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A B S T R A C T   

Ultrasound (US) imaging is widely used to help radiologists in diagnosing breast cancer. In this work, we propose 
a deep learning based approach to breast mass classification in US. Transfer learning with convolutional neural 
networks (CNNs) is commonly used to develop object recognition models in medical image analysis. The most 
widely used fine-tuning techniques aim to modify weights of pre-trained networks to address target medical 
problems. However, fine-tuning can be difficult when the number of trainable parameters of the pre-trained 
network is large and the available medical data are scarce. To address this issue, we propose a novel transfer 
learning technique based on deep representation scaling (DRS) layers, which are inserted between the blocks of a 
pre-trained CNN to enable better flow of information in the network. During network training, we only update 
the parameters of the DRS layers in order to adjust the pre-trained CNN to process breast mass US images. We 
present that the DRS based approach greatly reduces the number of trainable parameters, and achieves better or 
comparable performance to the standard transfer learning techniques. The proposed DRS layer method combined 
with the standard fine-tuning techniques achieved excellent breast mass classification performance, with area 
under the receiver operating characteristic curve of 0.955 and accuracy of 0.915.   

1. Introduction 

Ultrasound (US) imaging is widely used to help radiologists in 
assessing and diagnosing breast cancer in women [1]. US imaging is 
portable, noninvasive and less expensive than other medical imaging 
modalities, like mammography or magnetic resonance imaging. How-
ever, analysis of US images is difficult and associated with high inter- 
rater reliability. To accurately differentiate malignant and benign 
breast masses radiologists have to possess a deep knowledge about 
characteristic US image features related to malignancy (e.g. mass shape 
and echogenicity). Various machine learning methods have been pro-
posed to aid the radiologists with breast mass differentiation [2,3]. 
Nowadays, deep learning methods are gaining interest in breast mass 
classification. 

Deep convolutional neural networks (CNNs) can automatically pro-
cess input images to determine important image features and provide 
the desired output [4–6]. However, performance of deep learning 
methods is usually related to the volume of available training data. 
When the available training data are scarce, it is usually infeasible to 
train a well performing model from scratch. To address this problem, 
transfer learning techniques have been investigated and became the 

methodology of choice for the development of deep learning methods in 
medical image analysis [7]. The goal of transfer learning is to utilize pre- 
trained models to address new recognition tasks. This way a model 
developed on a large dataset can be adjusted to efficiently process data 
from a different domain and compensate the lack of training data for the 
target task. 

CNNs pre-trained on the ImageNet dataset are among the most 
popular models used for transfer learning and breast mass differentia-
tion in US [8,9]. The ImageNet dataset includes over 1 000 000 RGB 
images corresponding to 1 000 objects and has been used to develop 
various classification CNNs. In the case of the transfer learning, the most 
basic approach is to utilize an ImageNet model as a fixed feature 
extractor combined with a standard classifier, such as the support vector 
machine method [10,11]. In this case, medical images are used as an 
input to the pre-trained model and deep features are usually extracted 
from the last convolutional layer of the network. This approach has been 
successfully used for breast US mass differentiation in several papers 
[12–15]. Another transfer learning approach is to fine-tune a pre-trained 
model using target medical data [16,17]. This approach usually provides 
better results than the feature extraction technique. However, if the 
target dataset is small and the number of trainable parameters of the 
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model is large, fine-tuning of the entire network may lead to conver-
gence problems and over-fitting [18]. To reduce the number of trainable 
parameters, investigators usually decide which network layers to fine- 
tune and which layers to leave frozen. Commonly, only the last layers 
of the pre-trained model are fine-tuned, which is motivated by the 
observation that the first layers of the network include feature extractors 
that are general and shareable between different tasks. In comparison, 
last layers code features related to recognition of objects from the source 
dataset, and modification of these layers may be therefore more bene-
ficial for the extraction of features for the new task [19]. Nevertheless, 
modification of the first layers, including edge and color blob detectors, 
may also play an important role. To fine-tune a deep model pre-trained 
on RGB images with grayscale US images, the grayscale pixel intensities 
are commonly duplicated into all color channels. This raises a question 
whether the detectors in the first layers of the model pre-trained on RGB 
images process the target data efficiently. This issue may result in the 
extraction of worse performing features in the first layers, affecting the 
processing in deeper layers [20]. In the case of the breast mass differ-
entiation, fine-tuning has been applied in several papers [14,21–25]. 
Authors investigated the usefulness of various pre-trained deep models 
and fine-tuning strategies. 

In this work, we propose a novel transfer learning approach to breast 
mass classification. Our method can be used to effectively adjust the 
entire pre-trained network to the target task, and it corresponds to a 
lower number of trainable parameters than the standard fine-tuning 
techniques. The proposed approach is based on the deep representa-
tion scaling (DRS) layers, which we insert between pre-trained blocks of 
the model. The aim of these layers is to transform deep representations 
to enable better flow of information in the pre-trained network. There 
are several motivations for our approach:  

• In the case of the regular fine-tuning, each trainable parameter of the 
pre-trained model is updated separately with the back-propagation 
algorithm. In our case, we equip the network with the DRS layers, 
initialized as identity mappings, which govern the updates of the 
block parameters. With the DRS layers, we can directly and coher-
ently scale entire deep representations. In this sense, our approach 
can be perceived as a parameterized fine-tuning, where we update 
specific groups of elements in the same way, reducing the number of 
trainable parameters and addressing potential over-fitting issues.  

• DRS layers can enhance (or attenuate) the propagation of certain 
features though the network, and effectively address the saturation 
problem caused by the presence of the activation functions. With the 
DRS layers, we can transform deep representations to make them 
pass the activation functions. For a large visual mismatch between 
the source and target data, pre-trained convolutional filters may 
output feature maps that are noisy. With the DRS layers, we can 
suppress such noisy maps and exclude them from the processing. 

This paper is organized in the following way. First, we present how to 
equip a pre-trained CNN with the DRS layers. Next, we perform several 
experiments to illustrate the usefulness of our method in the case of the 
breast mass classification. Most importantly, we show how the inclusion 
of the DRS layers impacts the processing of deep representations by the 

activation function layers of the pre-trained model. 

2. Methods 

2.1. Residual networks 

In this work, we utilized the ResNet101 residual network pre-trained 
on the ImageNet dataset to demonstrate the usefulness of our approach 
[8,26]. This model is widely used as a backbone network for various 
transfer learning tasks and has been utilized for breast mass classifica-
tion in previous papers [22]. Architecture of the ResNet101 CNN is 
presented in Fig. 1. Standard ResNet is a CNN that includes stacked 
residual blocks. Each block can be expressed in the following way [26]: 

yl = xl + F (xl; Wl),

xl+1 = f (yl),
(1)  

where xl and xl+1 stand for the input and the output of the l-th residual 
block, F is the residual function with the associated weights Wl, and f is 
the rectified linear unit (ReLu) activation function. The function F in-
cludes multiple convolutional, batch normalization and activation 
functions layers. The number of the residual blocks for the ResNet101 is 
equal to 33. 

2.2. Deep representation scaling 

Residual block equation shows that the deep representations from 
the previous layers are propagated through the network, which gener-
ally improves the training and enables development of deeper networks 
[26]. However, such propagation of representations though a pre- 
trained ResNet model may not lead to good transfer learning perfor-
mance, especially when the visual mismatch between the source and 
target datasets is large. For example, this may result in activation 
function saturation and extraction of worse performing features in 
deeper layers of the network. To address the problem, we propose the 
following modification of the residual block: 

yl = xl + F (xl; Wl),

zl = G (yl; Sl,Dl),

xl+1 = f (zl),

(2)  

where function G , associated with weights Sl and Dl, stands for an in-
termediate operation used for scaling of deep representations (DRS 
layer). This operation consists of two linear functions and has the 
following form: 

y′

l(i, j, k) = Sm
l (i, j)yl(i, j, k)+ Sb

l (i, j), (3)  

zl(i, j, k) = Dm
l (k)y

′

l(i, j, k)+Db
l (k), (4)  

where yl(i, j, k) are the elements of representation yl ∈ R H×W×C, with H,

W and C equal to the height, width and the number of channels of yl. The 
first linear scaling, denoted by S, transforms the deep representation in 
respect to the spatial dimensions. The second linear scaling, denoted by 
D, is used to separately scale each channel of the input tensor. With the 
DRS layers specified by parameters Sl and Dl, we can transform deep 

Fig. 1. Simplified architecture of the ResNet101 network including 33 residual blocks See Fig. 2a) for an illustration of a residual block. GAP stands for the global 
average pooling layer. 
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representations before they are processed by the ReLU activation func-
tion layer. Moreover, to adjust the pre-trained model to a new task, we 
can fine-tune only the DRS layers, initialized as an identity mapping, 
while keeping the other elements of the residual block frozen. Our 
modification of the residual block is presented in Fig. 2. 

There are many candidates for the transformation function G . We 
believe that the proper transformation should posses the following three 
properties:  

• We should be able to initialize G as an identity mapping. This way, 
the layers associated with the function G initially don’t change the 
flow of the information in the pre-trained network during the 
training. Initialization of the DRS layers with random parameters 
could easily result in activation function saturation and undermine 
the entire processing of deep representations in the pre-trained 
model.  

• The number of the trainable parameters of the DRS layer should be 
lower than for the corresponding residual function. This way, with 
the G function we can both modify the input xl and the output of the 
residual function F based on a smaller number of trainable pa-
rameters than it would be required for the function F alone.  

• DRS layers should process the deep representations in a more global 
way than the regular convolutional operators included in F to 
effectively and coherently scale entire input tensors. 

In our work, the choice of the transformations in G was inspired by 
the literature on the usefulness of attention gates and squeeze and 
excitation (SE) blocks in CNNs [27,28]. However, we used the ideas 
behind these methods in a slightly different way. The attention gates and 
SE blocks were originally utilized to process deep representations indi-
vidually. The outputs of these operations were conditioned on the input 
data. In medical image analysis, the attention gates were used to 
spatially filter deep representations and attenuate regions that are not 
important for object recognition [28]. The SE blocks were developed to 
scale deep representations in a channel-wise manner to enhance the 
information present in particular channels. In our case, the G function 
was used to match the pre-trained network with the target dataset. The 
operations in G were determined for the entire target dataset. The aim 
of the scaling in Eq. (3) was to spatially perturb input tensors, potentially 
reducing (or enhancing) specific spatial patterns present in deep repre-
sentations. Linear transformation described in Eq. (4) was applied to 
enhance (or attenuate) certain representations in a channel-wise 
manner, similarly to the SE blocks. Moreover, the bias terms in Eqs. 
(3) and (4) could be used to mitigate the problems related to the acti-
vation function saturation. For example, a large change of the bias term 
in Eq. (4) could render the particular tensor channel further propagated 
or blocked by the ReLu activation function. Moreover, the operations 

specified by Eqs. (3) and (4) are associated with a small number of 
trainable parameters, much smaller than for the residual function F . 

3. Performance evaluation 

3.1. Dataset 

To assess the proposed deep learning method, we used the BUSI 
dataset consisting of 647 grayscale breast US images. 437 images (67%) 
corresponded to benign masses and 210 images (33%) presented ma-
lignant breast masses [29]. The dataset was collected during regular 
scanning performed at the Baheya Hospital, Cairo, Egypt using a LOGIQ 
E9 and LOGIQ E9 Agile US scanners. Sample US images from the dataset 
are presented in Fig. 3. 

We duplicated grayscale image pixel intensities to all color channels 
to enable transfer learning with the ResNet101 pre-trained on RGB im-
ages [12]. Next, US images were resized to dimensions of 224x224 and 
normalized in the same way as the ImageNet data originally used for the 
pre-training [26]. To perform experiments, data were randomly divided 
into train/validation/test sets with a 452/65/130 split. Ratio of malig-
nant breast masses was the same for each split and equal to approxi-
mately 33%. 

3.2. Transfer learning techniques 

The proposed method based on the DRS layers was compared with 
several standard transfer learning techniques. For each approach, the 
last dense layer (classification layer) of the pre-trained ResNet101 was 
replaced with a dense layer suitable for the binary classification of breast 
masses, initialized with random weights. In this work, the following 
transfer learning techniques were implemented:  

• Feature extraction: we froze all layers of the model and trained only 
the dense layer. In this case, the pre-trained model was only used to 
extract features from the global average pooling layer and to train a 
linear classifier.  

• Fine-tuning, last block: in comparison to the feature extraction 
technique, in this case we also fine-tuned the last residual block of 
the network.  

• Full fine-tuning: we fine-tuned the entire pre-trained network with 
the target US data, including all residual blocks and the dense layer.  

• DRS (proposed): we equipped each of the 33 residual blocks of the 
ResNet101 with a DRS layer initialized as an identity mapping, see 
Fig. 2. During the training, only the DRS layers and the dense clas-
sification layer were trainable. 

The number of trainable parameters (excluding the task specific 
dense layer) for each transfer learning method is presented in Table 1. In 
comparison to the full fine-tuning, the transfer learning technique based 
on the DRS layers has around 426 times less trainable parameters. 

To further assess our approach, we also investigated whether the 
proposed DRS method can be combined with the two standard fine- 
tuning techniques. In this case, we also fine-tuned either the last or all 
blocks of the network equipped with the DRS layers. This way, the model 
could simultaneously scale deep representations as well as adjust con-
volutional filters during the training. 

3.3. Classification metrics 

To assess the breast mass classifiers we calculated the receiver 
operating characteristic curve (ROC) and the area under the ROC curve 
(AUC). Accuracies, sensitivies and specificietes were determined based 
on the point on the ROC curve closest to curve upper left corner [30]. 
Bootstraping was applied to calculated the standard deviations of the 
classification scores. Additionally, the bootstrapped AUC values ob-
tained for different methods were compared using Wilcoxon rank sum 

Fig. 2. Residual block a) without and b) with the deep representation scaling 
layers designed to improve the flow of information in the pre-trained 
ResNet101 model. 
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test at the significance level of 0.05. 

3.4. Training 

All models were trained using Adam optimizer to minimize the 
standard binary cross-entropy loss function. To address the problem of 
class imbalance, we weighted the loss function with class weights 
inversely proportional to class frequencies in the training set. Grid 
search was applied to select better performing hyper-parameters. The 
grid had the learning rate in range of [0.001, 0.01, 0.1] and decay rate of 
the 1st moment estimates (β1) in range of [0.85, 0.9, 0.95]. The decay 
rate for the 2nd moment estimates (β2) and the batch size were set to 
0.999 and 24, respectively. Image augmentation was applied to generate 
more data for the training. During the training, we monitored the ac-
curacy on the validation set and terminated the training if no 
improvement was observed after 20 epochs. Learning rate was expo-
nentially decreased every 4 epochs by a factor of 0.9 if no improvement 
was observed on the validation set. For each set of the hyper-parameters, 
the training was repeated three times and the better performing model 
on the validation set was selected for test evaluations. Calculations were 
performed in Python using TensorFlow on a computer equipped with a 
RTX 2080 Ti graphics card [31]. 

3.5. Scaling effects 

To better understand the impact of the DRS layers on the information 
flow in the network, we investigated whether the DRS layers actually 
change what is propagated through the ReLu activation functions, 

specified by f in the residual block equation (Eq. (1)). As presented in 
several studies on adversarial learning, even simple manipulations of 
input image color distribution (e.g. color inversion) may have a negative 
impact on network’s performance [32,33]. In the case of the transfer 
learning, large visual mismatch between the source and target data may 
result in the dying ReLu problem when the negative inputs are not 
transmitted through the activation functions, perturbing processing in 
deeper layers. To assess this problem, we compared the outputs of the 
activation function layers of the models trained with and without the 
DRS layer. 

Let tn
l stand for the element-wise signum function of xn

l for the n-th 
input image. We can define the following activation rate function for the 
l-th residual block of the network: 

Al =
1

NHWC
∑

n

∑

i

∑

j

∑

k
tn
l+1(i, j, k), (5)  

where N stands for the number of test images, H,W and C are the di-
mensions of tn

l , similarly as in Eq. (3) and (4). The activation rate 
function Al is equal to 1 if the output of the Relu activation function in 
the l-th block is strictly positive for all test images, or 0 if it is non- 
positive (≤ 0). Therefore, the activation rate function measures how 
many inputs go through the activation function (at average). 

To better understand the differences in processing of deep repre-
sentations between the two ResNet101 models, we can additionally 
define the following counting function: 

Cl(i, j, k) =

{
1, if tDRS

l+1 (i, j, k) ∕= tFE
l+1(i, j, k)

0, otherwise,
(6)  

where tDRS
l+1 and tFE

l+1 stand for the element-wise signum functions of xDRS
l+1 

and xFE
l+1, corresponding to the l-th residual block of the models with and 

without the DRS layers, respectively. The second model (feature 
extraction technique) processed the target US images in the same way as 
in the case of the source ImageNet dataset. We can use the counting 
function to define the activation rate change function in the following 
way: 

Fig. 3. Sample images from the BUSI dataset we used to evaluate transfer learning methods.  

Table 1 
Number of trainable parameters (e.g. filter weights) for each implemented 
transfer learning method (excluding the last task specific dense layer) for the 
ResNet101 pre-trained on the ImageNet dataset.  

Method Trainable parameters 

Feature extraction 0 
Fine-tuning, last block 4 471 394 
Fine-tuning, all blocks 42 653 790 
Deep representation scaling (DRS) 101 471  
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ΔAl =
1

NHWC
∑

n

∑

i

∑

j

∑

k
Cn

l (i, j, k), (7)  

where Cn
l stands for the counting function of the l-th block obtained for 

the n-th test image. The rate has simple interpretation. ΔAl is equal to 
0 if the ReLu activation function both propagates and blocks exactly the 
same elements of xDRS

l+1 and xFE
l+1, and 1 for the opposite case. With the 

activation rate change function we can assess whether the incorporation 
of the DRS layers results in propagation of different features through the 
network. Additionally, we calculated the mean and max absolute errors 
between the weights and bias terms of the DRS layers and parameters 
corresponding to the identity mapping. This was performed to assess the 
level of parameter perturbation in the DRS layers and to assess if both 
scaling functions were utilized to transform deep representations. Cal-
culations were performed for all transfer learning techniques utilizing 
DRS layers. 

4. Results 

4.1. Classification 

Classification results obtained for each transfer learning technique 
are presented in Table 2. Here, the technique based on the feature 
extraction achieved the worst performance, with AUC value of 0.903. 
The proposed approach based on DRS layers achieved AUC value of 
0.935, which was significantly higher than for the feature extraction 
method (p-value<0.05) and comparable to other fine-tuning techniques. 
Moreover, by combining the DRS method with one of the standard fine- 
tuning techniques we achieved AUC value of 0.955, which was signifi-
cantly higher than for all other methods. This result shows that the DRS 
method can be used jointly with other transfer learning techniques to 
improve their performance. ROC curves for the better performing 
approach and the feature extraction baseline method are presented in 
Fig. 4. 

4.2. Visualisations 

Activation functions: Fig. 5a) presents the activation rate functions, 
Eq. (5), calculated for each residual block using ImageNet validation set 
(dataset used for the pre-training of the ResNet101) and for the feature 
extraction technique on the BUSI test set. In both cases the activation 
rate function was equal to around 60% for the majority of residual 
blocks, but significantly decreased for the last blocks, resulting in much 
more sparse deep representations. Similar results were obtained for the 
transfer learning techniques utilizing the DRS layers, Fig. 5b), with 
slight differences visible in the case of the last residual blocks. Results 
presented in Fig. 5 shows that while the pre-trained network was not 

developed to process breast US images, the activation rate functions 
closely imitated those obtained for the ImageNet dataset. 

Although the activation rate functions in Fig. 5 were similar for all 
approaches, Fig. 6 shows that the presence of the DRS layers resulted in 
propagation of different features through the network. For the DRS 
method combined with the fine-tuning of the last block, the activation 
rate change functions increased approximately linearly with the depth of 
the residual blocks to decrease in the last layers, presumably due to the 
drop of the activation rate function observed in Fig. 5. In the case of the 
combination of the DRS layers and the full fine-tuning, the activation 
rate change function quickly increased to around 40% to similarly 
decrease to around 18% for the last blocks, as in the case of the other two 
methods. The larger increase of the activation rate change function for 
the full fine-tuning was probably due to the fact that the training 
resulted in modification of the convolutional filters corresponding to 
different blocks of the network. 

DRS layer parameters: mean and max absolute errors between the 
layer parameters after the training and the weights and bias terms cor-
responding to the identity mapping are presented in Fig. 7. The mean 
and max absolute errors were approximately equal to around 1% and 
5%. Presumably, even small changes of the parameters could impact the 
information flow presented in Fig. 6. Both DRS layer transformations, 
the depth-wise D and the spatial S, were utilized for all three investi-
gated transfer learning techniques. In the case of the spatial trans-
formation, the largest max absolute errors were obtained for the middle 
and last residual blocks. In comparison, max errors for the depth-wise 
scaling were less variable across the blocks. However, mean errors for 
the spatial transformation calculated for the weights and bias terms 
significantly decreased for several residual blocks, suggesting that the 
spatial transformation was not always fully utilized. 

5. Discussion 

In this work, we proposed a novel deep learning based approach to 
breast mass classification in US. In comparison to the previous methods, 
based either on fine-tuning or feature extraction, we introduced and 
applied a transfer learning technique based on the scaling of deep rep-
resentations. The proposed approach is associated with a much smaller 
number of trainable parameters compared to the full fine-tuning tech-
nique and can be used to adjust the entire network to the new classifi-
cation task. Moreover, our results indicated that the proposed method 
can be combined with standard fine-tuning strategies to further improve 
the performance. By combining the DRS layers with the fine-tuning 
technique we could simultaneously scale deep representations and 
modify convolutional filters of the pre-trained model. 

Table 2 
Test set scores calculated for each implemented transfer learning technique. The 
better classification performance was obtained for the approaches utilizing both 
the DRS layers and the fine-tuning techniques.  

Method AUC Accuracy Sensitivity Specificity 

Feature 
extraction 

0.903±0.022  0.823±0.029  0.904±0.042  0.784±0.045  

Fine-tuning, 
last block 

0.934±0.018  0.884±0.020  0.904±0.031  0.875±0.026  

Fine-tuning, all 
blocks 

0.916±0.020  0.884±0.028  0.833±0.036  0.909±0.036  

DRS 0.935±0.018  0.869±0.030  0.833±0.038  0.886±0.047   

DRS + fine- 
tuning, last 
block 

0.955±0.011  0.915±0.020  0.904±0.904  0.920±0.024  

DRS + fine- 
tuning, all 
blocks 

0.954±0.016  0.923±0.019  0.976±0.033  0.897±0.033   

Fig. 4. ROC curves obtained for the feature extraction method (AUC of 0.903) 
and the fine-tuning of last network block combined with the DRS layers (AUC 
of 0.955). 
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It is difficult to directly compare our results with the results reported 
in the previous studies due to different methodologies and employed 
datasets. Direct comparisons are especially difficult in the case of the 
fine-tuning techniques, which depend on training data volume. In our 
study, the approach based on DRS layers and fine-tuning achieved high 
AUC value of 0.955. For the feature extraction technique, we obtained 
AUC value of 0.9. Generally, our results are in an agreement with the 
previous studies on the usefulness of transfer learning techniques for 
breast mass classification in US. Antropova et al. used features extracted 
from pre-trained VGG19 network to train support vector machine clas-
sifiers and achieved AUC value of around 0.9 [12]. Similarly, Byra et al. 
utilized features extracted from the VGG19 network and achieved AUC 
value of 0.881 [14]. However, in the case of the fine-tuning, other au-
thors utilized larger datasets. For example, Han et al. used fine-tuning to 
develop a breast mass classification models based on a set of 7408 US 
images and achieved high AUC value of 0.96 [21]. Qi et al. utilized fine- 
tuning and a set of 8145 US images and achieved high AUC value of 0.98 
[23]. Tanaka et al. applied full fine-tuning with the ResNet152 CNN 
based on 1536 US images and achieved AUC value of 0.935 [24]. Al- 

Dhabyani et al. utilized a pre-trained ResNet CNN and the BUSI data-
set to develop a model for breast mass classification [22]. However, 
direct comparison between our work and the results of Al-Dhabyani 
et al. is difficult, because the authors did not provide detailed de-
scriptions of the applied transfer learning methods. The authors ach-
ieved accuracy of 82% (traditional augmentation technique), which was 
at the level of our feature extraction method. 

The experiments presented that DRS layers had impact on the pro-
cessing of information within the network. As presented in Figs. 5 and 6, 
the network equipped with the DRS layers extracted different features to 
perform breast mass classification. The activation rate change function 
was equal to around 15% for the last residual blocks. This shows that the 
DRS layers caused saturation of deep representations and simulta-
neously enhanced propagation of representations that otherwise would 
be blocked by the activation functions. Moreover, Fig. 7 depicted that 
the DRS layers were used to transform deep representations in the case 
of all three investigated transfer learning techniques utilizing DRS 
layers. 

There are several issues with our study. First, there were many po-
tential candidates for the scaling functions. While in our work we uti-
lized linear spatial and depth-wise operations, we could also used 
nonlinear scaling functions. Second, we did not examine other CNN 
architectures, such as the VGG19 or the InceptionV2. However, our 
transfer learning technique is general and can be applied with any pre- 
trained network. 

6. Conclusions 

We presented a novel transfer learning technique, aiming at trans-
forming deep representations rather than direct modification of net-
work’s pre-trained layers. We successfully applied the technique to 
differentiate malignant and benign breast masses. The experiments 
showed that our approach achieved similar or better results than the 
commonly used techniques based on fine-tuning. Moreover, our 
approach, when combined with the standard techniques, achieved 
excellent performance. Additionally, we performed experiments to 
better understand how the presence of the DRS layers impacts the pro-
cessing of information in the activation function layers. The results 
showed that the DRS layers enabled extraction of different features for 
the classification than in the case of the unmodified pre-trained model. 
In the future, we plan to investigate other potential forms for the DRS 
layers, and also examine the usefulness of the method using different 
network architectures. 

Fig. 5. Activation rate functions (Eq. (5)) calculated for a) the ImageNet vali-
dation set and feature extraction method on the BUSI test set, and b) the results 
for the transfer learning techniques utilizing DRS layers. For all cases the 
activation functions were equal to around 60% for the majority of the residual 
blocks, but decreased for the last blocks, showing that the networks promote 
sparse representations for the classification. Calculations were performed each 
of the 33 residual blocks of the ResNet101. 

Fig. 6. Activation rate change functions (Eq. (7)) calculated on the test set for 
the transfer learning techniques utilizing DRS layers. Plots illustrate the dif-
ferences in information propagation through the ReLu activation functions. 
Incorporation of the DRS layers promoted propagation of different features 
through the pre-trained ResNet101. 
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