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THE PROBLEM OF CONCENTRATION OF PERIODIC THERMAL STRESSES
AT CYLINDRICAL HOLES AND SPHERICAL CAVITIES
IN UNIFORM PLANE HEAT FLOW

JOZEF IGNACZAXK and WITOLD NOWACKI (WARSZAWA)

The concentration problem of stresses produced by a steady-state heat flow
past a cylindrical hole and a spherical cavity has been solved by A. L. FLORENCE
and J. N. GooDIER, [1]. The problem considered in the present paper is that of heat
flow varying harmonically in time. Retaining the inertia terms in the fundamental
equations, the problem is treated as dynamic, the coupling between the temperature
and strain field not, however, being introduced.

Our assumptions are based on the classical linear theory of thermal stress, [2], [3].
The material constants both mechanical and thermal are assumed to be independent
of the temperature. It is also assumed that the cylindrical hole and spherical cavity
are impermeable to heat and free from stress.’

The solution method consists in superposing the solutions of the equations
of periodic heat flow, and those of periodic thermoelastic vibration expressed in
displacements, [4], [5).

1. The Heat Flow in the Neighbourhood of a Cylindrical Hole

Let us consider the problem of heat flow past a cylindrical hole of radius a.
It is assumed that the hole is parallel to the plane over which a periodic heat source
is distributed in a uniform manner. -

If a plane periodic heat source acts in the plane x = 0 of a Cartesian system
X, y, z in an infinite elastic solid without hole, the temperature field T satisfies
the equation

(1.1) BT =— A_q; d(x), Ty=T7 e,
where
02 liid 1 wi
2 — y2 2 B =~ I
B=V:+h, V 6x5+6y"" hy = ; = Pp=—=1;

and ¢ in the Eq. (1.1) is the uniform intensity of the heat source per unit area; 4,,
» — coefficients determining the heat conductivity, d — the Dirac function and w
the frequency. ' '
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The solution (1.1) has the form:

elot p=ihgt

1.2) Ty(hy) = q 55 2 iy

To determine the modification of the heat flow due to the presence of the
cylindrical hole, impermeable to heat, let us consider the solution:

(1.3) ¥ = Z‘(— 1)" 8, I, (ihyr) cosnf, x = rcosé,

ne=10

6—1 for n=0
12 for n=1]’

where I,= I,(a), 2 modified Bessel function of the first kind, and (r, 0) are plane
polar coordinates with the pole located on the axis of the cylinder. Therefore x =
=rcosf,y =rsinb, z=z.

To satisfy the condition of thermal impermeability of the cylinder, we must
superpose on every term of the sum (1.3) a component containing a Bessel function
of the second kind. The solution T, satisfying the equation

(1.4) BT =0

should be superposed over the solution (1.2).
The final form of the solution of the heat conduction problem, satisfying the
condition [8T[0r],mo = 0 is, [6]:

(1-5) T'= Tl(hs) =Ty (hs),

where

T, (hy) = 2 Z(—-l)" I, I(_;""”) cosn0,
(1.6) n=0

gl s Tl K, ()
Ty (hy) = 7 2( n"é VK Ghed) i cosnl.

ne=0

If the frequency w of the periodic heat flow decreases (w — 0), the form of the
flow approaches that of a steady-state flow. This principle may be applied to every
separate term of the series obtained.

In the case of plane heat source under consideration, this principle becomes
somewhat less simple. For, taking into consideration the development (1.6) and
development of the functions 7,(x), K,(x) in the neighbourhood of x = 0, we have

I, (x) = (—}}—&ﬁ K, (x) = ("“;1)! (%)4- n=0,1,2,.
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It becomes evident that a steady-state flow furnishes the second term of the series
(n = 1). For n = 2, the components vanish if @ —> 0, and the first term becomes
infinitely large.

The difference (1.5) gives for w — 0 the steady-state flow considered in Ref. [1]:

(1.7) g = ——%;(r-{-f;) cosf.

To find the solution of the thermoelastic problem, the method of potential
of thermoelastic displacement @ will be used. This potential satisfies the equation:

D%@* 'ﬂuT DE V2+h1, hl = w/cl H
(1.8) a0 _ 3A4-2u
Ce ma 0= m Oy,

where o is the density of the medium, A, u — Lamé’s constants, and a,— the coef-
ficient of thermal dilatation.

Making use of the Eq. (1.1), and performing the operation [J; on the Eq.
(1.8), we find:

(1.9) [RORO* = — By T d(x).

Assuming the function @* in a form analogous to (1,5)

(1.10) o* = O — &3,
144 (RRP; = M é(x), [OROEP; =0,
(1.1 H{EHCN

we obtain from (1.11):

; dg 1 _ 9g 1 (1 )
1) O = - ) =~ (Dg ) 0@

Since — iﬁli 8(x) = T} (hy), by virtue of (1.1), therefore
3

(1.13) ot 7z LT () — Ti (m)] -

= }z‘
The function @} is chosen so that @* satisfies (1.8), and the condition of vanish-
ing of the normal derivative on the surface of the cylinder. We find:

(1.14) D= (T3 (hg) — T ()] — (T3 (hg) — T3 (B}

3
e
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It can easily be shown, by considering the equation

(1.15) [} = OB+ (B —h3),

and the Eqs. (1.1) and (1.4), that (1.14) satisfies the equation of the potential (1.8)
in the region considered. The stress produced by the potential and denoted by
[S], will be computed from the equation

(1.16) o= zﬁ(‘p.u"56.&&"1})“*‘96:;&;: Lj=123.

The tensor notation for space and time differentiation in (1.16) concerns the Cartesian
coordinates (¥, =x, Xy=py, Xy=z). pu—is the shear modulus and §,; the
Kronecker’s delta. The dot denotes differentiation with respect to time. In the
cylindrical coordinates, we obtain from (1.16):

T, = —2ur2(d ,+D )+ oD,
.17 “ ur=2( . 00) 0
O = '—Zﬂrdz(@'—f’mlr)_g-

Bearing in mind the relation

(1.18) B} |, =0,

we obtain
O |rmig = [— 2uaD}, w*D¥),_,,

(1.19) l I [ H 00— 0 ]

rﬂ |r-u T [ 2#0" (D.U

r=a*

Thus, the load on the cylinder produced by the potential @* can by virtue of (1.6)
be expressed in the form of the following series

L ,ch(-l)" ( 5 aﬂhs—na)[x,,(rhsa) 2 (ihya)] cos n 0,
(1.20)

Thlrea=1C 2 (—1)" 8, [, (ihs@) — 1, (i@)] (cos n.0) .,
where . ;
w@=1/2K;(2), C=qbhlady(Wi—h), h=olc,, c2=glp.
For the derivation of (1.20), the following relation was used

(1.21) 1 =[K,(2)1;(2) — 1,(z) K;(2)]z.

To suppress the load o;|,., and @}[,-%, we add to every term of the series (1.20)
an appropriate additional component produced by two vector fields satisfying the
Lamé condition of periodic vibration without the temperature. The total solution
[S€] for the. .additional load has the form

o0

(122) R 1 W e 5 R o

n=0
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For the displacements u¢, u§ and the stresses of,, o5, we have the equations:
uic ! hI—B[HJ(lz}(hlr)], » COS nt,

e = — 2 = HE® () (cos n) .

1.23 [Si]:
( ) nl ale= = pAS (wr) cos nl ,
035 = pC(wr) (cosnf) 4 ;
(u2e = — i n H® (hyr) cos nf,
upe = —[H® (hyr)],, (cos nf) ,,
1.24 Sil: ' |
(1.29) Bt 02 = uBg (wr) cosnl ,
| 0% = uD5 (wr) (cosnb) 4,
where

f AS(wr) = (hyr)= {[(hyr)* —2n®*) H® (hyr) + 2hyr H;® (hyr)}

Bé(owr) = 2r=2n? {H® (hyr) — hyr H® (hyr)} ,
| Cilwr) = 2(hr)=*[H \D(hyr) — hyr Hy® (hyr)]
L De(@r) = r=2 {[(har)? — 202 H® (hyr) + 2hgr HL® (hyr)} .
The additional displacement fields assumed in the Eqs. (1.23) and (1.24), in ag~
reement with [4], are such that the plane conditions of radiation into infinity are
satisfied. Thus, the factor depending on the radius r contains Hankel’s function
H® (hr)of the second kind, [7]. The condition of no load on the cylindrical surface

determining two sequences of coefﬁclents {xg}, {rs} appearing in Eq. (1.22) has
the form

(1.25)

x5 A5(wa) + Y5 By(a) + C(— 1) (i a*hi— H"‘) (72 (ihs@) — y,(iy@) = 0

(1.26)

xlcl Cﬁ(ﬂ]ﬂ) +y"Dﬁ(CUa) + C('_ 1)" 6:: [x;: (Ihaa) —%n (fkla)] =0
Hence,

x5 = (A C(—1)" 6,[%4 (Ihsa) — 1, (i) [Bj(wa) — (i a*hi— H*) Di(wa)],
(1.27) 1

¥e = (A2C(—1)" 8,1, (ih3@) — 1, (i@)] [A5(wa) — ( atht— Hz) Cy(wa)],
where
(1.28) AS(wa) = AS(wa) DS (wa)— B (wa) CE(wa).

The resultant stress due to homogeneous plane heat flow past the cylindrical
hole free from load is obtained by superposition:

(1.29) | [S]= [S]+[S5°].
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According to the conditions to be satisfied by the temperature field and con-
cerning the tendency of a periodic heat flow to the relevant steady-state-flow for
w — 0, and the decrease of the terms of the series for n == 2, it suffices, for suf-
ficiently small w, to take a few terms of the series (1.14) and (1.22),

2. Homogeneous Periodic Plane Heat Flow past a Spherical Cavity

The origin of the spherical coordinate system (R, 0, ) is assumed at the centre
of the sphere, the axis z = Rcos § being normal to the plane of the heat flow.
Proceeding in the same manner as in the case of a cylinder, and making use of the
expansion -

@1 e-u.Rcosn:__V’EZ(__l)n(n 2) n-(l-:f?gl:!):ff)ﬂ (cos 0),

ne=0

where 2, = 2, (cos ) is Legendre’s polynomial, we find the following expression
for the temperature field:

2.2) T = Ty(hy) — Ty (ha),

where

q;f 2 \ 1 I,..,(ihyR)
Ty(hs) = ¢ 2( 1)( )m Wﬂn(cosﬂ),

2.3) s
V2 N, s 1) M) Koo (ihsR)
==, * g = (""" 5) (Kl (@) Tha ihyRY 2208 0)>
and
h(2) = L@z~ 1@,
.4

KL () = Ki@)r—5 K, 2.

The function (2.2) satisfies the thermal impermeability condition of the surface
R = a of the cavity

@.5) [0T)0R]g-a =0,

and the functions Ty, T} satisfy the respective equations (1.1) and (1.4), where
the variable x in (1.1) should be replaced by z = R cos0.

Passing to the limit for @ — 0, we find that, similarly to the case of the cylinder,
the steady-state heat flow is furnished by the second term of the series (2.3)
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(n = 1). The relevant equation for the steady-state flow in the neighbourhood
of the cylinder has the form, [1]:

(2.6) Tyeo=— R (R—I— 5 R’) cosf.
The potential function for @ is taken, for the sphere, from (1.14) and the stresses
from (1.16). We find, in spherical coordinates:
Grr = 2u[—2R'D p — R-*cosec 0 (sin 0, ) ,]+0P,
‘ ogo = 2UR(P g —R'D ).

Taking into consideration the condition (2.5), we obtain on the spherical surface:

@.7)

ORR | R=a = [—2pa* cosec 0 (sin 0P}y) ; — 0w*P*]x_,,
ro| R=a = [— 2102 D Jp .

Making use of the relation

29) { cosec ef {sin O[.L2, (cos B)], ¢}, = — n(n + 1) L2,(cos b),
1 = K, (z) [I1:(2) — 1,(2) [K],(2),

and of the Eqs. (1.14) and (2.3), we can represent the load on the sphere, according
to (2.8), by the series:

[(Oke|Rma = #SZ (“1)"( )[—;—a’hi—n(nb-{- 1)i| X

n=0

(2.10) X [, (thya) — ¥, (i1ya)] L2, (Cos 6)

(2.8) {

TRo|Rma = ﬂSZ(*‘ 1" (?I‘i- ) [V v, (thaa) — V112 (i@)] L2, (O3 0)], g

n=0

where
¥ (z) = 1[2":[K]i(2); S=gqb, |/ 2m[aky(h — h2).
To satisfy the condition of zero load on the surface R = @, an additional perio-
dic state should be superposed over the state produced by the potential @. The
additional solution [§®] has the form, [5],

(=]

(2.11) [$7= D (%353 + 3 [SM),

n=0
where the corresponding additional components are described by the equations:
uf = — g R~ H, @, (1R)], 5 2, (cos0),
u} =—hp? RR" H, ) (hy R][L, (cos 0)] 5,
oxx = pA3 (@R) 2, (cosb),
oo = HC (WR)[L, (cos 0)],6 ;

(2.12) [Sk]
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g =R [R H,8) (hR)]n(n+1) 2, (cos 0)
uy'=R-1[R"H n-t(-:;}, (hyR)] R [2, (cos 0)] 05
o2 = p(n+D)nB(wR) L, (cos 0),

o3 = uDi(wR)[2,(cos )] 4,

(2.13) [S¥]:

where

( A3(@R) = R-(hR)~*{[(hyR)? — 2(n — 1) (n + 2)| H, &), (i R) +
+ 4 RH, %), (hR)—6H, %) (hR)}
J Bi(@R) = R-5[2(h,R) H1®), (h,R)— 3 H, &), (h,R)],

n+s

@.14)
C5(@R) = — R-5(hy R)*[2h R, (h,R) — 3H, %), ( R)],

| Di(@R) = — R {[(hgR)*—2(n — 1) (n + 2] H, ), (heR) +
+ 2(hyR)H, 3, (hyR) — 3 H, 2, (hoR)}.

The condition of no load on the spherical surface R = a has the form:
1
x=ys=n" (n+ )[‘Fw;,(!haa) ,..-a,(!r’hﬂ)]{ﬂ(ﬂJrI)B:(wa)*

e B A= nlrt 1)} Di(wa) }
(2.15)

ya=)S(=1)"|n ( 1 ) [Py, (i30) — P, 1, (iya)] =Ai(wa) =~
—[%a‘zhﬁ —n(n-+ 1)] C;f(wa)} )

where A5 (wa) = 43(wa) D (wa) —n(n-+ 1)Bi(wa) Ci(wa). In Egs. (2.12), (2.13) the ad-
ditional displacement field {.S*]is assumed so that the space condition of radiation

[7] is satisfied, therefore the factor dcpendmg on the radius R involves Hankel’s
function H,,S,?,},,(hR)
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Streszczenie

PROBLEM PERIODYCZNEJ KONCENTRACII NAPREZEN CIEPLNYCH PRZY CYLIN-
DRYCZNYCH I KULISTYCH OTWORACH POZOSTAJACYCH W JEDNORODNYM
PEASKIM STRUMIENIU CIEPLA

W pracy rozpatrzono dzialanie periodycznego w czasie plaskiego zrédta ciepla,
ktére w nieograniczonym ciele sprezystym napotyka na cylindryczny lub tez ku-
listy otwér, nieprzenikliwy dla ciepla oraz swobodny od obciazen.

W podstawowych réwnaniach termosprezystoéci (bez sprzezenia pola tempe-
ratury i deformacji) uwzgledniamy czlony inercyjne traktujac zagadnienie jako
dynamiczne. Metoda rozwigzania polega na superpozycji rozwiazan réwnan prze-
wodnictwa cieplnego i rozwigzan réwnar przemieszczeniowych termosprezystosci.

Pesome

3AIAYA O IIEPUOJIMUECKON KOHIEHTPALIMY TEPMUYECKUX HATIPSDKEHUN
TIIPY TAJMHIOIPHYECKHUX M ITAPOOBPA3HBIX OTBEPCTMAX IIOM BJIIMAHHUEM
OITHOPOIHOI'O IIJIOCKOI'O IIOTOKA TEILIA

PaccmarpuBaeTcs JeiiCTBHE NEPHOJUUECKOrO BO BPEMEHH IUIOCKOI0 HCTOMHHKA
Tera, KOTOphIi B GeCKOHEYHOM YIPYroM Telle BCTpedaeT NHJIMHAPHYECKOE HIIH
1mapoo6pasHoe OTBEpPCTHE HENPOHHIAEMOe JUIA TeIUIa M cBOOOIHOE OT HArpysoK.

B ocHoBHBIX ypaBHeHusiX TepmoynpyrocTH (6e3 CONpPsIKEHHA TEMIIEPaTypPHOTrO
TIOJIsT ¥ netbopmamm) YUHTLIBAIOTCA MHEPLMOHHBIE YIIEHBI, PaccMaTpuBas 3ajadvy
KaK JUHAMHIECKy1o. MeToJ pellieHua COCTOMT B CYNEPIO3HIMM PEIleHuil ypaBHe-
HMI{ TEIJIONPOBOJIHOCTH U PEILECHHME YPaBHEHHH TEPMOYTIPYTOCTH B TIEPEMEICHHAX.
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