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THE PLANE LAMB PROBLEM IN A SEMI-INFINITE MICROPOLAR ELASTIC BODY

W. NOWACKTI and W. K. NOWACKI (WARSZAWA)

1. Introduction

The two-dimensional Lamb problem in the classical dynamic elasticity is formulated
as follows [1]. It is required to determine the state of stress and strain in the elastic semi-
space x; => 0 with the loaded boundary x;, = 0, depending on the spatial variable x, and
the time ¢

In this paper we intend to solve the Lamb problem in the elastic micropolar medium.
In the asymmetric elasticity the problem is rather complicated, for in such a medium the
deformation is described by the displacement vector u and the rotation vector w. We
shall establish that the loadings in the generalized Lamb problem can be divided into two
groups, the first generating the displacements u= (4, u,, 0) and the rotations w
= (0, 0, w;) while the second, the displacements u = (0,0, ;) and the rotations w
= (w;, wy, 0). To solve the Lamb problem we shall apply the double Fourier integral
transform. In particular we shall examine the influence of loadings harmonic in time and
we shall perform the transition from the two-dimensional to the one-dimensional problem.

2, The Fundamental Equations and Relations

The point of departure are the equations of the linear micropolar theory [2, 4]. We
consider an elastic, homogeneous isotropic centro-symmetric body. Under the influence
of external loadings there arises in the body the displacement field u(x, ¢) and the rotation
field w(x, 1), depending on the position of the point x and the time 7.

The state of strain is determined by the non-symmetric strain tensor y;; and the cur-
vature-twist tensor #;;, where
2.1) Vij = U j— €Oy, %=y, 1,j,k=1,2,3.

We apply here the tensorial index notation in the rectangular coordinate system; &
denotes the unit antisymmetric tensor.

The state of stress is described by two non-symmetric tensors, the stress tensor oy; and
the couple-stress tensor ;.

The relations between the state of stress and the state of strain are linear; namely we
have

2.2) o = ()it (—) yi+ Ayu by,

g = (4ot (y—8) #iy+ P b
The quantities u, 4, o, f, y, £ are material constants,
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Inserting (2.2) into the equations of motion

oji, i+ Xi = oy,
' (2.3) .
Eiji Ot 1Y = Jivy

and expressing the quantities y;, #;; by the displacement #; and the rotation w;, in ac-
cordance with the formulae (2.1) we arrive at a system of six differential equations, which
we represent in the vectorial form

() Viu+(A+p—e)graddivu+2arot w+X = ou,

2.4)
( (y+e)Vw+(y-+p—e) graddivw —daw-+2arotu+Y = Jé&.

In Egs. (2.3)-(2.4) X denotes the body force vector, Y the body couple vector, g is the
density and .J the rotational inertia. The dots denote the time derivatives.

It is evident that Egs. (2.4) are coupled. They become independent when a=20. In
this case we have the following system of equations:
2.5) *u+t(A+-p)graddiv u+-X = pii,
& (r+e) Vot (p+pf—e)graddivw+Y = Ji.

Equations (2.5), are the displacement equations of the classical elasticity, while Egs. (2.5),
describe a hypothetical elastic body in which only rotations occur.

Consider a particular case in which the external loadings, the body forces and moments
and the vectors u, w depend only on the variables x;, X,, 7. In this particular case we are
faced with two independent systems of equations

(Ju—l—a:)V’ul+(‘u;l-l—a)ale+2aazw3 = pily,
(2.6) (40 Vit (u+ 21— ) 0,6 —208, w3 = pity,
(y+8) Vioy—dows+20(0, uy— 0p1;) = Jéds,
and
(&) Vo, +(y+B—e) 0, x—4ow, +200, 13 = Jioy,
(2.7) (y+&) Ve, (y+B—e) 0y x—daw, — 200, ts = Jidy,
(r+0) Vus+-20(0, 0, —0, ;) = pils.

In the above equations the body forces and moments have been neglected (Xi=Y;=0),
further, the following notations have been introduced:

V= ﬁf—t—ai, e = 511,:1—!—62::;, ® =0, w,—}-@zmz.
Consider first the system (2.6). The vectors u = (u;, u,, 0), w = (0, 0, w3) are asso-

ciated with the state of stress

oy 02 0 0 0 13
(2.8) o= iﬁz: o 0 r=[0 0 fn)

[0 0 oy par pzz O |
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Of course, the above stresses depend on the variables x;, x; and the time ¢. According to
the formulae (2.2) we obtain

oy = 2ud u+Ae, oy =2ud ut+le, ay = e,
(2.9) 01z = (0 th+021,)+ (0 — 05 1)) — 20103,
021 = (@1t +0a1) — /(0 y— 0y 1)) +20a3,
and
iz = (480w, sy = (y—e)dws,
tay = (y+e)w3, pzn = (y—&d ;.

The system of Eqs. (2.7) is connected with the fields u(0, 0, u3), @ = (w,, w,, 0) and the
state of stress

(2.10)

io 0 o3 E.ﬂn i 0
(2.11) a=0 0 9o, = |21 22 0 |.
oy o3 0 i{] 0 pn
Furthermore,
013 = (u+a0)0,us+-200,, 03 = (—) 0y ty—20.00,,
023 = (p+0)drus—20w;, 03 = (U—a)duz+20w,,
and

B = 2y0 0+ B, oy = 0w+, pyn = B,
Hiz = y(3| w;—%ﬁzw,)—i-s(«}l wg—@g 0.)1).
Ha1 = y(61m2+62w1)—£(3. wg—ag(ﬂl).

The components of the stress tensor (2.12) and the couple-stress tensor (2.13) are functions
of the variables x,, x, and the time .

3. General Solution of the Egs. (2.6)

The system of Egs. (2.6) contains coupled functions u,, #, and w;. The state of stress
(2.8) indicates that the functions u,, u,, ; may be generated by forces and moments on
the boundary x, = 0, namely by normal and tangential forces on the boundary and a mo-
ment the vector of which lies along the x-axis. These loadings are connected with the state
of stress through the boundary conditions

(}’1[(0, X2, I) = —fl(x?,s f), 0’|2(0, Xa, t) =1 _f2(x2x t)y
1130, X3, 1) = —fi(x2, 1).
Here f, > 0 is the normal loading directed along the positive x;-axis, f > 0 is the tan-
gential loading lying in the plane x; = 0 and directed parallelly to the ~+x,-axis. Finally
/s > 0is a moment the vector of which is parallel to the +x3-axis.
Let us introduce the elastic potentials @, ¥ connected with the displacements u;, 1, by
means of the relations

(ERY)

U = 5‘1@—6297, U = 32@-I-51W.
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Inserting (3.2) into the system of equations (2.6) we arrive at the wave equations

L

(V‘— . af)qﬁ =0,
C
1
(3.3) (vz—c—gaf)!fdpw, =0,

(Vz-—vz—— %—ﬁf)w;-}-ﬂ’z?’ =0,
I

where we have introduced the notations
(2_1_2#’)”2 (“_1_&)1[2 (’.1"|'B )uz , Ay
C[ | | p—— 3 Cz = 3 C4 =\ ) Py =
0 0 J

_ 2a _ 20
p—lf.&—FCC’ '}’+5’

Eliminating ¥ or w; from (3.3), and (3.3); we obtain the wave equations

[(VZ— %8}) (Vz—vz-——é- a:) +CZV’](‘P, ;) =0,

2

(3.4
4o

DI

Performing in (3.3), and (3.4) the double Fourier integral transform defined by the for-
mulae [5]

CZ

B, &) = o [ [ @0, %2, DexpliCad-Hnldvadt,
(.5) =

D(x1, X2, 1) = —12; ff D(x,, &, m)expl—i[(e E+nt)ldEdy,

we obtain the following system of ordinary differential equations with the independent
variable x,:
(3.6) @—8+ahd =0, (@) @—B)(F,d5) =0,
Here
B=+-B—-8) = v—2—di—ai,
A—8) (B—8) = dj(ci—),

0121 0’22-??— {}':i

e’ Cy Ca :

We assume that the loading acting on the boundary is bounded. Under this assumption
the functions @, ¥, w, should tend to zero as |x}4-x}| - co. Consequently the solution
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of Egs. (3.6) is taken in the form
D = Ae—ox,
(3.7) Y = Be—Mi4Ce—han,
iy = Ble~hnif-Cle=,  § = (8—a})',
The quantities B’ and B and C’, C are related by means of Eq. (3.3), or (3.3);.
Equating the coefficients of e~**1 and e—%**, we obtain from Eq. (3.3), the relations
(3.8) B'=xB, C'=mnC,

where

1 1
% = ;(312“52“1-0'%), %y = ;(}3—'52-{—0%)-
It remains to calculate 4, B and C. To this end we make use of the boundary conditions
(3.1) which we represent in the form

|20, 1+ Rel =0 = —fi(X2, 1),
(3.9) [4(81 10, 4-0210) + 08 1y — By 11y) — 2003 3, m0 = —f3(2, 1),
](?+E)al wslm-ﬂ = "‘f!(xh 1).

These equations may be expressed in terms of the potentials @, . Performing the double
Fourier integral transform we have

[2u(02D+ 60, V) + A0 —E) B4 0 = —Fi(&, ),
(3.9) \w[(@3+E) T —2i£0, D]+ (D3 — E) P —2aivs|qym0 = —Fo(E, 1),
(y4-£)0163lx,—0 = —f3(&, ).

Inserting the relations (3.7) into (3.9°), we are led to a system of three non-homogeneous
linear equations for the quantities A4, B and C. Thus, we have

A = ay fitapfrtanfs,
(3.10) B =ty fi+ o fottasfi,
C = ay fit+anfotanfs,

where
1 (2—%y) , .
oy = "Z'-(ﬂ‘l "232—02?‘13-1), 0 = —T—*?—#‘Hi A,
2 2uiExny Ay 0
o3 = @%(lnaz—&ml Oy = — —#E—E*Z‘l— ’
_ J 2 9g2 %20y _ {ﬂz+4ﬁzfz;{z %) [(2#4‘2)52_152]
Uy = [(2# l';»)a A }_A s O3 = (y+£)A s
_ 2uibxy Ay 6 a [Qu-+2) 8*— A8 % Ay
ty = 4 Oy = A )

1
ass = — {48 8—[Qu+ D) O —ENa}

3 Arch. Mech. Stos. nr 3/69
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and
4= 4M2§25(%2—?'-':)11 Aot (ty ar by — 2201 2) [(Qu+ A) 6’ — 41'52],
a;= (B+p+Aj—a—2ay, j=1,2.

Inverting the Fourier transform in the expressions (3.7); and (3.7),, we obtain the formulae

0= _f | 4, me-mexpt—icextnndgan,
@3.11)

S't'f=_2!ﬁ- If(Be"‘l“‘t—|—Ce“?-”')exp[—i(f:cz-i—m)]dfdn;

A, Band C are given by (3.11).

Making use of the relations (3.2) and (3.7); we obtain the formulae for the displace-
ments u,, ¥, and the rotation ws:

= —IE ff [0Ade—9% —i&(Be—M14Ce~"*1)|exp[—i(x2 &-+nt)ldEdy),

(3.12) whm=— 21:; ff [iEAe=3%1+ (A Be~h%i A, Ce~aexp[—i(x, E+nt)]dEdn,

1 o0
03 = o [ [ Be s Ce v expl—iCaé-+ni)ldé .

Knowing the displacements and the rotations we can calculate the deformations from
the formulae (2.1) and the stresses from (2.9) and (2.10).

Consider now the particular case oo = 0. It is evident that here Egs. (2.6) become
independent. We obtain the system of equations

pVu - (p+2) 0y e = pily,
(3.13) UVt () By = o,
(y-+6) V2, = Jiy,

and the wave Egs. (3.7) take the form

1
(vz*;lz—af)aﬁ ~0, (vt?}af)ge 0,

2

1/2
(VZ—-ITEJ,Z) w3 = 0, 2‘2 = (-"u—) ¥
C4 Q

(3.14)
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Y

The solutions of these equations satisfying the condition (@, ¥, w;) — 0 as [x}+x3| — oo
(after having performed the Fourier integral transform), are the following:

b = Ao, §=(E—a)n,
(3.15) P = Beon,  Jy= (E—a))?,
By = Cern, o= (B—0})'2,

The constants 4°, B°, C° are to be determined from the boundary conditions (3.10), in
which we set & = 0. Thus, we have

(3.16) A° = o fitolfy, B = o fitohfs, C= ods /i,
where
o _ u(E+A) o _ 2l
iy = An ] oy = Ao_'
o _ 2uitd 0 pF—2E—)
n = Ao 3 0oy 5= — __—A{)—_’
1
0y =——, Ay = [2u0?—A(6*—E)] (A2 +EH)—4u2E2H ).
Hence,
= ﬁ f f [4°6e -1 —iEB e~ hxi]exp[—i(x, +n)]dédn,

e _—% f f [i6A°e~"14 Ao B°e~**)exp[—i(xo +nt))dEdn,

w3 = 2;: :[ f Cle~roxiexp[—i(x2&-+nr)ldédy.

Observe that the displacements u,, 1, can be generated only by the loadings ¢,(0, x2, )
= —fi(x2, 1) and 01,(0, X, t) = —fa(x2, t). The moment loading u,3(0, X2, 1) = —f3(x2, 1)
produces the rotation w;. The formulae (3.17) for u, and w, describe the classical elastic
body, while the formula (3.17); refers to a hypothetical body in which only rotations and
couple-stresses may exist.

4. General Solution of Eqs. (3.7)

In Egs. (2.7) the displacement and rotation fields are described by the vectors u =
= (0,0, u3) and w = (w,, w,, 0). The state of stress (2.11) indicates that this field may
arise only under the influence of loadings expressed by the boundary conditions

w110, x5, 1) = —1 (2, £), 1200, X2, 1) = —h(x2, 1),
0130, X2, 1) = —Li(xa, 1).

(4.1)

a»
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Here f; > 0 represents the moments with vectors parallel to the +-x;-axis, while f; > 0
describes moments the vectors of which are parallel to +x;; f5 = 0 is the tangential load-
ing lying in the plane x, = 0, parallel to the +-x;-axis.

Introducing the potentials connected with the rotations by the formulae

(4.2) W, = 0,p—0p, W= az?"l‘alws

we obtain from (2.7) the system of wave equations

(V"—V%~Lzaf)w =
C3

(4.3) (Vzﬂyz—cizaf)gv—su; =0,

4
2 ] 2 2, .
Vi——0; Jus+pVp = 0;
€3
here we have introduced the notations

4o 2y—|—ﬁ)”2 2 20
i o = = = .

Eliminating v (or u3) from Egs. (4.3); and (4.3);, we arrive at the wave equation

(44 [(‘7"—%:33) (VZ‘”Z“%ﬁf)“zw] . u) =0,

2

identical with Eq. (3.4).
Let us perform in (4.3); and (4.4) a double Fourier integral transform, defined by the
formulae (3.5). We arrive then at a system of ordinary equations

(4.5) (O1~E—r5+0)§ =0, (33— (31— 2) (@, ils) = 0,
where
= 1/es,
and 3, 4; have the same meaning as in Eq. (3.6). The solution of (4.5) has the form
,I‘f} =de=™, o= (52 _[_,,2,,_0.;)1#2,
(4.6) P = Be~hx14 Ce~4¥,
i3 = Be=hxf Cle—han,

The above functions satisfy the condition (¢, %, u3) = 0 as |x}4-x3| - co. The quan-
tities B’, B are not independent, similarly to C' and C. Introducing ¢ and #, into Eq. (4.3)s,

we obtain the relations
4.7 B' =B, C =#0C,
where

B pE=M), . P(‘f’ 72)
Ktoi—8’ 7 Bya—E&-
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Let us now express the boundary conditions (4.1) by the rotations w,, @, and the displace-
ment &5, and the latter by the potentials ¢ and . Thus, we have

|2y (0 —0, 0, ‘}’)+5V29”]x1=0 = —Ii(xz, 1),
(4.8) h’[zal52?’+(5%'3§)%”]+8V2'}’|x: =0 = —h(x2, 1),
[(ut-e) 0, 3+ 20(02 940, ) |3y =0 = —h(x2, 1),

Let us now apply to the boundary conditions the Fourier integral transform, making use
of the relations (4.6). After some calculations we are led to a system of three equations
for the determination of the quantities A, B and C. Thus, we have

4= ﬁllﬂ+ﬁl2é+ﬁ13gs
(4-9) B= ﬁ21f1+ﬁzzfz+ﬁzsf;s
C = Buh+Brnbt P,

where
d,e,—d,e — 290k,
B = J—I“Z'}—z: P2 = Ayi (dyJo—d>hy),
i ;
Pz = _Z!_E(Al e;—he), fu= —Zgjé(ﬂez“)’ﬂdz),
B2 = — 4“7’52'12-— [ﬁEz—(Zy-I-ﬁ)az]dz
A »
4 252 2__ _
(410) ﬁ23 s 4 ‘E O'Az_f-{ﬁgﬁ (2},'4 ﬁ)az]ez ]
B = — ‘%ji (cey—yod,),
P50 L
325 A »
= RS BE=Cr D)
33 A

and the following notations have been introduced:
A = doyE (A e,— A e2)+ 4076 (M dy— N2 d)— [PE+ (2y+B)o*] (dy e:—ds ),
@11)  d = Rot+utoayulh, b= Ret(pta)ilh,
ey = p(B+E)+e(B—8), j=12
Inverting the integral transform in (4.6); and (4.6),, we have

‘PIEIE L f Ae~viexp[—i(x, E-+ni)ldédn,

@4.12) "
w:% f f (Be-ir-4-Ce~)exp[—i(uy &+ dEdn.
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Making use of the formulae (4.2) and the relation (4.6); we finally obtain

o, = —2—19_{- ff [oAe~o51—i&(Be~*¥1+ Ce~*1)]exp[—i(x; E+nt)] dE dn,
4.13 1 f? [iEAe="1+ (A, Be~M¥1+4- A, Ce—%x1)]exp[—i(x, E+nt)dE d .
(4.13) o= —7- J 1 2 p 267 UB

(=]
u;=%ff [, Be—h¥14-2, Ce~*1|exp [—i(xo E+nt)]|dE dn.

Knowing the functions @, ®,, u3, we can determine the components of the state of stress
0ji, pj; on the basis of the formulae (2.12) and (2.13).
Consider now the particular case o = 0, which is characterized by independent equa-
tions (2.7):
v+ V2o + (y+p—e)di e = Jiby,
(“.14) -+ V2t (y+B—e) 0y = Jiy,
‘Mvzh'_'g = Qﬁj.

The first two equations concern the hypothetical medium in which the deformation is
described by the rotation angles w; and w,. Equation (4.14); describes the classical elastic
medium ; it constitutes the equation for a shear wave.

Introducing the potentials ¢ and y in accordance with the formulae (4.2) we obtain
independent wave equations

! 1

1 4 1/2
(oo

Performing the double Fourier integral transform and solving the resulting equations
bearing in mind the condition (¢, y u;) — 0 as |x?+x2| - co we have

4.15)

(4.16) § = A%o%, =Bl ¥ i = CO—ow,
where
0o = (£—0)'’  yo=(£—0})'? l= (£—3)'"~

The constants 4°, B®, C° are to be determined from the boundary conditions (4.8) in which
we set o = 0. Thus, we obtain

@.17) A= Bl +Bhh, B = Bui+BLh, 0= B,
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where
_ @)t —8) o _ _ 2ypeik
ﬁ?l‘—‘ _'Z' ey ]2‘—-‘7__:
0 ]
_ 2iykoy 2B~ 1
ﬂgl = Al] ’ ﬁgl = —'__"Ao_'_‘_" ﬁg3 — }J}»‘;'
Ay = R2yoi+Po5—E] [p(E+v8)+e(yo—ED)]—4y*po E204.
Hence

] (=]

Bl f f (o0 A%~ 0"t — £ BOe—voxiexp[—i(Ex, +nt)] dEdy,
1 o0

(4.18) = e ff [I'EAUe—“ﬂ-"'+yoBUE“W']exp[—f'(rf.l:;—l-nr)] dédy,
—09

i ;
g =s _fwf Cletvexp[—i(x, &-4-nt)] dé dy.

The formulae (4.17) and (4.18) indicate that the rotations @, w, are produced by an
action of the moments /(x,1), L(x,, ) on the boundary x, = 0. The displacement
us(xy, x3, 1) is connected with an action of the loading a,5(0, x,, £) = —4(x2, 7).

Observe that the relations (4.17)—(4.18) can also be derived from the formulae (4.9)-
(4.13) by carrying out the transition ¢ — 0.

5. Action of a Loading Harmonic in Time

We shall now examine a particular case of the loading, namely the loading harmonic
n time. Assume first that the boundary conditions have the form

(5'1) ' 0’“(0, x2$ t) = _-ﬁ(xZ)eHim: 0'12(09 X2, !) = 0) ."513(0: X2) f) =H 0:

i.e. the loading is normal to the boundary x; = 0. This loading produces in the elastic
semi-space the displacements u;, u, and the rotation w;. In view of the formulae (3.11)
and (3.12) we have

= = [ [ Ty B~ ey e expl—iCa -+,

652 =~ | [ Gane 5 (hamet dosy e expl—iCerd-+unlds d,

=00

00
w3 = [ [ Bame b one s iexpl—iCad-Hnlddy,



252 W. Nowacki and W. K. Nowacki

where
Fi =5 [ [AGdeorexplicas+ndldnr,
(5.3) - .
= 2—1- f (XZ)efszde -i e'"(‘“"?)dt.

Introducing the notations
00
Fre)=i | Aeniam,
and making use of the known relation [5]
(54) f eithdt = 2n8(h),

—od

where d( ) denotes the Dirac function [7], we obtain

(55) £, m) =V 2mo@—w)f? @)
Substituting now (5.5) into (5.2) and performing the required integration we arrive at the

formulae
o0

f fotys B0 — 8 (o €91-4- oty €=, (8) e~ 100,

U = ]/__ J

——uor

e—iot .
Uy = f [f«fa'ueﬁdx'“l'(zl a218—11x1+ -‘q-z O£3|e“""“)].;bwfl*(ﬁ)e“medf,
Y

e—iwt

Vor _

In the expression in the parenthesis % should be replaced by w. For instance, we have

(5.6)

f [, 0‘219““’“-—%-%20(3,9 "le]q__mf*(g)e—uﬁd‘f

w3 =

2ui& By A
lb'tzl|q-=¢» e — -E—A—i—l ’?:w.
The expressions 8, 4,, #,,  contain the quantities
Ul=i: UZ=1| 0'4=—?1-.
(4] C2 C3

In all these quantities # has to be replaced by w. In particular, the expression

(7)) dyew = 42800 —2) i do+ (s @ A — a0, 20) [(Qut ) 62— 48]y = O,

may be regarded as the condition of existence of surface waves in the elastic semi-space.
In fact, if we consider the homogeneous system of Egs. (3.10) for monochromatic vibra-

tions, the condition of consistency of this system is the vanishing of its determinant, which
leads to Eq. (5.7).
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Equation (5.7) was derived in the paper [6].
Consider now the particular case o = 0. In view of the formulae (3.15) and (3.16)
we have

1 [ s

T ff edie"fi(§, mexpl—iCraé+yn)]dédn,
(5.8) -
' 1 : e |
V= — oz e~ f (&, m)exp[—i(x, &+nt)dédy.

27 JS
Inserting (5.5) into (5.8) and denoting by star the amplitudes of the potentials, we have
i .
errr 0[ 0y =251, f3(E) e,

(5.9)

Y — -1—“ |agle‘iﬂx=|,,=mﬁ*(.f)e""”2'5dr§,
]/2:!1: e

where

0 . w2 |12
"‘(252*@) i (5"7%)
a[1|1|ﬂ=w = _—D'—_'_" ) 0Of21 f=o = '__"_'_"D—__s

B 2._w_2._i2 4 wz)_ o Eim(z_wz 1/2
D—-[Z;.&(E c.f) Ac?}(zf-ag 4p’E ‘E“cf £ ) -

For the particular case of a concentrated force fi(x,, 1) = Pd(x,)e—* acting at the origin
of the coordinate system we obtain [1]

__i a 2&'2 —¥1X gf
¢o* = e .! —R@Q SUJ.SX2d5,t,
(5.10) \
(=] 2{_-2_3_)
» Pl
w2 Gf R e ostnds,
where

w? N R TP Y S R TTY
R(¢) = (26— a2 —48Y B —w?c} ]/ff —w’[c3.
.
Let us now examine a loading varying harmonically in time and defined by the bound-
ary conditions
(5.11) :‘”’11(09 Xas r) == —h(xz)e_’.w': #‘12(05 X2, f) == 0! #13(0: X2, !) =0.
We are faced here with the loading of the plane x; = 0 by moments the vectors of which

are parallel to the -+x;-axis. This loading generates in the body the displacement u; and the
rotations w,, w,. Bearing in mind the formulae (4.13) we have
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Wy = ——'”ff[ﬂ'ﬁue oX—fE(fy e~ M 1By e ”’)]11(5 n)exp[—i(x, E-+nt)]dE d,

($12) o=~ f f (1By €751 (A oy =451 2y e~
%1y (&, m)exp[—i(Exa-+nt)] dédy,

e [ [ B ia e T e, mexpl—iCxa+nldé .

Similarly to (5.5) we have here
(5.13) - L&, 1) = ) 206 (n—w) (&),
where

-

1
I = e ifl(,\-z)ef-*zfdxz.

Substituting (5.13) into (5.12) and performing the required integration, we obtain

—lwt v e :
o= = [ oot B e e R @i,
Van _y
Gl4) w=——= f[’fﬁne 1= (A P e M1 Ay fae” lzxp')]d_’m *(§)e—"24dE,

e fout

Uy = —— f[?"; =|e "'x‘+§¢aﬁ3;€ )zx'],;hwl*(é){?—h'zedf
V2x 2

In particular, the condition

| 2it(aer—yody) |

|Bat = = s

| in=w

means that in the expressions for e,, d;, o and 4 the parameter 7 is to be replaced by w.

Obviously, in the expressions (5.14), 4,-., # 0.

If we seek the solution of the system (2.7) assuming that the boundary conditions (4.1)
are homogeneous, then Egs. (4.8) are homogeneous and lead to homogeneous’ linear
equations for the quantities 4, B and C. Equating to zero the determinant, i.e. requiring
that the system be consistent, we arrive at the equation

(5.15) A€, w) =0,
where 4(&, w) is given by the formula (4.11).
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Equation (5.15) is identical with the characteristic equation for Love waves occurring
in the elastic micropolar semi-space [6].

Consider the particular case « = 0. Taking into account the boundary conditions
(5.11) and bearing in mind the relations (4.16) we have

e—hul' ~ ~ .
p= [ B i@,
]/2:r =t
(5.16) .
_ ™ f| 0 e=vovi| _ T¥ p—itxrg
Yr= ]_/Ej_z__m ﬁile ! [:jﬂmle ‘(E-
Here

2. 2.2 ; 2__ a2
B =—ETE G A Bieh
0 0

2\2 2\1/2 2\ 12
S, oL R [ LA LN
"“_7’[(25 c) “‘5(5 ) (5 ez) ]

Co = (y[I)".

The formulae
(5.17) W) = 0,p—09, W)= D0+0,yp

make it possible to calculate the rotation field w = (w,, w,, 0) in the hypothetical elastic
medium in which no displacement can occur. )

6. One-dimensional Problem of Wave Propagation in the Elas;tic Semi-space

Assume that all factors generating deformation depend on the variables x; and ¢ only.
In this case all components of the displacement vector and the rotation vector also depend

only on x; and 7.
Assume first that the following boundary conditions are prescribed on the plane x; = 0:

(61) 0’11(0, Xa, f} = _'fl(r)’ ‘-712(03 X2, f) == —fé(f), #]3(0, X2, f) = _“fZ(!)

The displacements t,(x,, 1), u»(x, t), w3(x,, t) corresponding to this loading can be cal-
culated from the formulae (3.12) for the two-dimensional problem. Let us first calculate

the quantity f,(, #7) appearing in the quantities 4, B and C [see (3.11)]. We have here

. I T o T
fi(&, n = e jffl (1) eiCad+u0dx, df = T -_Jo filt)eindt hi elxtdy,

Since

[ etdx, = 276(8),
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we obtain

(62) A m=o@Vaio. fm= [ e

1/2
The formula (3.11) can be represented in the form _
= [oasfy Do)+ fs (MY 270 (),

(6.3) B = [ i)+ fo(n) + s fs ()] Y 278 (8),
C = [t fy (%2 o (m)+ s fs ()] Y 226 (£).

Substituting the above quantities into (3.12) and performing the integration we arrive
at the expressions

1 Fo ;
1 F —Aix F 7 =) 7 3 3
64) u=— 75_ (A= % (0yg fo+ 023 f3)+ Ao 451 (o3 fo+ 033 f3)|em0 ",

oo
1 . " "
V2n f [ (a2 4 fy)e M1 4y (ot fo+ s f)e %2 g e~ Py,

w3 =
Since
[60y1)e=0 = (Ez-—ﬁ)lfz———-—a]lez_am el
4 E=0 107 ’
we have
(6.5) i f AQ) .

]/2:!: =

The quantities a,, a,, #1, %3, 41, 43, 4 in the above formulae are to be taken from the
formulae (3.6). In (6.4) for u, and w;. we have

= —. 1202 b
f"*l!e-:u = Azie=.o =I5 azzle___g =D 0‘23]5,,0 = D(‘yil—s) >
b, Iy
“ho= " Dre’ W=~ p> Panbanb,

where

rla = =g o= T A=,
by = rj(uto)—2ug, j=1,2,

1 ;
0 =;(r}+cr§, j=1,2.
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Assume now that in the considered one-dimensional problem we deal with loadings va-
rying harmonically in time. Thus, the conditions (6.1) take the form

6.6) 010, x5, 1) = —fle~1, 0150, Xp, ) = —fe " py5(0, X, 1) = —fie~ ot

where 7, f2, f? are constants. Following the procedure of Sec. 5 we insert into the rela-
tions (6.4) the quantities

fan) = V2r8(—w)fS, a=1,2.

For instance, from (6.4) we obtain

©.7) R e

Clgﬂj
Let us now return to the general one-dimensional problem and consider the boundary
conditions

(6.8) (0, X2, 1) = —4(t), a0, x5, 1) = —5(), 300, Xz, ) = —1h(1).

The rotations w,(x;, ), w,(x;, ) and the displacements ws(x,, t) generated in the semi-
space can be calculated from the formulae (4.14), taking into account that

. S , 1 r
69 [En=VIm®lm, == [0 j=1,23.
V2rn _s

Representing the constants 4, B and C entering (4.9) in the form
A = [Buhm)+Brahu(m)+ s ()Y 278(8),
(6.10) B = [1321ﬂ("?)‘l‘ﬁzz?z(ﬁ)‘*‘ﬁz:fa(ﬂ)]]/i;“s(f)s

= [Buhi () + o) +-Fa b1V 27 6(8),
and inserting (6.10) into (4.13) we obtain

W = ]/—~ f[aﬁ“e ox)e_oly(n)e="'dn,

(6.11) @, = — ]/_12—; f [A(BaaatBashs)e %14 Za(Baly+ Brsha)e %) o€~ iy,
w3 = . f e (Baala+Pasly)e %1 +-2a(Braly+ Prsh)e ) o=y,
Var g

The quantities By, ..., fa3 are given by (4.10). In these formulae we set £ = 0. We have
ﬁlZ|g,=|] = 513|5_o = ﬁJI|E=u — ﬁ21!5=|] = 0.

1 — M2

(6.12) ﬁu|¢__,o = -W, 2|§ 0T N

P2 mn .~
ﬁ23|5_0 = _W: 32|5=0 _'A-r_—! ﬁ331|5=0 =i N 3
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where

1 .
Ty = Hl!e:o' fa = [’12[$=0a *'12,3 =l [a§+a§—1!2i]/(o'§-}-0§ _"2)—!"405(1’2“‘53)],

ny =20+ (utoam;, P = (y+e)rs

5

Pry ;
= ——— = 1,2
] J‘f-i-O'% L] J y -y

N = mnrp,—mip;.
In the particular case of forced vibrations varying harmonically in time on the boundary

x; = 0, we obtain for instance from the boundary condition wu,,(0, x,, 1) = —Qe—int
the expression

i) = V27 6(n—w) -

Substituting the above expression into (6.11) and bearing in mind the value of ﬁ“|£=ﬂ in
(6.12) we finally obtain

iy expl:—fw(t——]/l— rics ’
(6.13) i ) e

Jesy 0P — i

This is a wave propagated in the direction of the x,-axis, undergoinga dispersion. The
wave exists when w? > rjc3 = w§ or when ? > 4a/J. Consider now the case « =0
in which a total seperation of the plane waves in the elastic semi-space occurs. Here we
obtain the system of wave equations

1
( f_c_%alz)“l(xh )=0

(ai~ 12 —wﬁ)w.(x,, =0
C3
(6.14)
e
(ai__ 'E."[‘arz) (ub ”3) = 0,

) 1 n P 1/2
(31—— R-a}) (@;, w3) = 0, Ba/== (E) .

Bearing in mind the conditions (6.1) and (6.8), we represent the solution of the above
equations in the form

i fit) :
W= —r—m —= exp[iox,—int]dn,
1 91/29! _.o‘[ e plioyx,—int]dn

U=

f D) ———= exp(ioy x;—int)dn ,

c;g]/Zn
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f f3 ) explicyx; —int)dy,

w3 =
Ic4|/2:m 5
(6.15)

0 = _c'g.)'f/ﬂr _i I(}) exp[ioyx,—int]dy,
i

Wy = :f(.'-l 1/27_! _OJO‘ 2(??) expli(oqx;—nt)ldy,
i 3(?)

— ___{ S expli(a,xi—nt)ld:

3 902]/23 Ty plilayx,—nh)]dy.

Op =ty Opmm—y  Oy=ae, g =
ér” By &H T

Consider now forced vibrations varying harmonically in time; the conditions (6.6)
and the boundary conditions

(6.16) 11y (0, x5, 1) = —Re=™!,  pp(0, x5, 1) = —Be=™,  us(0, x5, 1) = —Me~iot,

lead to the following expressions deduced from (5.15):

0 X1 10 = X
= - r_ﬁ_e-m(r—cl = -—Urz e M(: f:),
oc;w 0020
; . *
”3 = __i-fg_ e—:m(l‘-—;;), {,U] ur)(r——-)
pCrW Jc;m
X 7 x
= —i{o__ —.’(u(r—c—: o .f/to —tw(r-—-c—:).
Jc;,w - Jegw

Observe that the waves w, u,, uy concern the classical elastic medium, whereas the waves
@y, w;, w3 occur in the hypothetical medium, in which the particles of the body cannot
undergo any displacements.
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Streszczenie

PLASKIE ZAGADNIENIE LAMBA W MIKROPOLARNEJ POLPRZESTRZENI
SPREZYSTEJ

W pracy przedstawiono rozwigzanie tzw. zagadnienia dwuwymiarowego Lamba w sprezystej mikro-
polarnej polprzestrzeni sprezystej. Obciazenia (sitami i momentami) na brzegu x; = 0 rozdzielono na dwie
grupy, z ktorych jedna wywoluje zwiazane z soba przemieszezenie u, i u; obrot w,, a druga obroty w,, w,
i przemieszczenie w;. Do rozwiazania zagadnienia uzyto podwojnej transformacji calkowej Fouriera, Roz-
wazono jako przypadek szczegblny dzialanie obciaZenia zmiennego w spos6b harmoniczny w czasie,
Wreszcie rozpatrzono zagadnienie jednowymiarowe.

Peswome
IUIOCKAS 3AIAYA JIAMEA B MUKPOIIOJMAPHOM VIIPYT'OM IIONTYIIPOCTPAHCTBE

B pabore pgaercs peirenme Tak Hag. ABymepHoii sagaun Jlamba B ympyrom MHKDOIOISAPHOM IIOJY-
npocrpacree, Harpysiu (cuiiamu w1 MomeHTtams) Ha kparo x, = (, pasgeneHs! Ha JBE Tpynmel, ofHA
H3 KOTOPEIX BBISLIBAET CBASAHHBIE C coDOl MepeMerie s 1, u, 1 060poT w;, 8 BTopas 06OPOTEI W, w,
H nepememenne u,. IIpyu pelrenmy 8a/laud MCIIONB30BAJIOCH JBOHHOE MHTerpajbHoe npeobpazoBanue
Dypre. B kavecTBe 0coboro ciyyas paccMaTpHBAETCS AeliCTBHE, HBMEHAIONIENCST raApMOHIYECKH BO Bpe-
MeHH Harpysku. Haxomern paccmaTpueaeTcst ofHOMEpHAs 3ajiaua.
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