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Introduction

Papers on the vibration of a plate of moderate thickness due to a non-steady-
state temperature field are scarce. The basic elements of the theory for plates of
moderate thickness have been given by B. A. BoLEy and A. D. BArBEr, [1]. In
this reference, a rectangular plate is considered, simply supported on the contour,
and subject to a uniform step heat input over one face. A numerical analysis is
also given.

In the present paper, the equations of thermally excited vibration of a plate
are derived. The starting point is the heat equation in three dimensions, coupled
(or not coupled) with the deformation field. The member exciting the vibration
is the density of moment of a three-dimensional temperature field along the thickness.
It is assumed that longitudinal vibrations of the plate are independent of the flexural
vibration.

The considerations are confined to harmonic forced vibration. The basic equation
is given for an infinite plate on an elastic foundation with a prescribed heat flow
across the bounding surfaces harmonically varying in time.

Also, the thermal vibration of a rectangular plate simply supported or simply
supported on the contour and having an additional support inside the plate region
has been considered. Finally, solution is obtained for a plate of which one side
is clamped, the others being simply supported. Thermal vibration of a circular
plate is also investigated.

Finally, an approximate solution is given for the problems discussed consisting
in the assumption that the moment density of a three-dimensional temperature
field may be replaced by the temperature difference between the upper and the
lower surface of the plate per unit thickness. With this assumption, the equation
of the coupled thermoelastic problem is derived.

1. General Equations

Let us consider a plate of moderate thickness in a non-steady-state temperature
field. To determine the displacements and strains, the same assumptions have been
made as in the theory of plates of moderate thickness. They are the assumption
of plane stress and plane sections after the deformation.

Arch, Mech, stos, — 7



652 J. Ignaczak and W. Nowacki

Under heating, stresses and strains appear and the plate undergoes dilatation
in its middle plane, and deflection. The stresses oy, are related with the strains g,

by the equations:
2G , o
(L.1) U;;*j‘_j{ﬂ"”)%"“ﬁ’su*([ +1)a,T]d,} Gi=12),

where G denotes the shear modulus, » — Poisson’s ratio, «, — the coefficient of
thermal dilatation, 7'— the temperature. Finally, §,, is Kronecker delta.
The strains &, are connected with the displacements in the following manner :

’ i 1 ’ ’ . .
(1.2) &y =&+ &y =y (u,,+ ”J.i)‘xa“’. i #j=12),

where u; denotes the displacements due to a uniform tension of the middle surface,
u;' = —xyw , — the displacements due to the deflection of the plate denoted by
uy =w.

Let us introduce the resultant forces of the stresses N,; acting in the plane of the
plate and the moments M;;:

a2 /2
(1.3) Ny= f“udxs, M, = f"uxadx:s-
—~h/2 —h/2

Introducing (1.1) in (1.3), and integrating over the thickness, we find:

(1.4) Nu :-D{(l_"")5;1‘&“["'5;'«::_'(1’|‘1’)a.'.70]6u}’ j=1,2)
(15) My = —N{(—9)w, +DW o +A+D a8},
where

hf2

12

(X, Xp3 2) =5 f T(xy, Xy, X33 t) X3dXy,
—hf2
hi2

1
To(Xy, Xp3 1) = R j ey 5 20, %55 ) dny,

—hf2
and
Eh ER®
Per—m V= R2(0—#) .

Let us consider the equation of motion in the x,, x, plane:
(1.6) N, = ohii},

where p is the plate density per unit area of the middle surface.
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Introducing the stress function Fand expressing thereby the stresses [2], [3]
(1.7 N,;= —F_,‘.-l-du(Vf— —2~1§ FEJT)F, Gi= i. Vi=&+2 (,j=1,2),
. ci ot oh
we find for the function F' the following wave equation, [3];
(1.8) CE{CR F+ Eo,hry} = 0,
where

1 e .

D
D?i:Vf—a? W a oh

(@=1,2).

If, in the equation of motion in the transverse ditection
(1.9) M,y = ohi

the moments (1.5) are introduced, we obtain the equation of transversal vibration:
h .,
(1.10) vgw+%w+(1+v)a,vfr=o.

The temperature field will be found from the heat equation
1

(1.11) vﬂr—;i":o, V2= 324024 a8

wit the prescribed boundary conditions in the two boundary planes and the lateral
surface. The temperature function may be resolved into a symmetric and a skew-sym-
metric function in relation to the middle plane — T, and T, respectively.

Knowing T, the functions 7, and 7 can be found:

1 nl2 1 hf2

=" f Tdxy = W f T,dx, ,
—hj2 —hj2
(1.12) _
hia hi2

12 12

T = —k-é- J Txadxs = -ﬁﬂ_ f Taxadxa.
—~hj2 —nj2

On determining the function Ty = To(Xy, X3 1) and T = 7(x;, X,; 1), we solve the
Eqs. (1.8) and (1.10) separately. It is assumed [cf. (1.2)] that the longitudinal vibra-
tion is independent of the transversal vibration of the plate. This assumption is
legitimate if the stresses due to tension are insignificant in relation to those due
to bending, which is the case if the edges are free from stresses. Otherwise, the system
of equations (1.8) should be taken into consideration, and

Jis: 1
(1.13) V{w-f—%v-,-w + (1), Vit = WN”W'”'
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In further considerations we shall confine ourselves to the solution of the Eq.
(1.10) by investigating the transversal vibration as independent of the longitudinal
vibration. The solution of an equation analogous to (1.8), for plane strain, has been
discussed in detail in [4].

Let us consider the equation of transversal vibration of a plate resting on a
Winklerian foundation

(1.14) vgw+%’.fa+kw+(1+v)a,v§r=o (k = ¢/N),

where ¢ is the foundation coefficient, and let us suppose the solution of (1.14) to be
composed of two parts:

(L.15) W= W+ Wy,

where w, is the deflection in the quasi-static problem and w, is a deflection due to the
inertia forces. The Eq. (1.14) will be split up into the system of two equations:

(1.16) Viw,+ kw,4+(14+v)e,Vir =0,

h.  oh.
(1.17) Véw, -+ K, + %wd = ~%~wq .

Let us represent the solution of the Eq. (1.16) in the form of the integral

(118)  wo(ty, %5 1) = —(1+9)at, [ [ (s, a5 OVIGERL, X5 &1, £ ey,

)
whefe G is the Green’s function satisfying the equation
(1.19) (Vi+K)G = 0(x,— &) 0(xy — &)

with the same boundary conditions as the function w,. I" is the region of the plate.
Applying the Green formulae to (1.18), we find:

(120)  w (o, %03 0) = —(U+0)a | [ [ Gloy, 3o &1, E)VETEL, a3 ) dEs+

um
oG at
+] (f W Ga—n)ds}

®
where (s) is the contour of I.

Let us observe that the line integral vanishes if the plate is clamped along the
contour (G = dG[dn = 0), and the surface integral vanishes if v depends on the
time 7 only. In this particular case we have w, = 0 at every point of the plate, there-
fore, also w, = 0 at every point of the plate. If, then, v = 7(f), and the plate is clam-
ped along the contour, the deflection will be zero and the moments will be found
from the equations:

(1.21) M, =—N(1+9)ax(t) 4,
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Further considerations will be confined to the case of harmonic heating. Therefore,
in view of the fact that T(x,, x,, X3; 1) = €'“tU(x,, X, X3), we have w(xy, Xy; 1) =
= et W(x,, x3), T(Xy, Xo; 1) = €“*f(xy, x,), and the Eqs. (1.10) and (1.11) take
the form:

(1.22) (03 + 02 — B+ KIW+ (1 +7) 0, (B2 + 980 = 0,
(1.23) (@R U—igU=0, f= “";?"' =2

The solution procedure for (1.22) and (1.23) will be as follows. These equations
are subject to a double transformation in relation to x,, x, proper for the given
region, thus transforming the Eq. (1.22) into an algebraic equation and the Eq.

(1.23) into an ordinary differential equation for x;. Performing the double transfor-
2

mation on the equation 0=(12/A%) f Ux,dx, we obtain the transform of the function
—hf2

0 appearing in the Eq. (1.22). The inverse transformation yields the solution of the
problem.

2. The Infinite Plate Resting on an Elastic: Foundation
Let us assume that the thermal boundary conditions for the bounding planes

are.

or |
20T

2.1 2 I =g(x, X)e, 4 o - = —p(x;, xp) €',
Let us perform on (1.23) the double Fourier exponential transformation. We find:
(2.2) . [@dxi— (3 + a3 +ip)U* =0,
where
U*(ay, ay; Xg) = —%z'fo(xu Xy, Xg) €xp [i (g %y +0yxy)] dxy dxy .

Taking into account the boundary conditions (2.1) which, on performing the Fourier
transformation, take the form

du*
dxy

we obtain the solution of (2.2). On performing the inverse Fourier transformation,
we obtain:

% du*
= " (a3, @), A‘Ec—s'

(2.3 A

== _P*(aj ) Us),
Ty=—h|2

z,=h/2

— 1 o I * * Ch?v’fs % Sh?’xs
(2'4) U(xlixa}x:!) - ml f?[(q +P ) Sh't?-+(g P ) Ch?? :|><

X exp [— i (ay X, + ey X)) doy das,
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where
y=yd+g+in, ©O=yh?2
and

1 [ .
(p*, q") = o~ f f (p, q) exp [i(oy xy + o xg)] dxy doxy

The transform of 0* will be obtained from:

/2

3 * .. *
f U* (g, 05 X)Wy = 7 3P (B —thd),

—nj2

12

(2.5 0%y, @) = T

Let us perform the double Fourier exponential transformation on the Eq. (1.22).
We have:

(2.6) [(a2 a2+ k— B W* — (a2 +a3) (1+¥)a0* =0 .

Solving this algebraic equation for W*, and performing the inverse Fourier transfor-
mation, we obtain the solution of the problem in the form of the integral:

27w, x )=

(1+?-')a elot l‘f (0f 4 a3)0" (0, @a)

T Farri—p o0 [t annldede,

. Where 0* is given by the Eq. (2.5). From the Eq. (2.7) it follows that w(x;, x,;t) =0
if p = ¢, as was to be expected. The Eq. (2.7) contains a number of particular cases.
Thus, for f# = 0, that is if the inertia term is rejected, the.Eq. (2.7) will determine
the quasi-static deflection of the plate, and for w = 0 we shall obtain the case of
static deflection.

If the temperature field depends on x, and ¢ only, the solution will be the simple
integral :

(1+»)a, et r 0*(a)a? "
(2.8) w(Xy, Xo5 1) = ]/52 f a{—{—(.é)—]ﬁ“a exp (—ia, x,)day ,
-0

where

6‘( 1) 2 A??a (q ‘) (00— {hﬁ) ’ ) = ,/ﬂ + m, 190 yﬂhlz

and

kG q*)=71§_ i (2> g exp (T x,) dx,
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Finally, if the temperature is axially symmetric, then, applying to the Egs. (1.22)
and (1.23) the Hankel integral transformation, we obtain the solution in the fol-
lowing form:

r a30* (o
(2.9) w(r, 1) = (1 +2)a e uf ad—+k_(_lfg?fn(ﬂr)da.
where
0*(a) = 2_;?}_3 @ —pF—thd), F=y@Fm, F=Fh2
and

(q* ") = [ (@, p)rJo(ar)dr.

Let us assume, finally, that the temperature field depends on x3 and ¢ only.
In this case we have:

(2.10) U(xs)—m[( +P Sy g DR ‘:"“] C=yE, =02

and
hj2

[ vt = 35 a—pO—th o).
-2

12
@2.11) 0=

Since the deflection of the plate does not depend on x,, x,, therefore w =0
at every point of the plate.
In this case, the moments are obtained from the equations:

(2.12) : M, = —N(1+»)a,et05, .

3. The Rectangular Plate

Let us consider a rectangular plate simply supported on the edge. Let the boundary
conditions be (2.1) in the planes x3 = 4h/2 and T'= 0 on the edges x;, =0, a;;
x, =0, a,. Applying to the Eq. (1.20) the double sine transformation, we obtain
the solution of this equation in the form of the double series:

2 1 e owShYun¥e
alag,lz ,Tﬂ;[(‘fm Pm) g+

C ynmﬂ

+ (qnm i pnm) sh f} ] sin anxl sin ﬁm Xay

B.1) U, xp, Xa) =




658 J. Ignaczak and W. Nowacki

where

ni mim
ﬂnm = Ynmh/2, &= == ﬁmz T

Vam = ]/Cl'.i an ﬁf}: + in,
and

ay y

(@ms Do) = [y [ (g, p) sin @, %, sin B,
0 (1]

hi2
Let us introduce the function 0(x,, x,) = T J Ux,dx, and the transform
—~hf2

3 S ‘m
(3'2) S;m = '_'2_ _ql%n—j')ﬂ_ (ﬂmn —th ’aﬂm) £

Performing on the Eq. (1.22) the sine transformation, taking (3.2) into consi-
deration and performing the inverse Fourier transformation, we obtain:

. — 4 {wt 2 B;m (ﬂﬁ I ﬁﬁx * .
(33)  wlx, X3 )= B e (1+v)a, @+ 3,)2—{—k—-ﬂ25m o, Xx; sin B, %, .
From the solution (3.3), a number of particular cases may be obtained. Thus, if the
inertia terms are rejected f = 0, we find the solution of the quasi-static problem,
and for w = 0 the solution of the static problem, Finally, for & = 0 we are concerned
with a plate non-resting on an elastic foundation.

If the temperature field does not depend on x,, the solution of (1.22) takes
the form:

(= =] *,0

%5 , .
(3.4 wi(xy, 1) = El-e’ t(14%)a, P Eﬁ—ﬁﬁi sin a, X; ,
where

* 3 ;_ : —_—
03 =-§£~E§— @,—thd,), I, =y.h2, y,= V a2+ in

and
@oD) = [ @ p)sina,xds .
]

Let us consider a rectangular plate performing forced vibration due to a tem-
perature field varying harmonically in time. Let, in addition, a load

2
R(xy, 1) = —e'ot E R} sinf, x
(‘l ) a, - ﬁm 2



Transversal Vibration of a Plate 659

act along the line x; = &, varying in time with the same frequency as the tempera-
ture field. The resultant action of the temperature field and the load R(x,;¢) will
produce a deflection w, which must satisfy the differential equation

(B3) (G0 k— W+ (9@ (@ + )0 =30 —&)r(x),
R(xy; 1) = € r(x,).

The solution of (3.5) may be represented by the double series:

lwi 1 1
elv Esmanxlsmﬁmxex

n,m

4
GO Wi, xs )=

g Onn (05 +B3) (1 +2) o, +(R;, [N) sine, &,
[(e +B2)+k—p]
let us select the load
R(xy, X5 1) = R(xp; 1) 6 (x,— &),

so that the deflection w along the line x, = & be zero. From the condition
w(&}, Xa s f) =0 we find R;

S sina, & R . -
3.7 2 Tﬁﬁﬁﬂ)?-?;c—ﬂ |:T sina, & + (1+7)a, 05, (@2 -|-ﬁg)j| =0.

Substituting R’ from (3.7) into (3.6), we find an expression for the forced vibration
of a rectangular plate simply supported on the contour and, additionally, on the
line x, = &. If & = a;/2, and if the functions g(x;, X,), p(x;, X;) are symmetric
in relation to x; = a;/2, we obtain the particular case of a plate simply supported
on the edges x, = 0, a, and clamped along the edge x, = a,/2.

Let the rectangular plate of side lengths @, and @, be subject to a temperature
field varying harmonically with the time and, in addition, to the moments:

M 1) = = > M sin o,
2

along the line x; = &,. The deflection produced by these actions takes the form, [5]:

el § sina, x, sin f,,x, X

4
(B8 wilxy, Xe58) = 4,4,

B0+ B2) (- 9)a ok My, 0030,y
(@ F A+ k=]

Let us shift moments M(x,; t) to the edge x; = 0, and require that:

W/[0x|z,m0 =0
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We obtain the equation

39) 2 i )2 il M ()4 00,@ -+ A)]= 0

From the Eq. (3.9) we find the quantities M;, which enable the determination of the
clamping moment:

(3.10) m(0, X33 1) = --e'“" 2 MY sinfi, x, .

me=1

The deflection of the plate acted on by a temperature field harmonically varying
with the time, simply supported on the edges x; = a,; ¥, = 0, a; and clamped along
the edge x; = 0, is found from the equation:

4ot ) . 0%, (02462 (1+v)a +a, MY
G1) w5t = 3o ) sine, sy sinfysy oo e T e

n,m

This equation has been obtained from (3.8) by substituting in the latter & = 0.
The solution method just proposed may be generalized to the case of two, three or
four edges clamped, by proceeding in a manner analogous to that in which was
solved the problem of vibration forced by a harmonically variable load, [5].

4. The Circular Plate

Let us consider a circular plate performing harmonic vibration forced by a tem-
perature field varying harmonically in time.

Let us assume the following thermal boundary conditions:
(4.1) A-—— = g(r)e'® , l-gz

04 Izy=n/2 0x;g

= —p(r)et; T(a,t)=0

Ty=—h[2

The Eq. (1.23), which in the axially symmetric case under consideration takes
the form

i T o*
4.2 el
:( ) (6r3+r 6r+ Ox} m)U 9

will be solved by means of the finite Hankel transformation. ThIS transformation
is defined thus

a

4.3) @) = [ tf) Tlar)dr,
: N L J (a r)
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where a is the radius of the plate and ag, are the roots of the Bessel function of the
first kind and zero order Jy(aw,) = 0 and Ji(r) = dJ,(r)/dr.

The solution of (4.2) with the conditions (4.1) may be represented in the form
of the series:

1\ wChy X o Shy x| Jyla,r)
(4.5) U(rax&)_',‘_ag'% [( +p )51”)1 +(q I})W:lfﬁ@ﬂ?

=l/a?ms & =v,h/2,

where
(¢*, ") = [ (@ D) rJo(a,r)dr.
0

Next, we calculate the transform of the function:

(4.6) wmg—3 q (a*mﬁw

The equation of the deflection amphtude of the plate (1.22) takes the form:
) [+ L kg wo+atnal S+ L 2w =0
i ot or 2 - o)

Applying to (4.7) the finite Hankel transformation, the solution is found in the
form of the series:

2(14»)e, e‘“"Z a20*(a)  Jyle r

4.8) w(r, ) = o aFk—p Ui@af

The solution® obtained m'ay be treated as approximate because the boundary con-
ditions

1 6
(4'9) W(ﬂ) — 05 a, ) + (a) = 0

are not accurate. For, the second condition should read:

(4.10) (ﬁ+:;)@=a

5. A Simplification of the Vibration Problem of Plates

The procedure of the foregoing sections was that of solving in an accurate
manner the heat equation, and then determining the mean temperatures along the
thickness of the plate, described by the functions 7, and 7 determined by the Egs.
(1.12). A considerable simplification of the solution may be achieved by applying
to the heat equation the method proposed by K. MARGUERRE, [6], and consisting
in approximate integration of the heat equation (1.11).
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Let us multiply the Eq. (1.11) by 1/h, and integrate with respect to x; from
—h/2 to h/2.
Then, we obtain the equation:

1 1l ar 2y=1/2
: Rl e | =),
G0 (V1 xa,)ru ; f’[axs}re—m
Bearing in mind the boundary conditions
oT _ ar =
,2 F s ==, y = =
(5.2) 0X3 |z,=nj2 ¢ 0Xy |g,= —nj2

the Eq. (5.1) is reduced to

1 1 _
59 (71— 2o+ @+7 =0
This equation, together with (1.8)
(5.4 O F+ Ea,hty) =0,

determines the vibration of the plate due to a time-variable temperature field.
Let us multiply the Eq. (1.11) by (12/h*)x; and integrate with respect to x from
—h/2 to h/2. Bearing in mind (1.12), we obtain the equation:

1.\ 12[ et pi2
& = i) B/ g =
(5.5) (V1 - at) B [x3 e T:] L
or
1 12 | Qs - A
(5.6) (VE—;@;)T-F W[E(Q_P)‘——E(Tl—'ﬂ)]=0.
where

Ty = T(xy, %03 B2 ),  To=T(xy, %3 —h/2;1).

For a sufficiently thin plate, the temperature may be assumed to vary linearly in
the xj-direction, that is:

1
T = E(TI’—: Tﬂ) "
With this simplifying assumption, the Eq. (5.6) takes the form:
; 1 6 - 12
(5.7 (Vf—;at—ﬁ)'-‘:“&'g(}’—?); E=—75 "
The above equation, together with (1.14),
(5.8) V{w—l—%—ﬁ:—l—kw—{-(l +v)e,Vir =0

describes the flexural vibration of the plate.
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If the temperature varies harmonically in time, 7= Ue'®* we have
(5.9) w= Weet, =0, gG=get, p=pe*
and the Eqs. (5.7) and (5.8) take the form:

(5.10) (V”—WHS)B-IF“ 5 (@—p)=

(5.11) (Vi+k—BYW (1 +)aV30 =0

Let us consider a rectangular plate simply supported on the edges. Performing
on the Egs. (5.10) and (5.11) the Fourier sine transformation, and assuming the
notations of Sec. 3, we find the following system of equations:

6
(512) a‘n+ﬁm+m+8) nm 1“‘!2 (q':m'_p!:rn}:
(5.13) [(a} + B3+ k—BAW 5, = (149 a(a} + B3) 65, .

Eliminating from these equations 0, , and performing the inverse sine transfor-
mation, we obtain finally:

24(1 =+ 1’) a, el nm(qnm pﬂﬂi) sin a n¥1 ﬁ
a,a,Ah? (A +k—p(A,,,~+ -+ s] P

(5.14)  w(xy, x5 ) =

— 2 2
”/'Ium =y + m?
where

(515} (Q:m! p;:n) = f dxlf dxﬂ(?s P} SiIl anxl Sil‘l ﬁm Xg.
i} a

From (3.3) and (5.14) it follows that the surfaces described by these equations
approach each other if

(5. 16) 3(§ﬂﬂl ﬂd th ﬁﬂm) a~ 1
nm 1 S 1
3 nm
If h—> 0, then 4, — 0 and
——-————-—3 @ o th 9y) and 71 1.
nm 1 +

In this case, (5.16) is satisfied.
In the particular case where p = 0, g = 0(x;— &) 6(x,— &,), the deflection sur-
face (5.14) may be represented in the form of a simple series:

(5.17)  wixy, X5 1) =—(1+9)q, 2); Vl[(ﬁ(xl, 15 Xp— &) — P(xq, &5 X +5)],
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where
(p(xl’ 'EJ. H {”’) == Z cos ﬁmnu [Q)Uan(xl__fl) P (xl + EI)L
me=1
and

R 1
Yu(l) = ﬂ-l&—z{ 1A2[x,n(#.m.;) — A, @)]— a—a 577 Xl s O5) — x,,,(,u,al)]}

with the notations:

{A &) — 1 [all/aa‘}‘ﬁm ch (al #)I/ag—f- mo_ l]:
It O 2@ ) sh ay /@B

=inte, &=iyk—p, &=—i)k—p.

6. Coupled Temperature and Strain Field

Let us consider a plate in a non-steady-state temperature field, assuming that the
temperature field and the strain field are coupled. The stress-strain relations (1.1)
to (1.5) of Sec. | remain valid. Let us assume in addition the functions 7, and 7
of that section. The Eq. (1.11) will be replaced by the generalized heat equation,.

(71, 8],

(6.1) (Vz—%dt) T—(*9,e=0
where
(6.2) €=ty 1+ Uy —XgW

is the dilatation, and {* the coefficient determining the coupling of the temperature:
and strain field,
Let us multiply (6.1) by 1/h, and integrate with respect to x; from —h/2 to h/2.
Bearing in mind (1.3) and (1.5), we find the following equation

1 ‘ aT hi2
(6.3) (Vf =— ?‘- at )Tu C ‘(Hl 1 + HB 2) + [axa :l__ﬁm =0.
Since
' ' ’ Ny + N,
(6'4) ) Uy, 1+"s,s =& = —Bl%l—_"_-f)i-i" 2a,7,
and

Nkk = D%F,
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therefore, bearing in mind the boundary conditions (5.2), the Eq. (6.3) is reduced to:

1 |
(6.5) (Vf*x— aa)fu—-ﬁ' 20 F+4-@+p) =0,
1 1,
& 1l 1 .
PSBETE m o
To this the following equation should be joined.
(6.6) - (3 F+ Eayhey) = 0

From these two equations, the function 7, should be eliminated. From the result
thus obtained we shall find the function F, and from the Eqgs. (1.7) the forces N,;.

The problem of forced longitudinal vibration described by the Eqgs. (6.6) and (6.5)
due to a non-steady-state temperature field will not be treated here. It is discussed
in Refs. [3], [4].

Let us consider in greater detail the problem of forced flexural vibration.

Let us multiply (6.1) by (12/h%)x,, and integrate with respect to x, from — h/2
to h/2. Bearing in mind (1.2), we find:

1 T nf2
(6.7) (Vf—;a‘)ﬁc*atvgwrlz[xaa___ ] -

};3 —hf2

In view of the boundary conditions (5.2), the Eq. (6.7) is reduced to:
(6'8) (Vl‘___'a) "’ é“avzw-’- h?')., (q p hg (Tl. T!.) -

Assuming that the temperature varies linearly along the thickness v = % (I,—Ty),
this approximation being better for thinner plates, we have:
1 6
(6.8 (Vf~—x~a,~e)r+§‘6yfw+m@—};)= 0.
This, and the Eq. (1.14)
s
(6.9) Viw -+ LivHow+ (149 vir =0

determine the forced vibration of the plate, bearing in mind that for {* — 0 (that

is for the non-coupled problem) the Egs. (6.5) and (6.8) become (5.3) and (5.7).
Let us consider a rectangular plate simply supported on the contour. Intro-

ducing the notations (5.9), the Eqs. (6.8') and (6.9) are reduced to the form:

(6.10) (V2—in—e)0+iwl* ViW+ w 5 (@—p) =0,

(6.11) (Vi+k—pAW+(1+»a,Vizr = 0.
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Performing on the Egs. (6.10) and (6.11) the double Fourier sine transformation,
we obtain the following system of algebraic equations:

6 "
(6.12) Mm+m+@%ﬁmﬂﬁmW&=;F@;—%m,

(613) (A§m+k_ﬁs)wzm_(.l"'v)atdnms;m =0.

Eliminating from these equations 0},, and performing the inverse sine transfor-
mation, we obtain the following expression for the deflection:

24(14+-7)a et ; ;
(6.14)  w(xy, x,; 1) = —W—Z sin a,, x; sin f,, %, X

% Aﬂm(g:m . P;m) ,
(A%, +k— B (um+ i+ &) +(1 -+ )il 43,

where
Ay = a3+ B

and the quantities ¢, py, are given by the equations (5.15). Knowing the deflec-
tion, it is easy to determine the bending moments and torques from the Egs. (1.5).
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Streszczenie

DRGANIA POPRZECZNE PLYTY WYWOLANE JEJ OGRZANIEM

W pracy wyprowadzono réwnanie termosprezystych drgad plyty wychodzac
z trojwymiarowej teorii termosprezystoci. Czlonem indukujacym drgania jest
gesto$é momentu trojwymiarowej temperatury wzdhuz grubosci plyty. Zatozono
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przy tym, ze drgania podhuzne sa niezalezne od drgan gietnych plyty. Podano roz-
wigzanie podstawowe zagadnienia dla drgan okresowych plyty nieograniczonej
na sprezystym podtozu, gdy w plaszezyznach ograniczajgcych plyte dany jest prze-
plyw ciepta. Rozwazono réwniez plyte swobodnie podparta lub swobodnie podparta
na obwodzie i dodatkowo podparta wzdtuz linii réownoleglej do brzegu i polozonej
wewngtrz obszaru plyty. Wreszcie podano rozwiazanie dla plyty, ktérej jeden brzeg
jest utwierdzony, za$ pozostale sg swobodnie podparte. Badano réwniez przypadek
plyty kolowe;j.

Praca podaje poréwnanie przedstawionej teorii z przypadkiem, gdy tempera-
turg indukujaca drgania gigtne zastapiono przez réznice temperatur gérnej i dolne;
powierzchni plyty, odniesions do jednostki grubosci plyty.

Peswome
I[TOTIEPEYHBIE KOJNEBAHHWSA TINTACTHHKH, BBI3BAHHLBIE EE HAI'PEBOM

BeIBomATCs yPAaBHEHIA TEPMOYIPYTHX KOICOaHmi NNaCTHHK, HCXOMS U3 TPEX-
MEPHOI TEOPHH TEPMOYIIPYroCTH. YIIeHOM, BRIBBIBAIOIMM KOICOAHNST, ABITETCA
IJIOTHOCTH MOMEHTA TPEXMEPHOI TeMIePaTyphl BIONL TONIMHEL IacTuuku. IIpn
9TOM IPEIIONATACTCS, UTO TPOHONbHBIE KOoNcGaHus HE 3aBUCAT OT HM3rKOHBIX
KoncGanmii mgcTuHKK. Jaercs OCHOBHOE PELICHHE 3a7laui JIUIA TIePHOUUECKUX
KoJc 6anmnif OeCKOHEUHOI ITIIACTUHKH HA YIPYIoM OCHOBAHMH IIPH 3aJ[AHHOM B Orpa-
HUYMBAIOIMX IIJIOCKOCTSX IIOTOKe Tera, PaccmaTpuBaercs Taroxe CBOGOIHO
olnepTas INIACTHHKA MM CBODOIHO ONEPTAsi M0 OKPYIKHOCTH ¥ J0OABOUHO OIeEpTas
BJOND JIMHUH NApAIUIEIIHHON Kpaio M PACIHOJIOIKCHHON BHYTPH 00JIACTH IJIACTHH-
xu. Haxoneny pactesi pemuenme Ul IUIACTHHKHI, OJMH Kpaif KOTOpO# 3axpern-
Jied, a ocranpHble CBODOAHO oneprhr. Mcciepyercs Taioxe cayuaif KpyroBoH
TTACTHHKH,

B pafore npuBOJMTCA CPABHEHHE IPEJCTABIIEHHON TEOPHH CO CIyYaeMm, Korjia
TEMIIEPATYPA, BLISHIBAIOMAA H3rkbHbIe KOJEbanus, 3aMeHsACTCs PasHnIEel Temie-
PATYp BepXHEH M HIDKHeH TIOBEPXHOCTH TIJIACTHHKM, OTHECEHHOH K eJ(MHMIE
TOJILMHEBL TIJIACTHHKM,
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