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1. Introduction 

The subject of the considerations are shallow lattice structures susceptible to global loss of stability 

by node snap through (Marcinowski [1], Waszczyszyn i in. [2], Thompson, Hunt [3]). In structures of 

this type, large displacement gradients may appear, therefore, when designing these covering, 

geometrically nonlinear relationships should be used. In the era of the more and more common 

trend of optimal design, an extremely important problem is to take into account the impact of the 

random nature of the parameters describing the structure. This work is an attempt to draw attention 

to this important aspect of the optimal dimensioning of bar structures using the formalism of the so-

called robust optimization.  

The problem of optimal design of ever larger and more complex structures forces engineers to 

minimize the cost of execution and the weight of the structure. Optimization methods are therefore 

becoming an indispensable tool in rational design. Thanks to them, it is possible to properly select 

material properties or dimensions of the structure, which is often a very labor-intensive task. 

2. Optimization 

It is worth noting that optimal structures are very sensitive to the random dispersion of model 

parameters and external interactions. Solutions that fulfill their function for nominal values may turn 

out to be unacceptable after taking into account the randomness of the parameters. Therefore, it 

seems natural to extend the formulation of deterministic optimization, which takes into account the 

random dispersion of parameter values. This formulation offers robust optimization. This term refers 

to the widely understood methodology of designing both structures, devices and production 

processes, in which, while maintaining the high functionality of the designed systems, the aim is to 

find a solution that is as resistant to changes in its parameters as possible. The solution obtained in 

the process of robust optimization is definitely less sensitive to the parameters of the model that are 

difficult to control or external influences. The advantages of this method include the fact that it leads 

to a solution that maintains quality and functionality in a wide range of working conditions. (Stocki 

[4], Gondzio et al. [5]).In rational design, it is necessary to strive to ensure the highest possible level 

of resistance of the structure to changes in the designed variables. Robust optimization can also be 

effectively used in the design of building structures. The methods known as 'robust' optimization are 

not, however, a frequent choice of designers in this field. Effective use of the random nature of 

parameters requires the improvement of the methods of stochastic analysis and work on engineering 

software enabling its application. 
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3. Single layer steel dome analysis 

The example shows the analysis of a shallow single-layer steel structure, modeled with truss 

elements on pinned support. A force of P = 5kN was applied to the structure in each node. The bars 

were designed from S235 steel with the yield point fy = 235 MPa, Young's modulus E = 210 GPa and 

Poisson's ratio v = 0.3. The geometry and deformation of the considered structure is shown in 

Figure 1.  

 

Figure 1. Geometry and deformation of the structure 

On the basis of the static and strength analysis, the following cross-sections were assumed for 

individual groups of bars: RO54x3.6 for the Meridian_1 (bars 1 to 8), RO60.3x6.3 for Meridian_2 (bars 

17 to 32) and RO 51x6.3 for the Ring (bars 9 to 16). The maximum effort of bars in the distinguished 

groups was verified, which amounted to 66%, 72% and 71%, respectively. The maximum vertical 

displacement was recorded at nodes 2 to 9 and was 13.62mm, while the limit value of vertical 

displacement according to Eurocode3 [6] is 46.67mm. 

Then the structure was subjected to linear buckling analysis. The value of the critical load multiplier 

was αcr = 1.714. Such a low value indicates the need to perform calculations that take into account 

geometric non-linearity. 

The geometrically nonlinear analysis showed that the critical load multiplier was µcr = 1.184, while 

the limit displacement was 18.41mm. The effort of the bars was verified when the structure was 

loaded with the force P = 5.92kN, which was 71% for the Meridian_1, 90% for the Meridian_2 and 

96% for the Ring. The maximum stresses in the bars did not exceed 62 MPa. 

Reliability analysis. 

The structure reliability was analyzed using the FORM method (Engelstad, Reddy [7]) when the 

structure was loaded with the force P = 0.98⋅5kN = 4.90 kN. The cross-sectional area of successive 

groups of bars Ai was assumed as random variables. The description of random variables is presented 

in Table 1. Variables are not correlated. The mass of the modeled structure is M = 813.51 kg. For the 

above case, the value of the coefficient of variation was set at 5%. 

Table 1. Description of random variables 

Random Variables Mean Values Standard deviations Coefficient of variation 
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Xi [cm2] [cm2] [%] 

A1 5.7 0.285 5 
A2 10.7 0.535 5 
A3 8.85 0.443 5 

On the basis of the analyzes, the maximum value of the node displacement was limited at 

wmax = 1.6 cm. For such a limit value, the limit function takes the form:, 

 fs = 1 - 
w(x)

wmax 
 = 1 - 

w(x)

1.600
 (1) 

where: w (x) - displacement in a given calculation step, wmax - assumed maximum displacement. 

The determined value of the reliability index was β = 2.011, while the failure probability was 

pf = 0.022. The determined values of the elasticity index in relation to the mean value are as follows: 

for the random variable A1: 0.047, for random variable A2: 0.683 and for random variable A3: 0.729. 

There is a significant difference in the values of the elasticity index in relation to the mean value of 

variable A1 in relation to the elasticity indexes of the other variables. Therefore, it is worth verifying 

the influence of variable A1 on the reliability of the structure by re-performing the reliability analysis, 

taking it into account as a deterministic value. If only two random variables (A2 and A3) were taken 

into account, the value of the reliability index was β = 1.996, while the failure probability was 

pf = 0.023. The difference in the value of the reliability index is 0.015. On this basis, for further 

calculations, we can accept two design random variables: A2 and A3. 

Deterministic optimization 

In the second part, we are looking for the optimal dimensions of the cross-sections of individual 

groups of bars: for the Meridian_2: A2 and for the Ring: A3 using the deterministic optimization 

algorithm (Błachowski et al. [8]). 

The objective function will be the mass of the structure: 

 fC = minimum (ρ⋅( ∑ Lj⋅A2 +

32

j=17

∑ Lk⋅A3

16

9

)) = min (Mass) (2) 

where: Lj - length of the j-th rod from the Meridian_2 group, Lk - length of the k-th rod from the Ring 

group. 

Simple constraints are described in Table 2. They represent the upper and lower limits of the 

searched design variables. 

Table 2. Description of simple constraints 

Design variable 
Lower boundary 

[cm] 
Upper boundary 

[cm] 

A1 9.844 11.556 
A2 8.142 9.558 

For the case under consideration, 8% tolerance of the cross-sectional area was assumed. 

The inequality constraint was formulated as the condition of not exceeding the permissible vertical  

displacement of the node, for wmax = 1.6 cm: 

The deterministic optimization was carried out using the simplex method of Nelder Mead with the 

maximum number of iterations N = 1000 and the convergence parameter ε = 1.0 E-08. 

 g(x) = w(x) - wmax = w(x) - 1.600 < 0 (3) 
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The obtained dimensions of the cross-section are: A1=9.845cm2, A2=8.331cm2. The limit function 

value for this case was 761.706 kg. The probability of failure and the reliability index were also 

verified, which in this case was respectively: pf = 0.5, while β = 0.0. 

Robust optimization 

In the case of robust optimization, random and design variables (µA2, µA3), the objective function and 

constraints were defined. The objective function is, as in the case of deterministic optimization, the 

mass of the structure, but assuming that it takes into account the weighting factor γ that determines 

the significance of each of the criteria (mean value and standard deviation). The value of the 

coefficient of variation was set at 5%. 

For the case under consideration, the task of robust optimization takes the form: 

1. Find the values of the variables: µA2, µA3 

2. Minimizing: fC = 
1 - γ

η*
[Mass] + 

γ

σ*
σ[Mass]   

3. With constrains: 

E[w(x) - 1.600] - β̃⋅σ[w(x) - 1.600] ≥ 0 

9.844 ≤ µA2 ≤ 11.556 

8.142 ≤ µA3 ≤ 9.558 

where: γ ∈ [0, 1] - determines the meaning of each of the criteria, η*, σ* - normalizing constants, 

w(x) - 1.600 - limitation of the permissible vertical displacement. 

In order to confirm the correctness of the performed calculations, two methods of building the 

response surface were used: kriging (Simpson et al. [8]) and the second-order method (Box, 

Wilson [9]). The following parameters were assumed: γ=0.5, β̃=2.0. 

Response surfaces are built using the kriging and second order method, while the experiments are 

generated according to the plan of optimal Latin hypercubes (Liefvendahl, Stocki [10]). After the 

robust optimization, the obtained values of the design variables and a mass of the structure are 

summarized in Table 3.  

Table 3. The values of the random variables and a mass of the structure obtained in the robust 

optimization 

 Kriging Second order method 

A2 9.926 cm2 9.924 cm2 

A3 9.558 cm2 9.558 cm2 

Mass 786.401 kg 786.309 kg 

As a result of robust optimization, an increase in the values of the cross-sectional areas of individual 

bar groups and the weight of the structure was obtained. However, this results in a significant 

improvement in the safety of the structure, which is indicated by the values of the reliability index 

and the probability of failure, which in this case are respectively: for kriging: β = 2.038 and pf = 0.021, 

for second order method: β = 2.036 oraz pf = 0.021. 

 

Summary 
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The results of both analyzes show a clear influence of the selection of the optimization method on 

the obtained values. The result of robust optimization is a structure resistant to random variable 

deviations. In analysis, it can be observed that the structure optimized by the robust method is 

lighter than the original structure by more than 27 kg, while the reliability index indicates its 

reinforcement. 
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