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Introduction

Papers on the vibration of a plate of moderate thickness due to a non-steady-
state temperature field are scarce. The basic elements of the theory for plates of
moderate thickness have been given by B. A. BOLEY and A. D. BARBER, [1]. In
this reference, a rectangular plate is considered, simply supported on the contour,
and subject to a uniform step heat input over one face. A numerical analysis is
also given.

In the present paper, the equations of thermally excited vibration of a plate
are derived. The starting point is the heat equation in three dimensions, coupled
(or not coupled) with the deformation field. The member exciting the vibration
is the density of moment of a three-dimensional temperature field along the thickness.
It is assumed that longitudinal vibrations of the plate are independent of the flexural
vibration.

The considerations are confined to harmonic forced vibration. The basic equation
is given for an infinite plate on an elastic foundation with a prescribed heat flow
across the bounding surfaces harmonically varying in time.

Also, the thermal vibration of a rectangular plate simply supported or simply
supported on the contour and having an additional support inside the plate region
has been considered. Finally, solution is obtained for a plate of which one side
is clamped, the others being simply supported. Thermal vibration of a circular
plate is also investigated.

Finally, an approximate solution is given for the problems discussed consisting
in the assumption that the moment density of a three-dimensional temperature
field may be replaced by the temperature difference between the upper and the
lower surface of the plate per unit thickness. With this assumption, the equation
of the coupled thermoelastic problem is derived.

1. General Equations

Let us consider a plate of moderate thickness in a non-steady-state temperature
field. To determine the displacements and strains, the same assumptions have been
made as in the theory of plates of moderate thickness. They are the assumption
of plane stress and plane sections after the deformation.

Aj?ch. Mech, stos, — 7
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Under heating, stresses and strains appear and the plate undergoes dilatation
in its middle plane, and deflection. The stresses atj are related with the strains eif

by the equations:

(1.1) fftf = - 3 ~ { ( 1 -")8,i + K * - ( l +v)atT]»ii} (ij = 1,2),

where G denotes the shear modulus, v —• Poisson's ratio, at — the coefficient of
thermal dilatation, T—the temperature. Finally, dif is Kronecker delta.

The strains g0 are connected with the displacements in the following manner :

(1.2) % = «{, + </ =-2 (Ki + Kd-XtVtU (ij = 1, 2),

where u[ denotes the displacements due to a uniform tension of the middle surface,
w/' = — x2w , — the displacements due to the deflection of the plate denoted by
Mi' = W.

Let us introduce the resultant forces of the stresses Nu acting in the plane of the
plate and the moments Mu:

ft/2 ft/2

(1.3) Ntl= j aijdx3, Mu= j atlxzdx3.
-ft/2 -ft/2

Introducing (1.1) in (1.3), and integrating over the thickness, we find:

(1.4) ^ /

(1.5) MiS = - ^ { ( l ) + [ + ( l + ) ] « }

where
ft/2

-ft/2

and

12 f= -jp J
-ft/2

ft/2

1 f
= y J T{xx, xa, x3; 0 dx3,

l~v*' " 12(l-v*) .

Let us consider the equation of motion in the xv xa plane:

(1.6) Nlu = Qhul,

where Q is the plate density per unit area of the middle surface.
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Introducing the stress function F and expressing thereby the stresses [2], [3]

we find for the function F the following wave equation, [3];

(1.8) n\{DlF+Eathr0} = 0,

where

If, in the equation of motion in the transverse diiection

(1.9) MiUii = Qhw

the moments (1.5) are introduced, we obtain the equation of transversal vibration:

(U0) ^

The temperature field will be found from the heat equation

(1.11) V 2 T T
7C

wit the prescribed boundary conditions in the two boundary planes and the lateral
surface. The temperature function may be resolved into a symmetric and a skew-sym-
metric function in relation to the middle plane — Ts and Ta, respectively.

Knowing T, the functions T0 and r can be found:

ft/2 . ft/2

r c
h J h J

- f t / 2 - f t / 2

12 fl : 12 hi2
(1.12)

I j
-ft/2 -ft/2

On determining the function T0 = t o ^ , x2; t) and T = x{xl, X2;t), we solve the
Eqs. (1.8) and (1.10) separately. It is assumed [cf. (1.2)] that the longitudinal vibra-
tion is independent of the transversal vibration of the plate. This assumption is
legitimate if the stresses due to tension are insignificant in relation to those due
to bending, which is the case if the edges are free from stresses. Otherwise, the system
of equations (1.8) should be taken into consideration, and

(1.13) Viw + ̂ w+{l+v)atVlr = ~NilWtU .
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In further considerations we shall confine ourselves to the solution of the Eq.
(1.10) by investigating the transversal vibration as independent of the longitudinal
vibration. The solution of an equation analogous to (1.8), for plane strain, has been
discussed in detail in [4].

Let us consider the equation of transversal vibration of a plate resting on a
Winklerian foundation

(1.14) V4
1w + -^H> + /bH-(l+v)a(V1

2T = 0 (k = c/N),

where c is the foundation coefficient, and let us suppose the solution of (1.14) to be
composed of two parts:

(1.15) w = wQ + wIJ,

where wQ is the deflection in the quasi-static problem and wd is a deflection due to the
inertia forces. The Eq. (1.14) will be split up into the system of two equations:

(1-16) V

d-17) Viwd + kwt+ ^

Let us represent the solution of the Eq. (1.16) in the form of the integral

(1.18) wą(x1} x2; 0 = - ( 1 +v)atjf r fo, l 2 ; f)V?G(*i, *2; &, 10 < M * »

wheire G is the Green's function satisfying the equation

(1.19) (Vl + k)G = d(x1-&d(xt-M

with the same boundary conditions as the function wt.T is the region of the plate.
Applying the Green formulae to (1.18), we find:

(1.20) wq(xu x2; 0 = - ( 1 +v)at[]f G(xt, x2; $lt

J
where (s) is the contour of F.

Let us observe that the line integral vanishes if the plate is clamped along the
contour (G = dGjdn = 0), and the surface integral vanishes if r depends on the
time t only. In this particular case we have wq = 0 at every point of the plate, there-
fore, also wd = 0 at every point of the plate. If, then, r = r(t), and the plate is clam-
ped along the contour, the deflection will be zero and the moments will be found
from the equations:

0-21) Mti =
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Further considerations will be confined to the case of harmonic heating. Therefore,
in view of the fact that T(xx, x2, x3; t) — elmlU{x1, x2, x3), uwe have v>{xlt x2;t) =
= eia>tW(xlt xa), r(xlt x2; t) = eia>td(xlt xj, and the Eqs.' (1.10) and (1.11) take
the form:

(1.22) [(3? + dl)*-p* + k]W+(l + v)at(dl + dl)O = 0,

0 P 2 ° ^(1.23) • ( ^

The solution procedure for (1.22) and (1.23) will be as follows. These equations
are subject to a double transformation in relation to xlt x2 proper for the given
region, thus transforming the Eq. (1.22) into an algebraic equation and the Eq.
(1.23) into an ordinary differential equation for x3. Performing the double transfor-

ft/2

mation on the equation 0=([2/h3) j Ux3dx3 we obtain the transform of the function
~7i/2

6 appearing in the Eq. (1.22). The inverse transformation yields the solution of the
problem.

2. The Infinite Plate Resting on an Elastic Foundation

Let us assume that the thermal boundary conditions for the bounding planes
are:

™ *% , . . . 8T\ . . . ,

Let us perform on (1.23) the double Fourier exponential transformation. We find:

(2.2) .

where

CO

/*(%, a2; Xj) = — J J U(Xj, xlt x3) exp [f(aiXi

Taking into account the boundary conditions (2.1) which, on performing the Fourier
transformation, take the form

. dU*
(2.3)

dx..
= —/>*(«! >a2)»

we obtain the solution of (2.2). On performing the inverse Fourier transformation,
we obtain:

(2.4,

X exp[— i{a1
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where

y = ya\ + a | + hj, # = yh/2

and

(p*, q*) = — J J 0 , g) exp [/(a^ + a2Xj)]ć/x

The transform of d* will be obtained from:

ft/2
. ~ i 3 //* o*

-ft/2

Let us perform the double Fourier exponential transformation on the Eq. (1.22).
We have:

(2.6) [(al + aiy + k-P2]W*~(al + al)(l+v)at6* = 0 .

Solving this algebraic equation for W*s and performing the inverse Fourier transfor-
mation, we obtain the soluti'on of the problem in the form of the integral:

(2.7) w(xt, x^ t) =

where d* is given by the Eq. (2.5). From the Eq. (2.7) it follows that w(x1, x2 \t) = 0
if p = q, as was to be expected. The Eq. (2.7) contains a number of particular cases.
Thus, for /S = 0, that is if the inertia term is rejected, the.Eq. (2.7) will determine
the quasi-static deflection of the plate, and for co = 0 we shall obtain the case of
static deflection.

If the temperature field depends on xx and t only, the solution will be the simple
integral:

where

and

(ai) - j jp (q* -p*) (0o ~ th^) , y0 = /a? + fy , §0 = yo/z/2

oo

' . —O
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Finally, if the temperature is axially symmetric, then, applying to the Eqs. (1.22)
and (1.23) the Hankel integral transformation, we obtain the solution in the fol-
lowing form:

CO

(2.9) wfy, t) = (1 +v)ate^ J -^^JQ(ar)da,

where

0*() (*

and
o©

(1*>P*) =*J(q,p)rJ0(ar)dr.
b

Let us assume, finally, that the temperature field depends on x3 and / only.
In this case we have:

and
h/2

12 r
(2-11) 0 = w J12

-f t /2

Since the deflection of the plate does not depend on xlt, x2, therefore w = 0
at every point of the plate.

In this case, the moments are obtained from the equations:

(2.12) Mtj = -N(l + v)ate
M6dij.

3. The Rectangular Plate

Let us consider a rectangular plate simply supported on the edge. Let the boundary
conditions be (2.1) in the planes x3 = ±h/2 and T = 0 on the edges x1 = 0, at;
x2 — 0, a2. Applying to the Eq. (1.20) the double sine transformation, we obtain
the solution of this equation in the form of the double series:

nm +Pnm) S h# j s i n n
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where

and
a!

(9*m>PnJ = J dxx

nn n mn
" 1 " 2

12
Let us introduce the function 6(xi,x2)

 = ~rj J Ux3dxz and the transform
-ft/2

Q # *

* '"Aim

Performing on the Eq. (1.22) the sine transformation, taking (3.2) into consi-
deration and performing the inverse Fourier transformation, we obtain:

(3.3) wfo,*;O--rV«toł(l+r)alaxa%
n,m

From the solution (3.3), a number of particular cases may be obtained. Thus, if the
inertia terms are rejected /9 = 0, we find the solution of the quasi-static problem,
and for w — 0 the solution of the static problem. Finally, for k = 0 we are concerned
with a plate non-resting on an elastic foundation.

If the temperature field does not depend on je2, the solution of (1.22) takes
the form:

(3.4) Hifo.f)--=•«*

where

3 q*—p*

and

" 1

Let us consider a rectangular plate performing forced vibration due to a tem-
perature field varying harmonically in time. Let, in addition, a load

a2
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act along the line x1 = f j , varying in time with the same frequency as the tempera-
ture field. The resultant action of the temperature field and the load R(x2; t) will
produce a deflection w, which must satisfy the differential equation

(3.5) [( ^

The solution of (3.5) may be represented by the double series:

4 V1

(3.6) w(xx, x2; t) = eia)t > sin anxt s inPmx2X
n. m

v, C K + &) (1 + v) «t + (^: W sin a.

let us select the load

R(xlt x2; 0 =

so that the deflection w along the line xx = £x be zero. From the condition
w($1,xi;t) = 0 we find R*,

- s i n a ^

Substituting 7?* from (3.7) into (3.6), we find an expression for the forced vibration
of a rectangular plate simply supported on the contour and, additionally, on the
line xx = i1. If fx = aJ2, and if the functions g(xlt x2), />(#!, x2) are symmetric
in relation to xx = a^l, we obtain the particular case of a plate simply supported
on the edges Xi = 0, a2 and clamped along the edge xx = aJ2.

Let the rectangular plate of side lengths ax and a2 be subject to a temperature
field varying harmonically with the time and, in addition, to the moments:

M{x2; t) = e^ — V Ml sin pmx2,
U2 J£—IU2

m

along the line xx — iv The deflection produced by these actions takes the form, [5]:

4 V
(3.8) wtfa, x2; t) = -—eM > sin a xx sin/?„,*, X

C W + ̂ ) (1 + ) + M> cosan|x

Let us shift moments M(x2; t) to the edge xx — 0, and require that:

-o = 0 •
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We obtain the equation

(3-9)

From the Eq. (3.9) we find the quantities M*, which enable the determination of the
clamping moment:

00

(3.10) w(0, x%; 0 = — eiat Y Jl/* sinft„x2.
« o .i 'i /

m = l

The deflection of the plate acted on by a temperature field harmonically varying
with the time, simply supported on the edges xx = ax; xa = 0, a2 and clamped along
the edge x1 = 0, is found from the equation:

(3.11) H(X1 ; * a ; 0
n, Tfi

This equation has been obtained from (3.8) by substituting in the latter | x = 0.
The solution method just proposed may be generalized to the case of two, three or
four edges clamped, by proceeding in a manner analogous to that in which was
solved the problem of vibration forced by a harmonically variable load, [5].

4. The Circular Plate

Let us consider a circular plate performing harmonic vibration forced by a tem-
perature field varying harmonically in time.

Let us assume the following thermal boundary conditions:

dT

The Eq. (1.23), which in the axially symmetric case under consideration takes
the form

will be solved by means of the finite Hankel transformation. This transformation
is defined thus

(4-4)
( a ' } [J'0(aat)f
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where a is the radius of the plate and aat are the roots of the Bessel function of the
first kind and zero order J0(aat) = 0 and J'0(r) — dJ0(r)/dr.

The solution of (4.2) with the conditions (4.1) may be represented in the form
of the series:

a V> V(r x \ = 1 V 1 I (a* 4- »(4.5) U{r, Xi) - ^^j-^q +p

where

a

0 I

Next, we calculate the transform of the function:

(4-6) 0*(a() = ^ _ £ ^ L ( AThe equation of the deflection amplitude of the plate (1.22) takes the form:

Applying to (4.7) the finite Hankel transformation, the solution is found in the
form of the series:

r t) -

The solution" obtained may be treated as approximate because the boundary con-
ditions

(4.9) „(4

are not accurate. For, the second condition should read:

(4-10)

5. A Simplification of the Vibration Problem of Plates

The procedure of the foregoing sections was that of solving in an accurate
manner the heat equation, and then determining the mean temperatures along the
thickness of the plate, described by the functions T0 and r determined by the Eqs.
(1.12). A considerable simplification of the solution may be achieved by applying
to the heat equation the method proposed by K. MARGUERRE, [6], and consisting
in approximate integration of the heat equation (1.11).
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Let us multiply the Eq. (1.11) by I/ft, and integrate with respect to x3 from
-A/2 to ft/2.

Then, we obtain the equation:

Bearing in mind the boundary conditions

(5.2) * £ L "»• ^ 1 —^
the Eq. (5.1) is reduced to

(5.3)

This equation, together with (1.8)

(5.4) • ! ( • ;

determines the vibration of the plate due to a time-variable temperature field.
Let us multiply the Eq. (1.11) by (l2/h3)x3 and integrate with respect to x3 from

—A/2 to ft/2. Bearing in mind (1.12), we obtain the equation:

(5.5)

or

(5.6)

where

2i = T{xx, xt; ft/2; t), T2 = T(xlf x2; - f t / 2 ; t) .

For a sufficiently thin plate, the temperature may be assumed to vary linearly in
the x-j-direction, that is:

1

With this simplifying assumption, the Eq. (5.6) takes the form:

(5.7)

The above equation, together with (1.14),

(5.8) Vfw + ^-w

describes the flexural vibration of the plate.
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If the temperature varies harmonically in time, T = Ueiat we have

(5.9) w = Weitot, x = 6eimt, q = qeimt, p = peimt

and the Eqs. (5.7) and (5.8) take the form:

(5.10)

(5.11)

Let us consider a rectangular plate simply supported on the edges. Performing
on the Eqs. (5.10) and (5.11) the Fourier sine transformation, and assuming the
notations of Sec. 3, we find the following system of equations:

(5.12)

(5.13)

Eliminating from these equations 0*m, and performing the inverse sine transfor-
mation, we obtain finally:

(5.14) w(xv x2', 0 =

where

(5.15) iinm'Pnrt) = f ^xi ( dx2(q,p) sin anXiSin/3mx2.
(I 0

From (3.3) and (5.14) it follows that the surfaces described by these equations
approach each other if

(5.16)

If A -> 0, then ^nm -> 0 and

1
1 _L A2

^ ^ ! and } - . 1 .
nm 1 1 i „9,2

In this case, (5.16) is satisfied.
In the particular case where p = 0, c = S^— £i)<3(x2—18), the deflection sur-

face (5.14) may be represented in the form of a simple series:

(5.17) w(Xl, x21 i) = J ^
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where
co

h '> A*) — y cos /
111=1

and

7rrj

with the notations:

af = iri + 8, a| = i]/k - j9», a§ = - ?/fc - /

6. Coupled Temperature and Strain Field

Let us consider a plate in a non-steady-state temperature field, assuming that the-
temperature field and the strain field are coupled. The stress-strain relations (1.1)
to (1.5) of Sec. 1 remain valid. Let us assume in addition the functions r0 and r
of that section. The Eq. (1.11) will be replaced by the generalized heat equation,.
[7], [8],

(6.1)

where

(6.2) e = <i + <2-^,»

is the dilatation, and f * the coefficient determining the coupling of the temperature
and strain field.

Let us multiply (6.1) by l//z, and integrate with respect to x3 from —A/2 to h/2..
Bearing in mind (1.3) and (1.5), we find the following equation

(6.3) (Vl-i8\r0-C*dt(ui1 + ui2) + ~\^-T =0.

Since

(6.4) .

and
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therefore, bearing in mind the boundary conditions (5.2), the Eq. (6.3) is reduced to:

(6-5) (v1
2-~3(Jr0-/J*ni3tJF+ -jfiC+P) = 0 ,

/?* — , — On T*

To this the following equation should be joined.

(6.6)

From these two equations, the function T0 should be eliminated. From the result
thus obtained we shall find the function F, and from the Eqs. (1.7) the forces Nir

The problem of forced longitudinal vibration described by the Eqs. (6.6) and (6.5)
due to a non-steady-state temperature field will not be treated here. It is discussed
in Refs. [3], [4].

Let us consider in greater detail the problem of forced flexural vibration.
Let us multiply (6.1) by (12/A3)x3, and integrate with respect to x3 from — h/2

to h/2, Bearing in mind (1.2), we find:

In view of the boundary conditions (5.2), the Eq. (6.7) is reduced to:

(6.8)

Assuming that the temperature varies linearly along the thickness r = y (Tx — T2),

this approximation being better for thinner plates, we have:

(6.8')

This, and the Eq. (1.14)

(6.9) V

determine the forced vibration of the plate, bearing in mind that for £* —> 0 (that
is for the non-coupled problem) the Eqs. (6.5) and (6.8) become (5.3) and (5.7).

Let us consider a rectangular plate simply supported on the contour. Intro-
ducing the notations (5.9), the Eqs. (6.8') and (6.9) are reduced to the form:

(6.10) {Vl-iV- e)0 + icoC*VtW+ ^(q-p) = 0,

(6.11) , (
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Performing on the Eqs. (6.10) and (6.11) the double Fourier sine transformation,
we obtain the following system of algebraic equations:

(6.12) (A jj^

(6.13) ^L + k~^W:m-(l + v)atAnj:m = 0.

Eliminating from these equations d*m, and performing the inverse sine transfor-
mation, we obtain the following expression for the deflection:

24(14-v) a ei(ot V~l
(6.14) w(xll xa; 0 = — V a l ^ — 2 J s i n

n, m

X

where

and the quantities q*m, p*m are given by the equations (5.15). Knowing the deflec-
tion, it is easy to determine the bending moments and torques from the Eqs. (1.5).
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S t r e s z c z e n i e

DRGANIA POPRZECZNE PŁYTY WYWOŁANE JEJ OGRZANIEM

W pracy wyprowadzono równanie termosprężystych drgań płyty wychodząc
z trójwymiarowej teorii termosprężystości. Członem indukującym drgania jest
gęstość momentu trójwymiarowej temperatury wzdłuż grubości płyty. Założono
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przy tym, że drgania podłużne są niezależne od drgań giętnych płyty. Podano roz-
wiązanie podstawowe zagadnienia dla drgań okresowych płyty nieograniczonej
na sprężystym podłożu, gdy w płaszczyznach ograniczających płytę dany jest prze-
pływ ciepła. Rozważono również płytę swobodnie podpartą lub swobodnie podpartą
na obwodzie i dodatkowo podpartą wzdłuż linii równoległej do brzegu i położonej
wewnątrz obszaru płyty. Wreszcie podano rozwiązanie dla płyty, której jeden brzeg
jest utwierdzony, zaś pozostałe są swobodnie podparte. Badano również przypadek
płyty kołowej.

Praca podaje porównanie przedstawionej teorii z przypadkiem, gdy tempera-
turę indukiijącą drgania giętne zastąpiono przez różnicę temperatur górnej i dolnej
powierzchni płyty, odniesioną do jednostki grubości płyty.

P e 3 io M e

KOJTEEAHM.S IIJIACTHHKH, BBI3BAHHBIE EE HArPEBOM

BBIBOBHTCH ypaBHeHHH TepMoynpyrax KOJieSaHHH nnacriiHKHj HCXOAH H3 Tpex-
MepHOH TeOpHH TepMOynpyrOCTH. ^IjieHOM, BBI3ŁIBaiOm,HM KOJItSaHHfl, HBJIHeTCH
njiOTHocTB MowtCHTa TpexMepHoft TeMnepaxypBi BffOJib ToniirHHbi njiacTHHKH. I lpn
OTOM npeAnojiaratTCHj nno npOflOJitHBie Kont6aHHH He 3aBHCflT OT H3rii6HBix
K0Jie6aHHft rm?,CTHHKH. flaexcn ocnoBHoe pemeHHe 3a3auH fljra nepnoAH^ecKHX

6ecKOHe^iHoft nnacTHHKH Ha ynpyroM ociioBaHHH npn 3aAaHH0M B orpa-
njiocKOCTHX noTOKe xerma. PaccMaTpuBatTCH xaK5Ke CBO6OAHO

onepTaH nnaciHHKa HJIH CBOSO^HO onepTasi no 0Kpy>KH0cxH u Ao6aBoTfflo onepTaa
Bflont JIHHHH napajmejibHoił Kpaio H paciiono>KeHHoii Bi-iyrpi-i O6JI&CTH ruiaciHH-
KH. HaKOHeti; ftaexcH pemeHHe AHH nnacTHiiKH,, OAHH Kpań KOTopoń 3aKpen-
nen3 a ocTajiŁHfcie CBOSO^HO onepTBi. HccnepytTCfi TaioKe cny^aft KpyroBOH

nHaCTHHKH.
B paSoTe npHBOflHTCH cpaBHeHHe npeACTaBJieHHoń TeopHH co

paiyp BepxHeii H HH>KHCH noBepxHOCTM nnacTHHKHj OTHeceHHoft K
nJiaCTHHKH.
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