al., 2019).

Within our studies, even very small particles obtained 
size up to 20 nm revealing superparamagnetic modified sta-
bilized with organic molecules can be applied as the mag-
netorheological fluid.

In this work, MR fluid based on the core–shell superpara-
magnetic iron oxide nanoparticles (SPIONs) capped with 
oleylamine (OA) known as an effective stabilizing agent for 
various nanoparticles, including magnetic particles, was 
synthesized and investigated (Peng et al. 2006). The syn-
thesis was performed with a simple and cost-effective co-
precipitation technique (Gawęda et al. 2020, Rashid et al. 
2020). The suspension was dispersed in silicone oil, and 
several methods were used for the investigation of the col-
loid properties. Additional experiments aimed at measuring 
the dynamic energy dispersion have been carried using split 
Hopkinson pressure bar (SHPB) (Lim et al. 2010a), being 
a technique widely used for testing the strain compression 
of various materials having industrial application (Shim 
and Mohr 2009, Lim et al. 2010b). Within SHPB measure-
ments, the response of colloidal SPION@OA suspension 
under high strain rates (Frąś 2015) and determination of the 
time needed for the transition were investigated (Lim et al. 
2010b). So far, our attention has been paid to the study of 
stress relaxation of our MR fluid under stress to provide 
information towards the description of the mechanical prop-
erties of our fluid. Additionally, the classical bar-bar system 
(Frąś and Pęcherski 2018) was improved and substituted 

with a bar-hollow system, improving the signal detection 
for even minimal rheological changes of the colloidal under 
stress.

Experimental

Chemicals

Iron (III) chloride hexahydrate  FeCl3·6H2O Aldrich ACS 
reagent 97% and iron (II) chloride tetrahydrate  FeCl2·4H2O 
puriss p.a. ≥ 99% (RT) were supplied from Sigma-Aldrich. 
Twenty-five percent ammonia solution  NH4OH was provided 
from POCH. Deionized water with resistivity 18.2 MΩ cm 
at 25 °C was obtained using the Milli-Q ultra-pure water 
filtering system from Merck. Ethanol was purchased from 
Chempur with 96% analytical grade. Acetone was purchased 
from POCH with commercial grade. Synthesized SPIONs 
were modified with oleylamine puriss ≥ 98% obtained from 
Sigma-Aldrich. The silicone oil for high temperatures was 
purchased from ACROS Organics.

Synthesis and modification of SPIONs

Iron oxide nanoparticles were synthesized with a co-precip-
itation method at room temperature from the solution con-
taining 5.40 g of  FeCl3*6H2O and 1.99 g of  FeCl2*4H2O 
in 100 mL of water in a glass beaker. Next, a 25%  NH4OH 
aqueous solution was added as a precipitation agent. Syn-
thesis of iron oxide nanoparticles was carried out for 5 min 
at pH 10, with mechanical stirring 300 rpm. After synthesis, 
particles were separated from the solution on the magnet 
and rinsed several times with Milli-Q water until neutral 
pH. Next, the NPs were washed several times with ethanol 
and acetone, and 500 µL of oleylamine was added as a cap-
ping agent. Such compounds are widely used as an effective 
capping agent for the improvement of the stability of col-
loids (Lu et al. 2016). After OA addition, the suspension 
was mechanically mixed with 500 rpm for 30 min and then 
placed in the ultrasonic bath for 10 min to make the mixture 
evenly. After OA capping nanoparticles were collected on a 
magnet and ethanol was removed.

Two different kinds of volume fractions (65% and 75% 
OA capped particles content vs oil fraction) were prepared 
by mechanical mixing with 500 rpm for 60 min of SPION@
OA with silicone oil at room temperature. Then, obtained 
suspension was completely uniform, and no additives were 
needed. Figure 1 shows the synthesis from (a) solution con-
taining a source of iron (II) and (III) ions, (b) nanoparticles 
collected on a magnet after ammonia solution addition and 
stirring, (c) nanoparticles orienting along the direction of 
the magnetic field in water and (d) SPION@OA in oil in the 
presence of the magnetic field.
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Methods

The size and shape of synthesized SPIONs were studied with 
transmission electron microscopy (TEM)—EF-TEM, Zeiss 
Libra 120 Plus, Stuttgart, Germany, operating at 120 kV, 
and scanning electron microscopy (SEM)—Merlin, ZEISS, 
Stuttgart, Germany.

The presence of organic compounds on the SPIONs sur-
face was investigated by FT-IR spectroscopy with Nicolet 
8700 Spectrometer (Thermo Scientific).

Thermogravimetric analysis (TGA) was performed with 
TGA Q50 (TA Instruments), New Castle, USA, under a 
nitrogen atmosphere.

The magnetic behaviour of samples was investigated with 
QD vibrating sample magnetometer (VSM) over the mag-
netic field range from − 2.0 to + 2.0 T in the 100 K and 300 K 
stabilized to the accuracy of about 0.01 K.

The microscopic images of MR fluid were examined 
through Olympus optical microscope BX 41-TF. The images 
were taken with the Olympus digital camera. The rheologi-
cal properties were studied with and without a magnetic field 
using a parallel plate type system at room temperature, with 
the sinusoidal change of current.

Viscosity and shear stress curves of the investigated sam-
ples were measured on the specially constructed test stand, 
which main component was heavily modified rotary rheom-
eter (Rheotest 2.1, Germany). Its torquemeter was equipped 
with high precision ADC, and data acquisition software was 
written in LabVIEW. Furthermore, it was calibrated with 
30 Pa*s silicone viscosity standard (AMETEK Brookfield, 
Germany) obtaining +  − 0.1  Pa*s measurement uncer-
tainty. Axial magnetic field was provided by either current 

controlled coil (up to 50 mT) or specially designed ring 
permanent magnets (100 and 150 mT). Magnetic field was 
measured with teslameter (Lakeshore 475, USA).

The dynamic behaviour of samples was tested with 
its laboratory stand of split Hopkinson pressure bar 
setup. SHPB was made with 7075 alloy aluminium bar 
1000 × 20 mm as an incident bar and hollow as a trans-
mitted bar with the wall thickness 2 mm (see Fig. 2). The 
incident bar is working as a quarter bridge, but a transmit-
ted bar is connected with a full-bridge sensor system. The 
signal from strain gauges is amplified by 400 V/V. The 
laboratory test stand is using the coil, with inner diameter 
30 mm and length 50 mm having 80 turns of the wire with 
the final resistance 180 Ω. The power line was supplied 
with EA-PS 8360–30, where maximal direct voltage value 
is 360 V and the current is 2 A and it can generate 150 mT 
magnetic field, what is more, the SHPS is modified with 
the hollow (11 at Fig. 2).

The application of bar-hollow system instead of the clas-
sical bar-bar system improves mechanically recorded sig-
nals, allowing for a determination of even minimal deforma-
tions of tested colloidal suspension. The applied strain rate 
varied from 4.42·103 to 1.18·104  s−1.

Results

Morphology, magnetic and spectroscopic properties

The shape and size of bare SPIONs and SPION@OA 
was investigated with transmission electron microscopy. 
As can be seen at Fig. 3a, SPIONs have a well-defined 

Fig. 1  Preparation of MR fluid 
a solution with a source of 
Fe(II) and Fe(III) ions before 
ammonia solution addition, b 
nanoparticles collected on the 
magnet in water, c MR fluid 
behaviour in the presence of the 
magnetic field, and d the MR 
fluid attracted by magnet

Fig. 2  Scheme of Hopkinson bar used for dynamic evaluation of syn-
thesized MR fluid. (1) Striker, (2) laser sensor to measure velocity, 
(3) incident bar, (4) strain gauges, (5) sealing, (6) deformable hose, 

(7) MR fluid, (8) coil cover, (9) coil, (10) sealing, (11) transmitter 
bar—hollow, (12) spring, (13) momentum trap, (14) velocity measure 
system, (15) signal amplifier, (16) oscilloscope
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spherical shape with a measured average length axis of 
10–15 nm, while after oleylamine capping nanoparticles 
agglomerate forming 100–130 nm diameter spheres with 
similar shape and size (see Fig. 4b). Additionally, scanning 

electron microscopy was used for the determination of the 
shape and size of SPION@OA (see Fig. 4c).

The spectroscopic analysis shows that the magnetic core 
is effectively covered with oleylamine shell. As can be seen 

Fig. 3  a TEM images of bare 
SPION before surface modifica-
tion, b TEM image of SPIONs 
capped with oleylamine, c SEM 
image of SPIONs capped with 
oleylamine

Fig. 4  a FT-IR spectra of SPION@OA and OA and b TGA curve for SPION@OA
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at Fig. 4a, FT-IR spectra recorded for pure oleylamine and 
SPIONs capped with OA are similar, confirming that SPI-
ONs are successfully covered with OA. Recorded spectra 
are in agreement with the literature data (Zhang et al. 2007, 
Kuman et al. 2014).

The band recorded at 590   cm−1 is characteristic for 
stretching Fe–O vibration at iron oxide particles. The signal 
around 1610  cm−1 is assigned to the N–H bending and  NH2 
scissoring motion. For SPION@OA sample, the band at that 
region is much smaller than for OA measured separately 
indicating adsorption of OA on the surface of SPIONs. Both 
spectra reveal characteristic bands of terminal methyl asym-
metric in-plane C–H stretching at 2900  cm−1 and asymmet-
ric C–H stretching at 2850  cm−1. The shift of bands for the 
SPION@OA sample may correspond to the constraint of 
the molecular motions due to the formation of close-packed 
layers of oleylamine on the SPIONs (Wang et al. 2014).

The thermogravimetry analysis was performed in the tem-
perature range from ambient to 600 °C, with a heating rate of 
10 °C/min. Measurement was performed under the nitrogen 
atmosphere (see Fig. 4b). The initial mass loss below 100 °C 
corresponds to the elimination of water molecules adsorbed 
on the surface of SPIONs@OA. The following a drop of the 
mass is ascribed to degradation of the oleylamine degrada-
tion indicating 12% of OA on the surface of SPIONs.

The magnetic property of prepared material is a signifi-
cant index influencing the magnetorheological property of 
MR fluid. Studies of as-synthesized iron oxide nanopar-
ticles with magnetometry reveal the superparamagnetic 
behaviour of samples (see Fig. 5). The saturation mag-
netization of SPIONs was about 91 emu/g at 100 K and 
82 emu/g at 300 K with low coercivity, which corresponds 
to data for SPIONs prepared in different conditions (Osial 
et al. 2018).

Stability of MR fluid

The stability of MR suspension depends on the content 
of iron oxide nanoparticles in the suspension. In general, 
the sedimentation of particles dispersed in the liquid is 
not desirable property, especially in the case of MR fluid 
application for dynamic energy dissipation. Sedimenta-
tion tests were performed on two samples to compare the 
stability (see Fig. 6), and the sedimentation rate was cal-
culated using Eq. 1:

Sedimentation can be caused by the density mismatch 
between SPIONs@OA and oil, although the stability is 
much higher in comparison to other liquids, where the 
deposition reaches even 60% (Zhang et al. 2009, Jinaga 
et al. 2019, Kumar et al. 2019).

The suspension of SPIONs@OA in silicone oil was also 
investigated with an optical microscope showing homo-
geneous dispersion without and under a magnetic field 
(see Fig. 7). The experiments were performed on a glass 
side, and the optical micrographs were taken in transmis-
sion mode. The applied magnetic field was about 10 mT. 
The direction of the current was changed with a sinusoid 
direction and the suspension structure was measured 
in a droplet sample having volume 10 µL diluted twice 
with oil was subjected to the magnetic field of strength 
using dual-mode coil. Initially, without the magnetic field 
(Fig. 7a), the nanoparticles in the suspension are dispersed 
randomly on the microscopic glass. When the magnetic 
field is induced, the NPs spontaneously start to form 
chain-like structures revealing MR properties (Fig. 7b–h) 
(Wang et al. 2020). Suspension quickly reorganized into 

(1)

Sedimentationpercentage(S) =
Volumeofsupernatantfluid

Totalvolumeofthefluid
× 100%

Fig. 5  Magnetization isotherms for SPIONs measured at 100 K and 
300 K Fig. 6  Sedimentation of synthesized MR fluid in the function of time
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particle-rich zones orienting along with the direction of 
the magnetic field.

Application of the magnetic field causes agglomeration of 
the particles, which form the parallel zones. They rotate fol-
lowing the direction of the magnetic field forming chain-like 
structures, while when the magnetic field is off, the agglom-
erates disperse like before its application.

Viscosity studies

Additionally, the viscosity of as-synthesized MR fluid was 
tested within the concentric cylinder rotational viscometer, 
using 100 mL of MR fluid. Measurements were performed 
in the room temperature and without the magnetic field. As 
can be seen in Fig. 8, the viscosity of the as-synthesized MR 

fluid decreases with the growth of the shear rate. Viscosity 
of MRF for higher content (about 75%) of solid nanoparti-
cles is about 2 Pa*s higher than for lesser one (about 65% 
NPs).

Dynamic behaviour

Following studies of colloidal suspensions with 65% and 
75% SPION@OA content in silicone oil were focused on 
the investigation of their viscoelastic behaviour. The gela-
tin was sealed to the bars by cyanoacrylate adhesive seal 
and taped too. The specimen length is 2 mm, and its diam-
eter is 20 mm. Our fluid was placed in the thin gelatin hose 
(with wall thickness max. 1 mm) allowing deformation and 
observation of the sample behaviour during experiments. 

Fig. 7  The silicon oil-based 
suspension (65% volume ratio) 
a without a magnetic field, b–g 
under magnetic field chang-
ing direction, and h without a 
magnetic field, with the scale 
bar of 100 μm
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The dependence of the rearrangement of the microstruc-
ture vs applied stress was measured within a compression 
test. The results were obtained in which the nominal stress 
was permitted to vary from 0.001 to 200 MPa in a con-
trolled manner over the duration of 0.5 ms. Both samples 
responded quickly occurring solid state under the magnetic 
field and liquid state without the magnetic field.

When the striker (1, Fig. 2) impacts the incident bar, 
then the generated stress wave is transmitted through the 
specimen and reaches the hollow. With the modification 
of the SHPR setup from the bar-bar system into the bar-
hollow, it is possible to measure even very deformations 
of the tested fluid sample. Such distortions are recorded 
as the changes of the reflected wave (see Fig. 9). In our 
case, it was possible to record the wave for much smaller 
velocities of the striker than the literature shows (Wang 
et al. 2016).

The measured three waves—incident, reflected and 
transmitted—in the form of the axial strain e(t) are 
described with the fundamental relation (see Eq. 2) mak-
ing possible estimation of the stress and displacement. 
Firstly, the specimen during the test must be in the stress 
equilibrium.

where E is the Young modulus of the incident and trans-
mitted bars. The symbol AI denotes the cross-section areas 
of the incident bar in the place of glued strain gauges and 
AT is the cross-section area of the hollow. To calculate the 
nominal strain, the following equations were used (Chen 
et al. 1999):

(2)E
(

eI + eR
)

AI = EeTAT ,

where C0 is the speed of a stress wave in the bar and l0 
is the length of the specimen.

where D and DS0 are ascribed to the diameter of the bar 
and specimen. Equation 5 presents the relation to calculate 
the nominal strain rate:

In the beginning, when the striker hits the incident bar, 
the stress wave is propagating with the speed C0 through 
the incident bar and compressing the material in gelatin 
hose. A slow increase as the nominal compressive stress 
occurs. The rise of the material response corresponds to 
the interaction of the fluid movement with the magnetic 
particles. Then, the MR fluid hardens, and the single peak 
is observed ascribed as the formation of the single chains 
in the fluid. After reaching the elastic limit, the curve 
drops, which corresponds to the dynamic recovery of the 
tested MR fluid. The rate of the deformation of chain-like 
structures changes with the speed of striker—which was 
changed from 8 to 16 m/s with the magnetic field 150 mT 
measured in the middle of the coil.

Maximum observed on the following curves corre-
sponds to the steady-state regime with chain-like struc-
tures, while behind such region the curve drops slowly 
reaching the flow state. Measurements confirm that fluid 

(3)

�ns(t) =
C0

l0

(

1 −
AI

AT

)

∫
t

0

eI(t)dt +
C0

l0

(

1 +
AI

AT

)

∫
t

0

eR(t)dt,

(4)�nS(t) = E

(

D

DS0

)2[

(1 +
AT

AI

)e
T

(t)

]

,

(5)�̇�ns(t) =
1

l0

[

dua(t)

dt
−

dub(t)

dt

]

=
1

l0

d𝜀ns(t)

dt

Fig. 8  The viscosity of MRF in function of shear rate Fig. 9  The stress waves recorded by an oscilloscope
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material hardens under the stress wave application and 
flows after the relaxation.

As can be seen in Figs. 10–11, the properties of the exam-
ined fluid depend on deformation velocities. The increase 
of deformation speed affects the yield point increasing its 
value. The magnetorheological fluid responds to this stress 
and the characteristic wave appears due to the deformation.

As-synthesized MR fluid based on iron oxide nanoparti-
cles reacts to sudden stress and disperses the elastic longitu-
dinal waves. The viscoelastic properties of these functional 
materials are based on the structure ready to rearrange-
ment. The deformation chain-like structure is mostly based 
on shifting a single iron particle and swaps them into the 
neighbouring chain structure. This mechanism provides the 
deformation of the structure. The stress values obtained for 
material with 65% of volume ratio are much lower than the 
material with 75%. As can be seen in Fig. 10, the behaviour 
of MR fluid is dependent on the amount of magnetic nano-
particles that are responsible for viscoelastic deformation.

The best results in energy dispersion are obtained for MR 
fluid having 75% volume ratio for the specimen with yield 

stress (the straight line crossing the stress–strain relation 
shifted by 0.2% relative to the elastic range) 1.2434·108 Pa 
than MR fluid having 65% volume ratio, which reaches the 
yield stress 2.6883·107 Pa. The strain rate of the specimen 
is closely similar, and some inaccuracies can come from 
another velocity of the strikers (15.84 vs 16.04 m/s).

Our studies show that the effect of SPION@OA volume 
fraction on the mechanical response is observed. Results 
obtained for MR fluid with a 65% volume ratio are com-
parable with literature for hard-sphere silica particles col-
loidal suspensions. In comparison, a 10% rise of volume 
ratio improves results for even one order of magnitude (Lim 
et al. 2010b). In general, MR fluid is a material that has a 
dipole–dipole structure (Jolly et al. 1996), so in presence of 
a magnetic field, these structures form a chain-like structure 
that is far from the initial one. While the incident wave tran-
sits through the sample, the structure undergoes deformation 
of the structure formed by particles and the sample has no 
time for quick relaxation.

Additionally, commercially available MR fluid (MRF) 
produced by the LORD Corporation—the MRF 140-CG 
that contains 85.44% of ferroelements was measured with 

Fig. 10  Yielding for MR fluids having a 65% volume ratio and b 75% 
volume ratio. Measurement was performed under the 50 mT magnetic 
field

Fig. 11  Yielding for MR fluids having a 65% volume ratio and b 75% 
volume ratio. Measurement was performed under the 150 mT mag-
netic field
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the use of SHPB. Likewise, the MRF that was synthesized 
in this project, various striker velocities were applied. 
Therefore, the generated by the impact compression wave, 
measured by the strain gauges, allowed to calculate the 
nominal stress, nominal strain and strain rate. The fluid 
responses to this stress and the characteristic wave that 
appears due to the deformation are similar to the results 
obtained for previous samples.

Figure 12 presents an experiment performed at the mag-
netic field about 50 mT, while Fig. 13 shows data obtained 
under 150 mT.

The results confirm that MRF material solidifies simi-
larly, where ferroelements that form chain-like structures 
are responsible for effective dynamic energy dissipation. 
According to the data obtained for commercial MRF 
presented in Fig. 12 and 13, the as-synthesized sample 
behaves slightly different than the commercial one when 
the velocity of the striker is low, while for the large values 

of velocity the efficiency is similar to the commercial MRF 
LORD.

The as-synthesized sample having 65% volume-ratio con-
tent has less chain-like structures, while 75% more respec-
tively, while its susceptibility against deformation depends 
on the internal interactions between particles as well as the 
magnetic field. Under a weak magnetic field, particles form 
the less chain-like structure that influences the response of 
the sample, and as a result, lower values of stress–strain are 
measured. In comparison to the data that were recorded for 
commercially available MRF, results obtained with SHPB 
equipment for as-synthesized sample confirm that mate-
rial can be used successfully in vibration dissipation which 
may have an adverse influence on mechanical devices and 
organisms.

Complementary to the SHPB tests, the dynamic viscosity 
changes and shear stress in the presence and absence of the 
magnetic field were investigated. Changes in the viscosity in 
the function of the shear rate demonstrate a non-Newtonian 
character for tested MR fluid. Here, the 75% colloidal sus-
pension was tested. An increase of the viscosity is observed, 
where the values rise about 90 Pa*s when the magnetic field 
rises from 0 to 25 mT due to the formation of the chain-like 
structures in a presence of magnetic field. Significant change 
is also observed for the following rise of a magnetic field 
from 25 to 50 mT, while in 100 mT and 150 mT the viscos-
ity remains similar (see Fig. 14a). These values decrease 
with an increase of the shear rate, which shows behaviour 
typical for pseudoplastic fluids with linearization of the char-
acteristic above 3  s−1 shear rate and is typical for fluids with 
suspended particles. On the other hand, Fig. 14b shows the 
decrease of the viscosity to half of the initial value with the 
rise of the temperature, and with the rise of the shear rate 
above the value 5  s−1 it behaves similarly despite the tem-
perature changes. Next, the shear stress was investigated in 
the function of shear rate. As can be seen in Fig. 14c, the 
changes in the shear stress values over the controlled shear 
rate mode increase with the increase in magnetic fields that 
is characteristic of the shear-thickening of the MR fluid. Fol-
lowing Fig. 14d presents the change of the relative viscosity 
in the function of shear stress. As shown below, these char-
acteristics are monotonous for smaller values of a magnetic 
field, decreasing with increasing shear rate, while for higher 
fields they have a maximum between 1 and 3  s−1.

Conclusions

In summary, highly magnetic single crystallites based on 
the iron oxide nanoparticles obtained in this work were syn-
thesized by fast, simple and cost-effective co-precipitation 
technique and easily modified with oleylamine as the sta-
bilizing agent. TEM studies reveal spherical shape with an 

Fig. 12  Yielding for MRF 140-CG that contains 85.44% volume 
ratio. Measurement was performed under the 50 mT magnetic field

Fig. 13  Yielding for MRF 140-CG that contains 85.44% volume 
ratio. Measurement was performed under the 150 mT magnetic field
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average size of about 10–15 nm before OA capping, while 
after SPION@OA creates homogeneous suspension with 
100 nm size and spherical shape. Complex characterization 
confirms the successful capping of the magnetic core. Ther-
mogravimetry analysis reveals that organic shell constitutes 
ca. 10% for the core of the conjugate mass. In the following 
studies, SPION@OA suspension was dispersed in the silicon 
oil, and two different MF fluids containing 65% and 75% 
volume ratios were tested. An increase of concentration of 
capped nanoparticles in the MR fluid improves the stability 
of the fluid and performance against applied stress.

Split Hopkinson pressure bar modification from bar-bar 
into the bar-hollow system enabled to record of the transmit-
ted wave during energy dissipation experiments with higher 

precision making it possible to record even tiny waves gen-
erated in the investigated material. Fluid prepared within 
this work responds reversibly and instantly to the stress 
occurring high yield stress, which makes it applicable in 
vibration reduction. Viscoelastic properties of 75% MRF 
for high striker velocities are comparable with commercial 
LORD MRF-140CG containing 85.44% of magnetic parti-
cles in the fluid. MR fluid having a 75% volume ratio reveals 
a promising effect of dynamic energy dispersion, giving the 
opportunity to test it in brakes and dampers.
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