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THE PLANE LAMB PROBLEM IN A SEMI-INFINITE MICROPOLAR ELASTIC BODY

W. N O W A C K I and W. K. NOWACKI (WARSZAWA)

1. Introduction

The two-dimensional Lamb problem in the classical dynamic elasticity is formulated
as follows [1]. It is required to determine the state of stress and strain in the elastic semi-
space xi ^ 0 with the loaded boundary xi — 0, depending on the spatial variable x2 and
the time /.

In this paper we intend to solve the Lamb problem in the elastic micropolar medium.
In the asymmetric elasticity the problem is rather complicated, for in such a medium the
deformation is described by the displacement vector u and the rotation vector w. We
shall establish that the loadings in the generalized Lamb problem can be divided into two
groups, the first generating the displacements u = (wi, M2 , 0) and the rotations to
= (0, 0, (o3) while the second, the displacements u = (0,0, M3) and the rotations to
= (a>i,a>2,0). To solve the Lamb problem we shall apply the double Fourier integral
transform. In particular we shall examine the influence of loadings harmonic in time and
we shall perform the transition from the two-dimensional to the one-dimensional problem.

2. The Fundamental Equations and Relations

The point of departure are the equations of the linear micropolar theory [2, 4]. We
consider an elastic, homogeneous isotropic centro-symmetric body. Under the influence
of external loadings there arises in the body the displacement field u(x, /) and the rotation
field u>(x, t), depending on the position of the point x and the time t.

The state of strain is determined by the non-symmetric strain tensor yjt and the cur-
vature-twist tensor xji, where

(2.1) ytJ = «ij— Syf©*, «/i = ft>w, i,j,k= 1,2,3.

We apply here the tensorial index notation in the rectangular coordinate system; ekji

denotes the unit antisymmetric tensor.
The state of stress is described by two non-symmetric tensors, the stress tensor oyf and

the couple-stress tensor fijt.
The relations between the state of stress and the state of strain are linear; namely we

have

The quantities ii, A, a., fi, y, e are material constants.



242 W. Nowacki and W. K. Nowacki

Inserting (2,2) into the equations of motion

[2.0)

and expressing the quantities yjj, x/j by the displacement u{ and the rotation to,, in ac-
cordance with the formulae (2.1) we arrive at a system of six differential equations, which
we represent in the vectorial form

(2.4)
)V

—a)graddivu+2arotc»)+X = QO,

e)graddivw—4<xw+2arotu+Y = Jia.

In Eqs. (2.3)-(2.4) X denotes the body force vector, Y the body couple vector, g is the
density and J the rotational inertia. The dots denote the time derivatives.

It is evident that Eqs. (2.4) are coupled. They become independent when a = 0. In
this case we have the following system of equations:

^V2u+(A+/M)graddiv u+X = gfl,

(y+e)V2w+(y+/S--e)graddivw+Y = Jiit.

Equations (2.5), are the displacement equations of the classical elasticity, while Eqs. (2.5)2

describe a hypothetical elastic body in which only rotations occur.
Consider a particular case in which the external loadings, the body forces and moments

and the vectors u, w depend only on the variables xu x2, t. In this particular case we are
faced with two independent systems of equations

= QU2,

= Jlb3,

(2-6)

and

= Jw2,

= QU3.

In the above equations the body forces and moments have been neglected (Xi = Yt = 0);
further, the following notations have been introduced:

V2 = d 2 + d i e = dlUl+d2u2, x = ć ^ + ^ W j .

Consider first the system (2.6). The vectors u = (uu u2, 0), w = (0, 0, ca3) are asso-
ciated with the state of stress

(2.8) a =

On

0-21

0

an

Gil

0

0
0

0 3 3

» ( * =

0
0
fj,31

0
0
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0



The plane Lamb problem in a semi-infinite micropolar elastic body 243

Of course, the above stresses depend on the variables xt, x2 and the time t. According to
the formulae (2.2) we obtain

(2.9)

an = Ijxdyi^ + Xe, a22 = 2/j,d2u2+Xe, ai3 = Ae,

al2 = fj,(diii2+d2ui)-\-a(dlu2—82ul)—2aa)i,

a2l

and

(2.10)
flu = (y—e)9ico3)

The system of Eqs. (2.7) is connected with the fields u(0, 0, H3), to = (coj, co2, 0) and the
state of stress

(2.11) a

Furthermore,

and

0
0
ff31

0
0
a32

ffl3

O-23 ,

0 0

-a*_

Ha 0

0 ^33

—a)9i«3—2aco2,

— a)S2u3+2aco1,

= 2y31«o14-j8«, /i22 = 2yd2w2+P%,

The components of the stress tensor (2.12) and the couple-stress tensor (2.13) are functions
of the variables Xi, x2 and the time t.

3. General Solution of the Eqs. (2.6)

The system of Eqs. (2.6) contains coupled functions w,, u2 and eo3- The state of stress
(2.8) indicates that the functions ut,u2, m^ may be generated by forces and moments on
the boundary x{ = 0, namely by normal and tangential forces on the boundary and a mo-
ment the vector of which lies along the x3-axis. These loadings are connected with the state
of stress through the boundary conditions

ff„(0, x2, t) = -/fa, t), ff,2(0, Xi, t) - - / i (x i , 0,

/«i3(0, x%, t) = -Mx2,t).

Here / i > 0 is the normal loading directed along the positive xraxis, f2 > 0 is the tan-

gential loading lying in the plane xx = 0 and directed parallelly to the +x2-axis. Finally

/ 3 > 0 is a moment the vector of which is parallel to the +.v3-axis.

Let us introduce the elastic potentials 0, XIJ connected with the displacements ux, w2 by

means of the relations
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Inserting (3.2) into the system of equations (2.6) we arrive at the wave equations

(3.3)

where we have introduced the notations

2a 2a

Eliminating !P or w3 from (3.3)2 and (3.3)3 we obtain the wave equations

(3.4) U * M ^ / J
4 2

Performing in (3.3)! and (3.4) the double Fourier integral transform defined by the for-
mulae [5]

00

1

(3.5)
OO

u Xi, t) = — J J 0{xx, I,

we obtain the following system of ordinary differential equations with the independent
variable xt:

(3.6) (8l-?+ol)$ _ 0, (32-A?) (52-AD (# , S3) - 0.

Here

r\ r] r\

We assume that the loading acting on the boundary is bounded. Under this assumption
the functions 0, W, co3 should tend to zero as |x?+x|| -> 00. Consequently the solution
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of Eqs. (3.6) is taken in the form

0 = Ae~8xi,

(3.7) W= Be~

w3 = B'e-^+C'e-^, 6 = (£2-<r2)1/2.

The quantities B' and B and C", C are related by means of Eq. (3.3)2 or (3.3)3.
Equating the coefficients of e~XlXi and e^2Xi, we obtain from Eq. (3.3)2 the relations

(3.8) B' = xlB, C' = x2C,

where

«! = i (A?-£2+al), * = I (Ai-|2+<r|).

It remains to calculate ,4, 5 and C. To this end we make use of the boundary conditions
(3.1) which we represent in the form

|2,u9,u,+AeU1=o = —Mxi, t),

(3.9) \fj,(dlu2+d1ul)+a(d1u2-d2u1)-2aa)3\Xl=Q = - / 2 f e , <).

Ky+eJSiCUjU^o = -fi(x2> t).

These equations may be expressed in terms of the potentials 0, W. Performing the double
Fourier integral transform we have

(3.9')

\(y+e)dl&3\Xl^o = -Mi, »?)•

Inserting the relations (3.7) into (3.9'), we are led to a system of three non-homogeneous
linear equations for the quantities A, B and C. Thus, we have

A = aii/i+<W2+ai3./3,

(3.10) B= auf1+<x2ifl+0*23/3,

C= ^
where

a n = -j(a1x2A2—azKxAi), cc12 =

«22 = IA4«+AJ o - / i n ~ 2 p , a23 = -

1
a33 = - {

3 Arch. Mech. Stos. nr 3/69
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and

A = V (

flj = (A}+^ 2 >+(A]- f 2 )a -2a^ , 7 = 1,2.

Inverting the Fourier transform in the expressions (3.7)i and (3.7)2, we obtain the formulae

(3-n)

2.71
— CO

A, B and C are given by (3.11).
Making use of the relations (3.2) and (3.7)3 we obtain the formulae for the displace-

ments ul, ih and the rotation co3:

= —i_ f J

(3.12) «2=~~

Knowing the displacements and the rotations we can calculate the deformations from
the formulae (2.1) and the stresses from (2.9) and (2.10).

Consider now the particular case a = 0. It is evident that here Eqs. (2.6) become
independent. We obtain the system of equations

(3.13) /tf2

(y+e)V2«3 = Jib,,

and the wave Eqs. (3.7) take the form

(3.14)
kl/2H*-*. Mi)"2-
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The solutions of these equations satisfying the condition (&, W, a>3) -* 0 as
(after having performed the Fourier integral transform), are the following:

(3.15) W - B"e-^\ X, = (^-ffi)1'2,

The constants ^4°, B°, C° are to be determined from the boundary conditions (3.10), in
which we set a = 0. Thus, we have

(3.16) A" = oUl+ak/j, ^ - ^ Z + o ^ , C°

where

0 ^(g+
au = A

_ 2p£6 0
an~ d ' 22

Hence,

Ml = - • —

— oo

oo

CO

= — J J
Observe that the displacements «i, u2 can be generated only by the loadings <ru(0, .\-2, 0
= —fi(x2, t) and CTI2(0, x2, i) = -f2(x2, t). The moment loading^„(0, x2, t) = -fi(x2, t)
produces the rotation co3. The formulae (3.17) for ux and u2 describe the classical elastic
body, while.the formula (3.17)3 refers to a hypothetical body in which only rotations and
couple-stresses may exist.

4. General Solution of Eqs. (3.7)

In Eqs. (2.7) the displacement and rotation fields are described by the vectors u =
= (0, 0, M3) and <o = (cou w2, 0). The state of stress (2.11) indicates that this field may
arise only under the influence of loadings expressed by the boundary conditions

,«n(0, x2, t) = - / , (x 2 , t), fin(0, x2, t) = -I2(x2, t),
(4.1)

(0W)= -h{Xt,t).

3*
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Here /i > O represents the moments with vectors parallel to the -f^-axis, while f2 > 0
describes moments the vectors of which are parallel to -\-x2;f3 > 0 is the tangential load-
ing lying in the plane Xi — 0, parallel to the +x3-axis.

Introducing the potentials connected with the rotations by the formulae

(4.2) wi = diy—dzf, co2 =

we obtain from (2.7) the system of wave equations

(4.3) \v2-v2~^-d2jV-sih = 0,

here we have introduced the notations

, 4a (2y+p\U2 2a 2a

Eliminating f (or n3) from Eqs. (4.3)2 and (4.3)3, we arrive at the wave equation

(4.4)

identical with Eq. (3.4).
Let us perform in (4.3)i and (4.4) a double Fourier integral transform, defined by the

formulae (3.5). We arrive then at a system of ordinary equations

(4.5) (8\-i2-vl+al)ę = 0, (d\-Xl) (3?-A|)(v, u3) = 0,

where

and X\, l\ have the same meaning as in Eq. (3.6). The solution of (4.5) has the form

ę = Ae~ax\ a =

(4.6) ę = Be-X

u3 = B'e-l

The above functions satisfy the condition (c>, y>, u3) -+ 0 as |x?+xl | -+ 00. The quan-
tities B', B are not independent, similarly to C" and C. Introducing ^ and w3 into Eq. (4.3)3,
we obtain the relations

(4.7) B'

where

1 Af+off2 ' 2 ~
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Let us now express the boundary conditions (4.1) by the rotations al, w2 and the displace-
ment M3, and the latter by the potentials cp and y>. Thus, we have

U-o = -h(x2> t),

(4.8) ly[2di3łC)+(3?-dDV]+eVMci«o = -fc fe . 0.

|(Ju+a)a iM3+2a(a29)+a1v))U1!=o = -/ 3(x 2, f).

Let us now apply to the boundary conditions the Fourier integral transform, making use
of the relations (4.6). After some calculations we are led to a system of three equations
for the determination of the quantities A, B and C Thus, we have

(4.9)

where

Pn =

(4.10)

and the following notations have been introduced:

A = 4ay|2(A2e1-A,e2)+4y2cr|2a1 d2-l2 d,)-

(4,11) d 1 =[2a+(^+a)«JAi, rf2 = P a + ^ +

«, = yttj+enetfj-n j -1,-2.
Inverting the integral transform in (4.6)i and (4.6)2, we have

ZJJt J J
—oo

Lit J J
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Making use of the formulae (4.2) and the relation (4.6)3 we finally obtain

— CO

(4.13)

CO

Knowing the functions ©i, a>2, 1/3, we can determine the compbnents of the state of stress
oj(> #,-,• on the basis of the formulae (2.12) and (2.13).

Consider now the particular case a = 0, which is characterized by independent equa-
tions (2.7):

(4.14)

The first two equations concern the hypothetical medium in which the deformation is
described by the rotation angles a>x and co2. Equation (4.14)3 describes the classical elastic
medium; it constitutes the equation for a shear wave.

Introducing the potentials cp and f in accordance with the formulae (4.2) we obtain
independent wave equations

(4.15)
U/2

Performing the double Fourier integral transform and solving the resulting equations
bearing in mind the condition (<p, tp w3) ->Oas |x?+x| | -* oo we have

(4.16) ę = A°e-a«x\ ij> = Boe-y>x> u3 = C°e-*<>XK

where

a0 = (e-oiyi\ y0 = (p-oiyi*, Xa = (^-al)1'2.

The constants A0, B°, C° are to be determined from the boundary conditions (4.8) in which
we set a = 0. Thus, we obtain

(4.17) A'-Fnh+fak, & = fa
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where

Ao =

Hence
00

C°l ~ ~~2n J J 't̂ o ̂ "e-""*!—zf^e-vo*i] e x p [—/
— 00

CO

(4.18) co2 = - — J J

The formulae (4.17) and (4.18) indicate that the rotations co,, co2 are produced by an
action of the moments h{x2, t), I2(x2, t) on the boundary Xi = 0. The displacement
"3(*i> #2, 0 iS connected with an action of the loading cr13(O, x2, t) = —/3(A'2J t).

Observe that the relations (4.17)—(4.18) can also be derived from the formulae (4.9)-
(4.13) by carrying out the transition a -» 0.

5. Action of a Loading Harmonic in Time

We shall now examine a particular case of the loading, namely the loading harmonic
n time. Assume first that the boundary conditions have the form

(5.1) <TU(0, x2, t) = -/i(x2)e- '°", <r12(0, x2, t) = 0, jUxaCO, x2, t) = 0,

i.e. the loading is normal to the boundary xx = 0. This loading produces in the elastic
semi-space the displacements w1; w2 and the rotation m3. In view of the formulae (3.11)
and (3.12) we have

— CO

(5.2) u2 = ~
— CO

oo

J
In

— OO
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where
00

/i(f, IJ) - -^ J jfi(x2)e-'al exp[i(x2$+r]t)]dx2dt,
—oc

(5.3)
v ' m na

Introducing the notations

and making use of the known relation [5]

(5.4) / e"hdt = 2nd(h),

where <5( ) denotes the Dirac function [7], we obtain

(5.5) /'(£,»?) = l / ^ %-*>)/!*(!).
Substituting now (5.5) into (5.2) and performing the required integration we arrive at the
formulae

]

00

«, = ~^L f [ande-

OO

In the expression in the parenthesis rj should be replaced by co. For instance, we have

7]~UiA

The expressions <5, X2> x2, A contain the quantities

7] 7] rj

Cl C2 C3

In all these quantities ?? has to be replaced by w. In particular, the expression

(5.7) A^m = i V ^ f o - x O V a + f e o A - ^ f l x A j ) [(2^+A) <32-A|2]|,=w = 0,

may be regarded as the condition of existence of surface waves in the elastic semi-space.
In fact, if we consider the homogeneous system of Eqs. (3.10) for monochromatic vibra-
tions, the condition of consistency of this system is the vanishing of its determinant, which
leads to Eq. (5.7).
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Equation (5.7) was derived in the paper [6].
Consider now the particular case a = 0. In view of the formulae (3.15) and (3.16)

we have
oo0 = i

M * "2a J J
— oo

Inserting (5.5) into (5.8) and denoting by star the amplitudes of the potentials, we have
oo

0* = -~ f \a°ne-6

(5.9)
OO

,„. i r , . ,
T*=—~=r Wne-*

V2™ - I
where

0 I _
«2l |

1/2

e-
For the particular case of a concentrated force fi(x2, t) = Pd(x2)e-ia" acting at the origin
of the coordinate system we obtain [1]

oo

** = - — f
anr o

(5.10)

cx

w* = —p- f
an J

co2

im
where

Let us now examine a loading varying harmonically in time and defined by the bound-
ary conditions

(5.11) /uii(0,x2 ,0= -k(x^e-'at, iin(0,x2,t) = 0, /ia(0, xu t) = 0.

We are faced here with the loading of the plane xi = 0 by moments the vectors of which
are parallel to the +x raxis . This loading generates in the body the displacement u3 and the
rotations (olt co2- Bearing in mind the formulae (4.13) we have



254 W. Nowacki ami W. K. Nowacki

ex

.12) ©2 = - ^ J f(5

M3 = - ^ / / ft Aie-
— OC

Similarly to (5.5) we have here

(5.13) h

where

Y2™ -

Substituting (5.13) into (5.12) and performing the required integration, we obtain

(5.14)

e-icui r

l/2n ^

00

p—'ait f

'• ~ j/2^ J

00

1' 9rr J

In particular, the condition

2il(ae2—ycrd2)

means that in the expressions for e2, d2, a and A the parameter r\ is to be replaced by co.
Obviously, in the expressions (5.14), ńn^m =£ 0.
If we seek the solution of the system (2.7) assuming that the boundary conditions (4.1)

are homogeneous, then Eqs. (4.8) are homogeneous and lead to homogeneous' linear
equations for the quantities A, B and C. Equating to zero the determinant, i.e. requiring
that the system be consistent, we arrive at the equation

(5.15) /)(|,co) = O,

where A(£, co) is given by the formula (4.11).
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Equation (5.15) is identical with the characteristic equation for Love waves occurring
in the elastic micropolar semi-space [6].

Consider the particular case a = 0. Taking into account the boundary conditions
(5.11) and bearing in mind the relations (4.16) we have

00

(5. ID)
cc

I/TTT J

Here

c4 = (y/7)1'2.

The formulae

(5.17) <x>x = 9 ] 9 ? — 8 2 f , <x>i =

make it possible to calculate the rotation field w = (a>u m2, 0) in the hypothetical elastic
medium in which no displacement can occur.

6. One-dimensional Problem of Wave Propagation in the Elastic Semi-space

Assume that all factors generating' deformation depend on the variables X\ and t only.
In this case all components of the displacement vector and the rotation vector also depend
only on xx and t.

Assume first that the following boundary conditions are prescribed on the plane xx = 0:

(6.1) ffll(0, x2, t) = -Mt), or12(0, xt, t) = -Mt), ftn(O, x2, t) = -

The displacements Etxi, t), w2(xi, t), OJ3(XI, t) corresponding to this loading can be cal-
culated from the formulae (3.12) for the two-dimensional problem. Let us first calculate
the quantity/L(| , if) appearing in the quantities A, B and C [see (3.11)]. We have here

MC,r,)=^ ffMt)el<.x*+<i»dx2dt = ~ J U

Since
OO

J
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we obtain

(6.2) , V) = f(t)e<»<dt.

The formula (3.11) can be represented in the form

A = f 7 )

C = [«si^

Substituting the above quantities into (3.12) and performing the integration we arrive
at the expressions

(6.4)

CO

«i = —4=r f

0

00

l C

v2n iSince

we have

(6.5)

The quantities ax, a2, xu x2, h, h., A in the above formulae are to be taken from the
formulae (3.6). In (6.4) for u2 and a3. we have

2» i i?

— "l- a23 -« D(y+e) '

where

h = r3Qi+«)-2ctQj, 7 = 1 , 2 ,
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Assume now that in the considered one-dimensional problem we deal with loadings va-
rying harmonically in time. Thus, the conditions (6.1) take the form

(6.6) (r n (0, x2, t) = -fie-'-', <r12(0, x2, t) = -/ 2 V<«", ^ , ( 0 , x2, t) = -f°e->°«

where f°,f2,fi are constants. Following the procedure of Sec. 5 we insert into the rela-
tions (6.4) the quantities

Mr}) = l/2^fl(i?-co)fa, a ,= 1, 2.

For instance, from (6.4) we obtain

(6.7) £ { J) , -

Let us now return to the general one-dimensional problem and consider the boundary
conditions

(6.8) /łu(O, x2, t) = -k(t), fia{0, x2, t) = -Uf), /tl3(p, x2, t) = -kit).

The rotations coi(xi, t), (£2{xlt t) and the displacements u3(xi, t) generated in the semi-
space can be calculated from the formulae (4.14), taking into account that

oa

/— - - If
( 6 . 9 ) / , ( £ , rj) = y2rc<3(f)//»?), Ijirj) =-j= Ij(t)eh"dt, j = 1 , 2 , 3 .

y2^ _^
Representing the constants ^4,5 and C entering (4.9) in the form

(6.10) 5=[j82i

and inserting (6.10) into (4.13) we obtain
00

oo

(6.11) co2= ~ f [A1(

o)3 = -4= f t^itó+^ye^^+^tó+ftsye-^l^o

The quantities fin, ..., f}33 are given by (4.10). In these formulae we set I = 0. We have

(6.12) /3,
1

-. ft f=o- iV '

Pi
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where

N=

In the particular case of forced vibrations varying harmonically in time on the boundary
Xi = 0, we obtain for instance from the boundary condition fj,n(O, x2, t) = —lle~imt

the expression

fa) = \/2nó(r)-co)Ą:

Substituting the above expression into (6.11) and bearing in mind the value of
(6.12) we finally obtain

(6.13) coi(x, t) = —

m

2—col
This is a wave propagated in the direction of the x raxis, undergoing a dispersion. The
wave exists when w2 > rlc\ — m\ or when co2 > 4a//. Consider now the case a = 0
in which a total seperation of the plane waves in the elastic semi-space occurs. Here we
obtain the system of wave equations

J , t) = 0,

(6.14)

(si—g-8?

Bearing in mind the conditions (6.1) and (6.8), we represent the solution of the above
equations in the form

00 „



The plane Lamb problem in a semi-infinite micropoiar elastic body 259

(6.15)

DO m

= — L==- J • -^••C02

jcAy2n
— oo

oo mf
where the following notations have been introduced:

rj rj t] 7]

C\ ' 2 c2 ' 3 c 3 '
 4 c 4 '

Consider now forced vibrations varying harmonically in time; the conditions (6.6)
and the boundary conditions

(6.16) ,«n(0, xi, t) = -/?e-h"', /zl2(0, x2, t) = -Ąe-'m\ u3(0, x2, t) = -/3°e-'w,

lead to the following expressions deduced from (5.15):

QC2O)

e , tuj = « 3
QC2OJ Jc3m

il\ -h>(t-x-i) if! -iJt-2)

Observe that the waves U\, u2, w3 concern the classical elastic medium, whereas the waves
co,, coi, co3 occur in the hypothetical medium, in which the particles of the body cannot
undergo any displacements.
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S t r e s z c z e n i e

PŁASKIE ZAGADNIENIE LAMBA W MIKROPOLARNEJ PÓŁPRZESTRZENI
SPRĘŻYSTEJ

W pracy przedstawiono rozwiązanie tzw. zagadnienia dwuwymiarowego Lamba w sprężystej mikro-
polarnej półprzestrzeni sprężystej. Obciążenia (siłami i momentami) na brzegu Xi = 0 rozdzielono na dwie
grupy, z których jedna wywołuje związane z sobą przemieszczenie u{ i «2 obrót w3, a druga obroty to,, co2

i przemieszczenie «3. Do rozwiązania zagadnienia użyto podwójnej transformacji całkowej Fouriera. Roz-
ważono jako przypadek szczególny działanie obciążenia zmiennego w sposób harmoniczny w czasie.
Wreszcie rozpatrzono zagadnienie jednowymiarowe.

P e 3 10 M e

nJIOCKAa SAflA^A JIAMBA B MHKPOnOJMPHOM ynPYTOM nOJIYnPOCTPAHCTBE

B paSore flaexcn pemeime TaK Ha3. flByMepnoH 3afla^H JlaiviSa B ynpyroin MHKponojiHpHOM no^y-
npocTpaHCTBe. Harpy3KH (cnnaMH H MOMeHTaMH) Ha Kpaio x, = 0 3 pasaejieiiw Ha #Be rpynnbi, oflHa
H3 Koioptix BH3tiBaeT cBH3aHHbie c CO6OH nepeMeineHHH «,, u2 H oSopoT co3, a BTopan o6opoTW »(, (oz

H nepeMemeHue u3. IIpn peuieHHH safla^H Hcnojit30Bajiocb flBOHHoe HHTerpanbHoe npeo6pa3OBaiffle
4>ypbe. B KaqecTBe oco6oro cjiy^aa pacciwaTpHBaeTCH fleftcTBHe, H3MeHHK>meftcH rapMOHH^ecKH BO Bpe-

Harpy3KH.
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