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Introduction

In classical boundary-value problems of steady-state vibration for infinite and
semi-infinite regions (an infinite body with a spherical cavity, for instance) we select
from the general integral of the (HELMHOLTZ) equation of vibration, after SOMMER-
FELD, only such solutions as describe waves with a phase propagating to infinity.
The conditions concerning the behaviour of the solutions of the equation of vibra-
tion at infinity are called the radiation conditions. Among many works devoted to
these problems, let us mention the excellent monograph by V. D. KuprADZE, [1].

The coupled problem of thermoelasticity is described, [2], by equations more
general than the classical Lamé’s equations of motion; complex vector functions
are obtained as solutions of the equations of the Helmholtz type
(0.1) VE+EYu; =0, i=1,2,3,
where u; is the displacement vector and k is a complex constant. The mathematical
form of the radiation conditions depends on the form of the region considered.
We shall consider two semi-bounded elastic regions: an infinite space with a cylin-
drical and spherical cavity. For these regions we shall seek the solutions of the coup-
led equations satisfying definite boundary conditions on the spherical surface and
the cylindrical surface and the corresponding radiation condition at infinity. From
the form of the coupled equations it follows that the rotation part of the displace-
ment vector constituting the solution of the problem must satisfy the classical
Sommerfeld condition. The potential part of that vector should satisfy similar con-
ditions with complex parameters k, and k,. It will be shown that the potential wave
vanishes at infinity more rapidly in the coupled problem than in the corresponding
non-coupled problem, and that the rate of vanishing is determined by the imaginary
part of the roots k,,. The radiation conditions for the temperature are determined
by two conditions for coupled potentials. The coupled potentials and the tempera-
ture are composed of two types of interfering waves [cf. Eq. (2.3)], with two different
complex absorptions and two different phases propagating to infinity (cf. P. CHAD-
wick and I N. SNepDON, [8]). In the case of no coupling, we obtain the classical
Sommerfeld conditions.
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1. Coupled Thermal Stress and Temperature Concentration at a Cylindrical Cavity

et us consider, in an infinite elastic space referred to a cylindrical system of
coordinates (r, 0,z), an infinite cylindrical cavity with axis coinciding with that
of z. Let a periodic plane heat source with constant intensity due in the direc-
tion of the axis x, = r cos 0 of a Cartesian coordinate system (X, Xy, X3). Thus
the cavity is flown past by a homogeneous periodic heat flow uniformly distributed
along the z-axis; the problem is thus a plane problem [in the (r, 6)-plane]. Let us
assume that the cylinder is impermeable to heat and that its surface is free from
stress. Let us assume also that the material and thermal constants are independent
.of the temperature. With these conditions, the following coupled system of equa-
tions must be solved, [3]:

[CBP* = mT*,
(L O3, DO = —md(), Cha=Vi+ i,
CE¥; =0, Ept:t =0, ip, =V+kis

The star in (1.1) denotes the amplitude of the solution. The amplitude of the
displacement vector u] (i = 1, 2, 3) resolving the problem has the form:

(1.2) uf ="+, w=uld, P=-—1,

T* is the amplitude of the temperature. In addition, the following symbols are used:

)8 ~——{h’-+(l +e)hi+ IR+ + o) —am ),

Ry h — ol e=um m 3A+2,u
(1.3) NS oo Ge=omifon Resine, = 2_}_2#
L 1_e

where @ is the frequency of vibration, » — the diffusivity constant, Ay —
Lamé constants, ¢ — the density, ¢, — the coefficient of thermal dilatation and
7 is the coupling quantity of (1.1). The quantity ¢ in (1.1) is the constant intensity
of plane heat source, 4, — the coefficient of heat conduction and § = O(x) — the
Dirac function.

Theroots k, 5 are functions of the coupling parameter &. Denoting k; ; = ky.s(e),
we have

(1'4) k:.s(o) = hx.s .

Let us write the roots (1.3) in another form, convenient for discussion of the radia-
tion conditions

(1.5) ky =l_/—_"_'_ (]/Vﬂl+b +al_‘]/l‘ _"51)
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where

&= B+ —=V VBT B +a,

V2
1 e

o wo(1+e)——51/r/a3+b: —ay;
1.9 =57 VVaT B a1V ViThi-a),
where

2 1 V 3 '3_

az = hl__ﬁ—_ Vas+bs +a,,

by -—wa(1+£)+ ]/I/aa“l'ba
and

ay=M—oi(1+6?, by=2wy(l—e)hi, wy=wlx.

For ¢ =0 we obtain:

1 L= 1 -5
(1.7) ;/_E]/Va3+b3+ao=hif ﬁl/l/a3+bﬁ—“o=wm

a =2k, b=0, a=0, by=20,.

All the roots written above are arithmetic, that is assuming
(1.8) kg = a15— iBrs»
we have: '

0,5 >0, p3=0.

It is seen that for a vector of zero divergence ¥, the radiation condition in the
plane (r, 0) has the form:

Y= eghrQ(1?),
(1.9) agpi

W — g=inrQ(r-92),

where 0(£) is a quantity as decreasing as & for & — 0. The quantity &, being real,
el*"'¥ corresponds to the solution

2 el(oat—-'ur) 2

which is a wave with the phase propagating to infinity.
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For the potential vector, two systems of radiation conditions should be satisfied:
PH(ky.p) = €720 (1),

(1.10) OD* (ky o)

or + fk;_.a@* (kl.S) = g—l'rh.a(](,w-sm) .

The conditions (1.10) give solutions of the Helmholtz equations, corresponding
also to a wave with the phase propagating to infinity

(1.11) iR Pt pil@i~aan

In addition, we are concerned here with complex absorption of the wave. The po-
tential wave vanishes more rapidly at infinity than in the corresponding non-coupled
problem, such vanishing rate being determined by the imaginary part of the
roots k..

Let us denote the total solution of our boundary-value problem by [S). This
solution may be represented in the form of a sum

(1.12) [S*]= [S71+ [Sh]
where [S7] corresponds to the infinite plane, thus satisfying some of the boundary
conditions on the surface of the cylinder and the radiation conditions at infinity,
and [S}] is a correcting solution. This correcting solution [S7;] should also satisfy
the conditions (1.10). It is evident that the component [S7] can be so selected that
the temperature 77 satisfies the impermeability condition on the surface r = a@ of
the cylinder.

Let us denote:
(1.13) =T —T7, @} =0}—&;
F(k) is the solution of the equation

(1.14) CRFy (k) 2—%6@])
for the infinite space, the radiation conditions being satisfied. We obtain

(1.15) F@=—32%0) _ g e™

W O 2, ik
Making use of the second of the Egs. (1.1), we obtain:

~ mg 1 1 1 | m . °
010 0=~ 5 (g ~ oo = gt

The first of the Eqs. (1.1) yields the temperature:

21 - 1 .
WD B= OO = o [(— R B B () — (— KE R B (k).
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The functions @7 and Ty corresponding to the infinite space without a hole can
be found in W. NowAckr's monograph, [3]. Making use of the expansion

. f(:k) 1 for n=0,
(1.18) Fp (k) = 2%2’(—1) D) o 1.0 a,.={2 G sl

n=10

where 7,(x) is modified Bessel function of the first kind, it is seen that the satisfaction
of the impermeability condition for temperature for r = a requires the superposi-
tion on the components of the sum (1.18) of appropriate components containing
modified Bessel functions of the second kind. We find

(L19) B} = ka—f,; (U k) — i (o)) — 13 ko) — F3 )

(120 T = g A=K+ B (ko) — (— KL+ B P (] —
— [(— K3+ M) Fy (ky) — (— k3 +- ) Fy (kp]},
where F; (k) satisfies the equation

(1.21) CRFy =0,

and has the following sum representation:

v 4\ . Il(ika) K,(ikr)
(1.22) Fz(k)-—mg(-—-l) bRy i o5 n0.-

It is seen that the functions @; and 77 satisfy the conditions

oot | _, oI

or r=a ar r==a= 0-

(1.23)

In the solution [S7], we assume (%), = 0. Therefore, the stresses produced by
the potential @ and the temperature 77 are determined from the equations, [4]:

(1.24) (opy = 2u(Py, i — Dy, ik 6!})+95Ud§1 , bLik=1,23.

In the case of cylindrical coordinates we find, in view of the conditions (1.23), the
following sum representation of the load on the cylinder:

| = luCZ (— 18, (hahe — n?) x,.(*kqa) !;f;(rkla) —
(1.25) g
(of ),a =uC 2 (=14, Zn (rkaa) x" (,kla) (cos nb) 4,

Nn=0
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where

1 qm
wWO=TRE, T

To suppress the stresses on the boundary of the cylinder we add to the state
[S3] the state [Sf;], and solve the following system of equations:

RD5, =mT, R =0,
(1.26) ;3 030 =0, (=0,

with the boundary conditions for stresses determined by (1.25) and with thermal
insulation for r = @, and appropriate radiation conditions.
The state [S}] may be assumed in the form

(1.27) [Sn] = 2 (x5 [5':]+y: [;'-':D,

1
where [S7] is the potential state, and has the form:

(1.28) DY = — k2 H® (rky) cos n0+f, [ — kg 2H® (rky) cos nf],

where H{¥(x) is Hankel function of the second kind selected in agreement with the

radiation condition (1.10). The function @F; satisfies the second of the Egs. (1.26),
because

PH® (kr)cosnf =0.

The coefficient f, in Eq. (1.28) is so chosen that the temperature obtained from
the first of the Eqs. (1.26) satisfies, for r = g, the condition

oy .
(1.29) S 0.
We obtain, therefore,
(1.30) Tﬁ=—;—[—kﬁ(hi—k§) [ (rke) +

kA — I H:‘(?-) k
i ki-lEh-lf —_ kg) H ;(’)Ezk:)) kst (i — k) HP ("ks)] cos nf,

. ki (B — k) H,® (ky0)
(1.31) & = [-k;EHf,”(rkl) + ;:;1 (’é_ B H® (k:a) ks H®(rk;) | cos nb .

It is seen that the functions (1.30) and (1.31) just obtained satisfy the radiation con-
ditions (1.10). It is also seen that for £ =0, the Eqs. (1.30), (1.31) and (1.10) become
those of the corresponding non-coupled problem.



Coupled Problems of Thermoelasticity 9

To satisfy the boundary conditions for stress, let us calculate:

(OF) = W[ — 2072 (r Dy, + Dy, 0p) — BDE] = pAL(wr) cos 10,

(1.32) iy i
(0re)ro = p[—2r2(Py — rPyy ), ] = uCi(wr) (cos n0)sg,

where

(1.33) A (wr) = r- {~ k2 [(2n2 —H2r2) H® (kyr) —2rkey HL® (rky)] +

Je (2 — K2) H.® (ak
e gy a* [ — Ky HS® () — 2rky L ) L

(1.34)  Cy(owr) =22 { ky® [H® (eyr) — Feyr H,® (keyr)] —

08— k) H® (kya)
Kt (2 — k) H,® (kga)

3 [ () — oo L) }

The remaining stresses, which are of the potential origin, are computed according
to (1.24) from @5, (1.31).

The two load components (%), and (6%), taken from the set of correction com-
ponents, originating from the rotational vector have the form [5]:
L AY— () c
(1.39) o (c:, v = uB}% (wr) cos nf,
(02,0 = uDE (wr)(cos nb),g,

where
B (wr) = 2r-2n2[H2 (har) — hor H,® (ha?)]
D (wr) = r=2{[(hyr)* — 2021 H{? (hyr) + 2hor H,® (har)} .

The condition of vanishing of the cylindrical surface r = & yields the coefficients

{xi} {vi):

;= Ol (170, D=1 08D (i) — G~ D50,
1 "3

(1.36)

(1.37)

35 = @y~ 1y, w108 [ 10)— (i — ) (el

A¢ = At (wd) D(wa) — BE(wa)Ci(wa) -
The equation for the temperature field in the second state has the form:

138) TH= % N li——k;’(h‘{—k{)H},”(klr) £

n=0
et (2 — 12 H (k)
T ki — k) H® (ka)

k2 (h2 — k3) H® (kar)] cos nf.
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2. Coupled Stress and Temperature Concentration at a Spherical Cavity

The case of the sphere is analogous to that of the cylinder. Let the plane of the
heat wave in the infinite body be normal to the axis of x; = R cos @ of spherical
coordinates (R, 0, ). Let us consider a spherical cavity in the space with its centre
located at the origin. Let us assume also that the spherical surface is impermeable
to heat and free from stress. Thus, the cavity is flown past by a periodic uniform
heat flow, the process being identical for every meridian. The problem is therefore
axially symmetric, the symmetry axis coinciding with the xj-axis. Similarly to the
case of the cylinder, we assume that the material constants are independent of tem-
perature. With these assumptions, our aim is to solve the system of equations (1.1).
The radiation conditions have the following form. For the rotational vector:

lP" iz e—mh,g(’ R—-l) .
(2.1). a'fa

WY = e~ F0(RY) ;

and for the potentials coupled with the temperature
P*(kyq) = eFaa (R,

2.2) 0D* (ky4)

5_R + f‘k]__a@* =1 g_ixkl" O(R_E) -

In this case we also have solutions with complex absorption of the type:
(2.3) % pPuaR gi(oi—Ra,)

Let us denote the total solution of the above problem for the sphere by [S]. This
solution may be represented in the form of the sum:

2.4 [S*) = LSt]+ [Sn

where [,Sy] originates from the potential # Eq. (1.19). The functions Ff(k) and
F3(k) can be represented in the form of the sums:

Ff (k) = ]/2352( 1)"( z);k (*;;gff)fp,,(cos 0),
@2.5) A=)

i i ULy () 1 Koy (R)
= /% e i e -0,

n=0

where

&=z (:e)z—7 @,
(2.6)

KL = K; (2)e— 5 Ky(@).
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It can be verified, by means of the relations (2.5), (2.6), and (1.19), that

oT? D!
@7 R R

=0, =0.

R=a
In the case of spherical coordinates, we obtain from (1.24) and (2.7) the following
sum representations of the load on the sphere R = @ originating from the poten-

tial @7 :
1 1
(0D)rr 5 = #SZ o i (H+ -2—) |:—2' a*hy—n(n+ 1)] -
W, ik k
(2.8) % +!(I 3;:) kg -I‘}(jl l‘a) ‘}) (COS 0) s
* k. Ty
(GI)RQ G = #SZ (,__ I)H(H F" ) J'H*]l('l aa) k2 {_](f a)rgo (COS 9)], i
where
_ 1 _qmy/2n
LO=mme ST @
The correcting solution [,Sy;] has the form:
@9 LSil= D) ( [Sa+»: 152D,
N=(

1
where [(Sp] is the state originating from the potential

(2.10) - {- k2 R H®, (k,R) +

k? (0 — kDH]'24 (k) -
kg® (h — k) [H]' 2y (kaa)

The function H,E?Q*(.-’cR) is Hankel function of the second kind, and the order
n -+ 1/2 selected to satisfy the radiation conditions (2.2). It is seen that in the
neighbourhood of R = oo the potential state [ @F; is composed of two interfering
waves (2.3) with two different complex absorptions and two different phases
propagating to infinity

n ‘ZR"”'H:[-ﬁ-}l(kﬂR) } P,(cos 0).

(wt—Ra;) and (wt— Ray).

The temperature field is composed of two wave types with the above phases and
analogous dampings:

@11 Ty=— x:{~k1‘2(ﬁi—k§) R H@1 (R +

le® (hy — KD [H)'§2, (kaa)
ky* (hi — k) [H] 34 (ksa)

+ (2 — KDk R—'f:Hs?agckam} P, (cos 0).
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The load components of the sphere R = a originating from the potential (B, can
be obtained from the equations:

(qﬂ'n)ﬁa = p[— 4R D, g — 2R cosec 0 (sin 0, Pfr,0), o— h3, L] =
(2.12) = pA’(wR) P, (cos 0),
1 =1
(SG;I)RG For #[ZR—l sqs;I,R —2R* s@: 30 = pC: (w'R)[g)n (COS 6)] 20s

where
A (@R) = R—‘a-{ K2 [(2n(n+ 1) — RoHE) HEy (e R) —
, K2 (1 — k) [ 24 (x)
i @ (k, *
213 YR+ oz s~ (T @, (e ™

X k3 [(2n(n+1)— R2h3) HE (ko R) — 4[H]' 4Ky R)]}

Cs(wR) =2R"h {—- k[ [HY 24 (kR — HE, (ke )] +

ki® (h — KD [H] 2 (kaa)

R DT, () IR (R —H, G‘*R)I} '

The load components (.07 gz and (,6{)g, taken from the set [jﬁ] of the correcting
components originating from the rotational vector have the form, [6]:
(51rr = (1 + )nBy@R)P, (cos 0) ,

2.14) LS2): l
(03)re = 1D} (@R) [P (cos 0)] 4,

where
Bi(@R) = R-P[2(hy R H, &) (h,R) — 3HE; (hoR)] ,
D3(wR) = — R52{[(h,R)* —2(n— 1)(n+ 2| HR3 (h R) +
+ 21, RH, 3 (hy R) — 3H )y (h,R)}

The condition of zero load on the spherical surface R = a has the form:

= SAUD)U(=1)"(r+d) Pt (Ikﬂzz 97,,.,_; (ik 10)

(2.15) X {n(n+1)B; ’(wa) — [}a*hg — n(n+ 1)) D;(wa)} ,

Vi =SUY(=1) @+ "”*('k““) f;"“('k‘ 2

X {A;'. (wa) —[$a*hE — n(n+ 1)1 Ci(wa)}
Ay = 43(wa) D(wa) —n(n + 1)Bi(wa) i (wa) .
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The above problems of the coupled stress and temperature concentration at
spherical and cylindrical cavities include steady-state stress concentration problems
treated by A. L. FLORENCE and J. N. Goopier in Ref. [7].
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Streszczenie

WARUNKI WYPROMIENIOWANIA SOMMERFELDA DLA SPRZEZONYCH ZAGAD-
NIEN TERMOSPREZYSTOSCI. PRZYKEADY SPRZEZONEJ] KONCENTRACJI NAPREZEN
I TEMPERATURY DOOKOLA OTWOROW WALCOWYCH I KULISTYCH

W pracy rozwazono dwa poélograniczone obszary sprezyste: przestrzen z otworem walcowym
i z otworem kulistym. Dla tych obszardw poszukiwane sg rozwigzania rOwnan sprzezonych, spel-
niajacych okre$lone warunki brzegowe na powierzchni walcowe;j i kulistej oraz odpowiednie warunki
wypromieniowania w nieskoficzono$¢. Z postaci réwnan sprzgzonych wynika, ze czgd¢ rotacyjna
wektora przemieszczenia rozwiazujacego problem powinna spelnia¢ klasyczny warunek Sommer-
felda, natomiast cze$¢ potencjalna spelnia¢ powinna podobne dwa warunki z parametrami zespo-
lonymi ky i k;. Wykazano, Ze w nieskoriczonosci fala potencjalna zanika szybciej w zagadnieniu
sprzezonym niz w odpowiednim problemie niesprzgzonym i szybkoi¢ zanikania jest okre$lona
wielkoscia czgéci czysto urojonej pierwiastkéw k, 5. Warunek wypromieniowania dla temperatury
jest okreslony przez dwa warunki dla sprzgzonych potencjaléw. Sprzezony potencjal i temperatura
skladaja sie z dwoch typow interferujacych sig fal [por. wz. (2.3)] o dwéch rozmaitych pochlanianiach
zespolonych i dwoch réznych fazach biegngcych do nieskonczonosci. W przypadku braku sprze-
Zenia otrzymuje sie¢ klasyczne warunki wypromieniowania z teorii drgan ustalonych.
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Peawme

VCIIOBHUA UBJIIYUEHH A 30MMEPDETLIA I COIIPSDKEHHBIX BAITAY TEPMO-
VIIPYTOCTH, IIPMMEPbI COTIPSDKEHHOM KOHIEHTPALIMHM HAIIPSDKEHHIN
W TEMIIEPATYPEI BOKPYI LIMIIMHIOIPHYECKHX
U IIAPOOBPA3HBLIX OTBEPCTHH

PaccmaTpHBalOTCA [IBE TNOMYOrpaHHYeHHBIE YIOpYrHe oOJIACTH, @ HMEHHO: IIPOCTPAHCTBO
¢ HUAHHAPHYECKHM H 1HAPo0GpasHhIM OTBEPCTHEM M JUIA STHX ofJacTell [alOTCSA PElIeHHA Co-
TNIPAMKEHHBIX YPABHEHHI, YIOBJIETBOPAIOLMX ONPEIEIeHHBIM KPAeBhIM YCIOBHMAM HA IHIHHADH-
yeckoit 1 1mapoofpasHoil MOBEPXHOCTAX U COOTBETCTBYIOIUM YCIIOBUAM H3IyUeHHS B GecKoHeY-
Hocth, VI3 GopMBbl cONpSKEHHLIX YPABHEHHIT BBITEKAeT, YTO BPALLATENEHAT YACTh BEKTOpa
NepemMelenus, Peiiaiollero 3afauy, A0IDKHA YAOBJCTBODATL KJIACCHUYECKOMY YCIOBMIO 3oM-
mepdensaa, Toraa Kak TMOTEHIUANBHAR YACTE JOIKHA YIOBICTROPATS ABYM MOMOGHBIM YCIIOBHIM
€ KOMIJIEKCHBHBIMH NADAMETPAMH &, ¥ ky. B pafoTe mokaskiBaercs, YT0 NOTCHUHAJIEHAS BOJIHA
B CONpsOKEHHOI 3ajade 3aTyxXaeT CKopee, YeM B COOTBETCTBYIOIIEH HECONpsKeHHOH 3ajaue
H CKODOCTh 3aTYXaHHA ONpPEJC/SETCH BEIHUMHON YACTH UYHCTOMHHMOI KopHeit &, ,. Yciosue
M3JTYUYEHHA 1T TEMIIEPATYDEI ONPeIe IAeTCA ABYMA YCIOBHSAMH JAJIA CONPSIKEHHBIX ITOTCHITHAJIOB,
ConpsiyeHHBIT TOTEHIHAI 1 TEMIEPATYPa, COCTABIAIOTCA H3 ABYX THIIOB HHTEpP(epPHPYIOLIHKCS
pomH [cp. dopmyny (2.3)] ¢ HBYMSA DasIWIHBIMG KOMIUIEKCHBIMME MOTNOIEHMAME H C JBYMS
pasmuuibivg hasamu Geryiump B SeckoHedHOCTh, IIPM OTCYTCTBUN CONPMAMKEHUS MONYYAIOTCH
KJIACCHYECKHE YCIOBHA MATYYEeHHA U3 TCOPHH YCTAHOBHBIUMXCA KoseGanmii,
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