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THE PROBLEM OF CONCENTRATION OF PERIODIC THERMAL STRESSES

AT CYLINDRICAL HOLES AND SPHERICAL CAVITIES

IN UNIFORM PLANE HEAT FLOW

JÓZEF I G N A C Z A K and WITOLD N O W A C K I (WARSZAWA)

The concentration problem of stresses produced by a steady-state heat flow
past a cylindrical hole and a spherical cavity has- been solved by A. L. FLORENCE

and J. N. GOODIER, [1]. The problem considered in the present paper is that of heat
flow varying harmonically in time. Retaining the inertia terms in the fundamental
equations, the problem is treated as dynamic, the coupling between the temperature
and strain field not, however, being introduced.

Our assumptions are based on the classical linear theory of thermal stress, [2], [3],
The material constants both mechanical and thermal are assumed to be independent
of the temperature. It is also assumed that the cylindrical hole and spherical cavity
are impermeable to heat and free from stress.

The solution method consists in superposing the solutions of the equations
of periodic heat flow, and those of periodic thennoelastic vibration expressed in
displacements, [4], [5].

1. The Heat Flow in the Neighbourhood of a Cylindrical Hole

Let us consider the problem of heat flow past a cylindrical hole of radius a.
It is assumed that the hole is parallel to the plane over which a periodic heat source
is distributed in a uniform manner. ;

If a plane periodic heat source acts in the plane x = 0 of a Cartesian system
x, y, z in an infinite elastic solid without hole, the temperature field Tx satisfies
the equation

(1.1) Df 7? ^ ~T~ &(x) > T-y — T* eiat,

where

dx2 dy2' 3

and q in the Eq. (1.1) is the uniform intensity of the heat source per unit area; Ao,
K — coefficients determining the heat conductivity, <5 — the Eiirac function and co
the frequency.
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The solution (1.1) has the form:
gtot p- ih,x

To determine the modification of the heat flow due to the presence of the
cylindrical hole, impermeable to heat, let us consider the solution:

(1.3) e-'h'x = ^(~iyd,,I,,(ih3r)cosnd, x = rcosd,
n = 0

_ f 1 for n = 0 ]
•~\2 for » > 1 J

where/„= /„(a), a modified Bessel function of the first kind, and (r, 0) are plane
polar coordinates with the pole located on the axis of the cylinder. Therefore x =
= rcosd,y = rsind, z = z.

To satisfy the condition of thermal impermeability of the cylinder, we must
superpose on every term of the sum (1.3) a component containing a Bessel function
of the second kind. The solution Ta satisfying the equation

should be superposed over the solution (1.2).
The final form of the solution of the heat conduction problem, satisfying the

condition [dTjdr]^ = 0 is, [6]:

(1.5) r
where

(1.6)

ih3

If the frequency m of the periodic heat flow decreases (<y -»• 0), the form of the
flow approaches that of a steady-state flow. This principle may be applied to every
separate term of the series obtained.

In the case of plane heat source under consideration, this principle becomes
somewhat less simple. For, taking into consideration the development (1.6) and
development of the functions /„(*), Kn(x) in the neighbourhood of x = 0, we have
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It becomes evident that a steady-state flow furnishes the second term of the series
(n = 1). For n > 2, the components vanish if a> ~+ 0, and the first term becomes
infinitely large.

The difference (1.5) gives for co ->• 0 the steady-state flow considered in Ref. [1]:

(1-7) r ^ = -

To find the solution of the thermoelastic problem, the method of potential
of thermoelastic displacement 0 will be used. This potential satisfies the equation:

•» 0* = #0T, DJ = V2 + h\, hy = co/q;

(L8) -._ _ £ _ % _
1 ~ A + 2/i' ° "

where c is. the density of the medium, X, n — Lame's constants, and a,—the coef-
ficient of thermal dilatation.

Making use of the Eq. (1.1), and performing the operation D^ on the Eq.
(1.8), we find:

(1.9) 0501** = - 0 o - £ • * ( * ) .

Assuming the function 0* in a form analogous to (1.5)

(1.10) 0* =01-01,

(l.ii) •!•!#!* = -^f- dW'

we obtain from (1.11):

Since - - f - j^ t 3 W = T * ( ^ ' b y v i r t u e o f (L1)> t h e r e f o r e

(1.13)

The function 0J is chosen so that 0* satisfies (1.8), and the condition of vanish-
ing of the normal derivative on the surface of the cylinder. We find:

(1-14) 0* =-J^{[T1*(h3)-T:(h1)]-[T;(h3)-T*(hi)]}.
«1 «3
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It can easily be shown, by considering the equation

(1.15) DJ = nj) + (Af —A§),

and the Eqs. (1.1) and (1.4), that (1.14) satisfies the equation of the potential (1.8)
in the region considered. The stress produced by the potential and denoted by
[S], will be computed from the equation

(1.16) 5 y = 2K0JJ-&tkkdij)+e8iJd>, i, j = 1, 2, 3 .

The tensor notation for space and time .differentiation in (1.16) concerns the Cartesian
coordinates fa — x, x2 = y, xa = z). n — is the shear modulus and <5y the
Kronecker's delta. The dot denotes differentiation with respect to time. In the
cylindrical coordinates, we obtain from (1.16):

(1.17)

Bearing in mind the relation

(1.18) *; 1 ,1 . -0 ,

we obtain

(1.19)

Thus, the load on the cylinder produced by the potential 0* can by virtue of (1.6)
be expressed in the form of the following series

1 ( - 1 ) " 6n i \ a% - n*) [Xn (ih3a) - Xn 0 V ) ] cos n 0,

(1.20)

~ 1)" $« [%n (^3«) - Xn 0 V ) J (COS « 0) ; 0 ,

where

For the derivation of (1.20), the following relation was used, ;; •.

(1-21) 1 = [Kn(z)mz)-In(z)K:(z)]z.

To suppress the load a*r\r=a and a*r\reJ^, we add to every term of the series (1.20>
an appropriate additional component produced by two vector fields satisfying the
Lame condition of periodic vibration without the temperature, The total solution
[Sc] for the.additional load has the form

00

d-22) , [s°]
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For the displacements uc
r, uc

a and the stresses ac
rr, a

c
r0, we have the equations:

(1.23)
u\° = - h? r-1 HP (far) (cos nd)ti

a\r = ixAc
n (cor) cos nd ,

{alc
0=iiQ(a>r)(cosne)ie;

) cos nO,

(1.24)

where

(1.25)

o% = liBc
n (cor) cos nd,

afS = nDc
n(cor) (cosn6)i0,

' A^cor) = (V)-1 {[(V)1 -
«(fl)r) = 2r-2 n̂  '{HP (h,r) - V ^ 5 (V)} ,

far) = 2(V)-a[^n
(a)(V) - M c a ) (V)].

) (V)}.

The additional displacement fields assumed in the Eqs. (1.23) and (1.24), in ag-.
reement with [4], are such that the plane conditions of radiation into infinity are
satisfied. Thus, the factor depending on the radius r contains Hankel's function
HW (hr) of the second kind, [7]. The condition of no load on the cylindrical surface
determining two sequences of coefficients^}, {^appearing in Eq. (1.22) has
the form

(1.26)

Hence,

(1.27)

1)"<5„ U- a*h\ -nA[%n(ih3a) -*„0V) = 0,

= 0.

% = ( A S W - 1 ) " $„ [%„ (ih3a) - Xn (jhia)] {A<n(coa) - U - fl
2A2 - n2 \C'n(a>a)],

1

where

(1.28) Aticoa) = Ac
n(coa)Dc

tt(coa) - Bc
n (coa) Q(coa).

The resultant stress due to homogeneous plane heat flow past the cylindrical
hole free from load is obtained by superposition:

(1.29)
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According to the conditions to be satisfied by the temperature field and con-
cerning the tendency of a periodic heat flow to the relevant steady-state-flow for
o ->• 0, and the decrease of the terms of the series for n ^ 2, it suffices, for suf-
ficiently small OD, to take a few terms of the series (1.14) and (1.22).

2. Homogeneous Periodic Plane Heat Flow past a Spherical Cavity

The origin of the spherical coordinate system (R, 8, y) is assumed at the centre
of the sphere, the axis z = R cos 9 being normal to the plane of the heat flow.
Proceeding in the same manner as in the case of a cylinder, and making use of the
expansion

n=0

where jQn = £n(pos9) is Legendre's polynomial, we find the following expression
for the temperature field:

(2.2)

where

(2.3)

and

(2.4) 2

The function (2.2) satisfies the thermal impermeability condition of the surface
R = a of the cavity

(2-5) [8TldR]R_a^0,

and the functions rx*, T* satisfy the respective equations (1.1) and (1.4), where
the variable x in (1.1) should be replaced by z = Rcosd.

Passing to the limit for m -> 0, we find that, similarly to the case of the cylinder,
the steady-state heat flow is furnished by the second term of the series (2.3)
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(n = 1). The relevant equation for the steady-state flow in the neighbourhood
of the cylinder has the form, [1]:

(2.6) r w . o = ^ U + ~ ~\ cos 0 .

The potential function for 3> is taken, for the sphere, from (1.14) and the stresses
from (1.16). We find, in spherical coordinates:

Taking into consideration the condition (2.5), we obtain on the spherical surface:

rt « (ff«RU=«= [— 2^a-2 cosec 0 (sinG^Y),B~e^^*]R^a,

{<y*Ro\R=a=[-2na-2<I>:e]R=a-
Making use of the relation

j cosec ed {sin 0[£n(cos 0)],,},, = - n(n + 1) £,,(cos 0),

and of the Eqs. (1.14) and (2.3), we can represent the load on the sphere, according
to (2.8), by the series:

x

(2.10)

I / ' l \
where

To satisfy the condition of zero load on the surface R = a, an additional perio-
dic state should be superposed over the state produced by the potential 0. The
additional solution [Ss] has the form, [5],

n=0

where the corresponding additional components are described by the equations:

< = -h?R-1 [R''>Hn$}t (hR)] [£„ (cos B)],e,
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u% = $l (h2R)] n{n + 1) £n (cos 0),

( 2 1 3 )

where

(A°n(coR) = iH/.

(214)

The condition of no load on the spherical surface R — a has the form:

(2.15)

where As„(wa) = ^j(a)a)DJ(coa)-«(7i+ l)fi„s(wa)C\(wd). In Eqs. (2.12), (2.13) the ad-
ditional displacement field [Ss] is assumed so that the space condition of radiation
[7] is satisfied, therefore the factor depending on the radius R involves Hankel's
function H$u(hR).
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Streszczenie

PROBLEM PERIODYCZNEJ KONCENTRACJI NAPRĘŻEŃ CIEPLNYCH PRZY CYLIN-
DRYCZNYCH I KULISTYCH OTWORACH POZOSTAJĄCYCH W JEDNORODNYM

PŁASKIM STRUMIENIU CIEPŁA

W pracy rozpatrzono działanie periodycznego w czasie płaskiego źródła ciepła,
które w nieograniczonym ciele sprężystym napotyka na cylindryczny lub też ku-
listy otwór, nieprzenikliwy dla ciepła oraz swobodny od obciążeń.

W podstawowych równaniach termosprężystości (bez sprzężenia pola tempe-
ratury i deformacji) uwzględniamy człony inercyjne traktując zagadnienie jako
dynamiczne. Metoda rozwiązania polega na superpozycji rozwiązań równań prze-
wodnictwa cieplnego i rozwiązań równań przemieszczeniowych termosprężystości.

P e 3 K) M e

KOHUEHTPAU.HH TEPMHMECKHX HAnPflKEHHH

UHJIHHflPiraECKHX H UIAPOOBPA3HBIX OTBEPCTHHX nOfl BJIJWHHEM

njiocKoro IIOTOKA TEIIJIA

aeiłcTBHe nepHO/rtraecKoro BO BpeMeHH ruiocKoro
KOTopbiił B 6ecKOHe*moM ynpyroM Tejie BcrpeqaeT mtmiHnpiraecKoe HJIH

mapoo6pa3Hoe oTBepcTHe HenpoHnn;aeMoe fljin Terma H cBoSojrHoe OT Harpy3OK.
B OCHOBHBIX ypaBHeHHHX TepMoynpyrocTH (6e3 conpjDKeHHH TeMnepaTypHoro

noun H fleibopMaDiHH) y^HTbiBaiOTCH iniepirHOHHbie ^JieHbij paccMaTpHBaa 3afla^ry
KaK flHHaMHyecKyio. MeTop; peuieHHH COCTOHT B cynepno3mpiH peiueHHii ypaBne-
HHH TenjtorrpoBOAHocTH H perneHHń ypaBHemiił TepMoynpyrocTH B
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