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Introduction

In classical boundary-value problems of steady-state vibration for infinite and
semi-infinite regions (an infinite body with a spherical cavity, for instance) we select
from the general integral of the (HELMHOLTZ) equation of vibration, after SOMMER-

FELD, only such, solutions as describe waves With a phase propagating to infinity.
The conditions concerning the behaviour of the solutions of the equation of vibra-
tion at infinity are called the radiation conditions. Among many works devoted to
these problems, let us mention the excellent monograph by V. D. KUPRADZE, [1].

The coupled problem of thermoelasticity is described, [2], by equations more
general than the classical Lame's equations of motion; complex vector functions
are obtained as solutions of the equations of the Helmholtz type

(0.1) (V2 + fc2)M£ = 0, 1 - 1 , 2 , 3 ,
where ui is the displacement vector and k is a complex constant. The mathematical
form of the radiation conditions depends on the form of the region considered.
We shall consider two semi-bounded elastic regions: an infinite space with a cylin-
drical and spherical cavity. For these regions we shall seek the solutions of the coup-
led equations satisfying definite boundary conditions on the spherical surface and
the cylindrical surface and the corresponding radiation condition at infinity. From
the form of the coupled equations it follows that the rotation part of the displace-
ment vector constituting the solution of the problem must satisfy the classical
Sommerfeld condition. The potential part of that vector should satisfy similar con-
ditions with complex parameters kt and k3. It will be shown that the potential wave
vanishes at infinity more rapidly in the coupled problem than in the corresponding
non-coupled problem, and that the rate of vanishing is determined by the imaginary
part of the roots fc13. The radiation conditions for the temperature are determined
by two conditions for coupled potentials. The coupled potentials and the tempera-
ture are composed of two types of interfering waves [cf. Eq. (2.3)], with two different
complex absorptions and two different phases propagating to infinity (cf. P. CHAD-

WICK and I. N. SNEDDOH, [8]). In the case of no coupling, we obtain the classical
Sommerfeld conditions.
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1. Coupled Thermal Stress and Temperature Concentration at a Cylindrical Cavity

JLet us consider, in an infinite elastic space referred to a cylindrical system of
coordinates (r, 6, z), an infinite cylindrical cavity with axis coinciding with that
of z. Let a periodic plane heat source with constant intensity due in the direc-
tion of the axis x1 = r cos 6 of a Cartesian coordinate system (xlt xz, xs). Thus
the cavity is flown past by a homogeneous periodic heat flow uniformly distributed
along the z-axis; the problem is thus a plane problem [in the (r, 0)-plane]. Let us
assume that the cylinder is impermeable to heat and that its surface is free from
stress. Let us assume also that the material and thermal constants are independent
•of the temperature. With these conditions, the following coupled system of equa-
tions must be solved, [3]:

(1.1)

The star in (1.1) denotes the amplitude of the solution. The amplitude of the
displacement vector w* ( /= 1,2, 3) resolving the problem has the form:

(1.2) uf = &*, + ¥?, ut = u?eimt, P — - 1 ,

T* is the amplitude of the temperature. In addition, the following symbols are used:

, a> , 1 /mi
0-3) ^ 2 = W h = T\^' £ =

JL L L l

-where w is the frequency of vibration, « — the diffusivity constant, A, {j, —
Lame" constants, g — the density, ar — the coefficient of thermal dilatation and
1} is the coupling quantity of (1.1). The quantity q in (1.1) is the constant intensity
of plane heat source, ^ — the coefficient of heat conduction and 6 = S(x) — the
Dirac function.

The roots kx 3 are functions of the coupling parameter e. Denoting fcla = Ar^e),
we have

Let us write the roots (1.3) in another form, convenient for discussion of the radia-
tion conditions

0-5) h
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where

J=

(1.6) fc3 - i i (vW+*F+ as - i|//fli + ą - cs

where

= o) 0(l + ) +
\1

and

For e = 0 we obtain:

- j=-

All the roots written above are arithmetic, that is assuming

(1-8) fei.8 = 01,8 — ^1,8,

we have:

«1.3 > 0. ft.3 > 0 •

It is seen that for a vector of zero divergence W*, the radiation condition in the
plane (r, 6) has the form:

Wf - e-ft-'O^-1'2),
(1.9) 3 w

or

where 0(1) is a quantity as decreasing as I for S -* 0. The quantity /i2 being real,
eimtW* corresponds to the solution

r

which is a wave with the phase propagating to infinity.
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For the potential vector, two systems of radiation conditions should be satisfied:

The conditions (1.10) give solutions of the Helmholtz equations, corresponding
also to a wave with the phase propagating to infinity

(1.11) 7.-I/2 e-/3i.sre"M-<"i.3iO _

In addition, we are concerned here with complex absorption of the wave. The po-
tential wave vanishes more rapidly at infinity than in the corresponding non-coupled
problem, such vanishing rate being determined by the imaginary part of the
roots ^ .3 .

Let us denote the total solution of our boundary-value problem by [S]. This
solution may be represented in the form of a sum

(1.12) [5*]=[S?]+t^ I ] s

where [S*] corresponds to the infinite plane, thus satisfying some of the boundary
conditions on the surface of the cylinder and the radiation conditions at infinity,
and [S*z] is a correcting solution. This correcting solution [S*zl should also satisfy
the conditions (1.10). It is evident that the component [5*] can be so selected that
the temperature T* satisfies the impermeability condition on the surface r = a of
the cylinder.

Let us denote:

(1.13) T* = T*-T*, 0* = &;-0*;

F*(Je) is the solution of the equation

(i.i4) niF1(k)=-JL

for the infinite space, the radiation conditions being satisfied. We obtain

Ao •! 2A0 i

Making use of the second of the Eqs. (1.1), we obtain:

(1.16) ^ =

The first of the Eqs. (1.1) yields the temperature:

(1.17) T1^±Dt0* = 1^rĘ[(--kl + ht)F1*(k3)-(~kt + ą)F1*(ki)].
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The functions &* and T* corresponding to the infinite space without a hole can
be found in W. NOWACKI'S monograph, [3]. Making use of the expansion

(1.18) F*(k) = -,— cos n
1 for n = 0 ,

2 for n > I ,

where /„(*) is modified Bessel function of the first kind, it is seen that the satisfaction
of the impermeability condition for temperature' for r — a requires the superposi-
tion on the components of the sum (1.18) of appropriate components containing
modified Bessel functions of the second kind. We find

(1.19)

(1.20) T* =

m

L
1 S

where F2*(/c) satisfies the equation

and has the following sum representation:

(1.22)

It is seen that the functions (P* and T* satisfy the conditions

dT*
(1.23)

dr = 0, dr
= 0.

In the solution [S*], we assume (W*)x = 0. Therefore, the stresses produced by
the potential &* and the temperature T* are determined from the equations, [4]:

(1.24) (oJij = 2^(cPXi y — 0 l t kk dtj) + e^^i, i,J,k = 1,2,3.

In the case of cylindrical coordinates we find, in view of the conditions (1.23), the
following sum representation of the load on the cylinder:

(fftr.

(1.25)

= ^ C > (-1)"(3„ (cos
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where

To suppress the stresses on the boundary of the cylinder we add to the state
[S1*] the state [Ą*], and solve the following system of equations:

with the boundary conditions for stresses determined by (1.25) and with thermal
insulation for r — a, and appropriate radiation conditions.

The state [S&] may be assumed in the form

(1.27) py =
o

1
where [S*] is the potential state, and has the form:

(1.28) (P* - -lq;*H®(rkJ cos »0+& [-^W„ ( 2 ) (^ 3 ) cos

where H^Cx) is Hankel function of the second kind selected in agreement with the
radiation condition (1.10). The function <P^ satisfies the second of the Eqs. (1.26),
because

The coefficient/?,, in Eq. (1.28) is so chosen that the temperature obtained from
the first of the Eqs. (1.26) satisfies, for r = a, the condition

/5T*
(1.29) Ć Jl

dr

We obtain, therefore,

= 0.

(1.30) [ \ ! ) [ p d

H:ilg£ W ] cos n6,
(1.31) *S . [ - ^ ^ W + g g l g g g g Hi-̂ OW] cos .0 .
It is seen that the functions (1.30) and (1.31) just obtained satisfy the radiation con-
ditions (1.10). It is also seen that for e = 0, the Eqs. (1.30), (1.31) and (1.10) become
those of the corresponding non-coupled problem.
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To satisfy the boundary conditions for stress, let us calculate:

(&)„ = iu[-2r»(rtP* ,r + < P ; i > M ) - ^ a = M l K

(»n)rt = M - 2r-^#£ - «»£„), „] = /iCSCcor) (cos nfl

where

(1.33) 4c)(o»0 = r

feŁ

 Ł(/łi — fef)Ą, (g/Cl) , __2 r „ „

(1.34) &;(«ar) = 2r-« { ̂ a t ^ f e r ) - A v f f ^

2 (

The remaining stresses, which are of the potential origin, are computed according
to (1.24) from <Z>*, (1.31).

The two load components (a )̂,.,. and (<Tn)ro taken from the set of correction com-
ponents, originating from the rotational vector have the form [5]:

, \ ( : d r r / P ( ) cos nQ,
( " } \
where

The condition of vanishing of the cylindrical surface r = a yields the coefficients
K h OS}:

(-1)"
(1.37)

J« = 1 J M Ą C ( < M ) -Bc
n(aa)Ćc

n{wd) .

The equation for the temperature field in the second state has the form:
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2. Coupled Stress and Temperature Concentration at a Spherical Cavity

The case of the sphere is analogous to that of the cylinder. Let the plane of the
heat wave in the infinite body be normal to the axis of xs — R cos 6 of spherical
coordinates (R, 6, <p). Let us consider a spherical cavity in the space with its centre
located at the origin. Let us assume also that the spherical surface is impermeable
to heat and free from stress. Thus, the cavity is flown past by a periodic uniform
heat flow, the process being identical for every meridian. The problem is therefore
axially symmetric, the symmetry axis coinciding with the xs-axis. Similarly to the
case of the cylinder, we assume that the material constants are independent of tem-
perature. With these assumptions, our aim is to solve the system of equations (1.1).
The radiation conditions have the following form. For the rotational vector:

(2 1) dW

and for the potentials coupled with the .temperature

In this case we also have solutions with complex absorption of the type:

(2.3) — e-ft.,K e'Co'-Ra,.,).

R

Let us denote the total solution of the above problem for the sphere by [SS]. This
solution may be represented in the form of the sum:

(2-4) LS*]-LS]+LS£],
where IS*] originates from the potential 0* Eq. (1.19). The functions FfQc) and
F£(k) can be represented in the form of the sums:

(2.5) ";°
1 \
2

where

(26) .rawTOj
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It can be verified, by means of the relations (2.5), (2.6), and (1.19), that

(2.7)
~dR

= 0,
R=a 8R

= 0.

In the case of spherical coordinates, we obtain from (1.24) and (2.7) the following
sum representations of the load on the sphere R — a originating from the poten-
tial 0*:

" 1
T(fit)RR n { n x

(2.8)

where

x

K).'RO
R = o

The correcting solution LĄ*] has the form:

(2.9) LĄ]=2* W L&
n=o

1
where \j.S*] is the state originating from the potential

(2.10) A* = [- k^R^HftiiK

l

The function HjftiQcK) is Hankel function of the second kind, and the order
n + 1/2 selected to satisfy the radiation conditions (2.2). It is seen that in the
neighbourhood of R — oo the potential state s<?n is composed of two interfering
waves (2.3) with two different complex absorptions and two different phases
propagating to infinity

(cot — Rcc.-,) a n d (cot — Ra3).

The temperature field is composed of two wave types with the above phases and
analogous dampings:

(2.11) T* =
5T J- V

2 (
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The load components of the sphere R = a originating from the potential S0*t can
be obtained from the equations:

(S°U)RR = ft I ~ 4/?-1Xr, R - 2R-* cosec 0 (sin 6 ,*£. ̂  ~ *I .*a -
(2.12) = / ^ s M 9 ^ (cos 0 ) '

C ^ ) M - A*[2-R-1 ,«&,x ~ 2*~2,tfa >e = i"C» (°>£)[Vn (cos 0)], e,

where

( 2 1 3 )

2 2 2

The load components Gffn)jsR and (sa*^)R0 taken from the set [SS*Z] of the correcting
components originating from the rotational vector have the form, [6]:

(2 14) ,, _ [ G^5)J« /» (B+ l )«5>i?)9 n (cos 0),

I (A*)*o - ^ (»iO [5>» (cos 0)], fl,
where

The condition of zero load on the spherical surface R = a has the form:

) x

x {i«(fflfl)-[
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The above problems of the coupled stress and temperature concentration at
spherical and cylindrical cavities include steady-state stress concentration problems
treated by A. L. FLORENCE and J. N. GOODIER in Ref. [7].
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S t r e s z c z e n i e

WARUNKI WYPROMIENIOWANIA SOMMERFELDA DLA SPRZĘŻONYCH ZAGAD-
NIEŃ TERMOSPRĘŻYSTOŚCI. PRZYKŁADY SPRZĘŻONEJ KONCENTRACJI NAPRĘŻEŃ

I TEMPERATURY DOOKOŁA OTWORÓW WALCOWYCH I KULISTYCH

W pracy rozważono dwa półograniczone obszary sprężyste: przestrzeń z otworem walcowym
i z otworem kulistym. Dla tych obszarów poszukiwane są rozwiązania równań sprzężonych, speł-
niających określone warunki brzegowe na powierzchni walcowej i kulistej oraz odpowiednie warunki
wypromieniowania w nieskończoność. Z postaci równań sprzężonych wynika, że część rotacyjna
wektora przemieszczenia rozwiązującego problem powinna spełniać klasyczny warunek Sommer-
felda, natomiast część potencjalna spełniać powinna podobne dwa warunki z parametrami zespo-
lonymi kx i ks. Wykazano, że w nieskończoności fala potencjalna zanika szybciej w zagadnieniu
sprzężonym niż w odpowiednim problemie niesprzężonym i szybkość zanikania jest określona
wielkością części czysto urojonej pierwiastków &i.3. Warunek wypromieniowania dla temperatury
jest określony przez dwa warunki dla sprzężonych potencjałów. Sprzężony potencjał i temperatura
składają się z dwóch typów interferujących się fal [por. wz. (2.3)] o dwóch rozmaitych pochłanianiach
zespolonych i dwóch różnych fazach biegnących do nieskończoności. W przypadku braku sprzę-
żenia otrzymuje się klasyczne warunki wypromieniowania z teorii drgań ustalonych.
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P e 3 K> M e

30MMEP0>EJIL,n;A JUJW COIIPJOKEHHLIX ShJlhM TEPMO-

nPHMEPLI COITPJDKEHHOft KOHI^EHTPAIJHH HAIIPiDKEHHfł

H TEMnEPATyPLI BOKPYT IlHJIHHflPH^ECKHX

H IIIAPO0EPA3HbIX OTBEPCTHH

PacciwaTpHBaKTCfl ABe nonyorpaHiweHHBie ynpyrae oSjiacTH, a HMeHHo: npodpaHCTBO
C UHJlHHflpH'ieCKHM H UiapOO6pa3HBIM OTBepCTHeM H flWK 9THX oSjiaCTeft flaMTCH peineHHH CO-

ypaBHeHHH, yflOBJieTBOpniomax onpefleneHHWM KpaeBbiM ycnoBHHM Ha
H iuapoo6pa3Hoii noBepxnocTHX n cooTBeTcTByroinHM ycjiOBHKM irany^erniH B

HOCTB. H 3 (JjopMbi conpH>KeHHbix ypaBHeHHH BBiTeKaeTj IJTO BpamaiejiLHaH "lacTB BeKTopa
nepewemeHHH, peuiaioinero 3aflaiy3 floji>KHa yflOBJieTBopnTB KJiaccHMecKoiwy ycnoBHro 3 O M -
MeptJ)ejiBfla3 Torfla i<ai< noTeHiiuaabHaH TOCTŁ flojiwna yflOBJieTBopKTB flByM nofloSHbiM ycnoBHHM
c KOMnjieKcHBHbiMH napaMeTpaMH kx H k3. B pa6oTe noKa3biBaeTCiij ' n o noTeHUHaJiBHaa

B conpHJKeHHoii safla^e 3aryxaeT cKopee^ nem B cooTBeTCTByłomeił HeconpnweHHOH
H CKopocTB 3aiyxaHH;i onpeflejiaeTCH BejiH^HHoii MacTH MHCTOMHHMOH Kopneii ki.a.
Hsny^eHHH mix TeMirepaTypM onpeflenneTCE flByMH ycnoBHHMH fljis conpaweHHbix noTeHicHajioB.
ConpHJKeHHbrtł no'iemi,iisji u TeMirepaTypa, codaBJiHiOTCH H3 flByx TnnoB
BOJIH [cp. cJ)opMyjiy (2.3)] c flByjvm pasjia^iHBiMH KOMnjieKcuwMH nornomeHiWMH H C

4)a3aMH BerymiiMH B SecKOHê HOCTB. IIpH oTcyTCTBHH conpaaceHHH
yCJIOBHK H3nyHeHHH H3 TeopHH yclaHOBHBLUHXCH KOJieSaHHH.
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