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1. Introduction

The aim of the present paper is to find a method for determining the displacement
u (x, f) and rotation w (x, 7) field formed in an infinite micropolar elastic medium
under the effect of action of body forces and body couples.

We shall consider an isotropic, homogeneous, centrosymmetric elastic medium
wherein the displacement and rotation fields are described by the linearized equa--
tions of asymmetric elasticity

(1.1) (#+4-a) V2 u-+(A+4-% — a) grad div u+-2a rot w-+X = pii,
(1.2) (y+¢) V2 w+(y+p — &) grad div w — 4aw+-2arot u+Y = J&.

In the above formulae the fol]owing- notations are adopted: the symbol u de-
notes the displacement vector, while w stands for the rotation vector; X represents
the body forces vector, while Y denotes the body couple vector, %, 4, a, f§, y, & denote
material constants, g stands for the density and J for rotational inertia. The quanti--
ties u, w, X, Y are functions of the position x and time f.

The very complicated system of six differential equations (1.1) and (1.2) may
be reduced — by decomposing the vectors u, w as well as X, Y into their potential
and solenoidal parts — to a system of more simple wave equations. Substituting.
for u and w into Egs. (1.1) and (1.2), respectively, the following expressions

(1.3) u = grad ®+rot¥, div¥ =0,
(1.4) w=grad pfrot 2, divR =0,
and also for X and Y:

(1.5) X = p (grad #+roty), divyx =0,

(1.6) Y = J (grad o-roty), divn=0
75—[129]
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we arrive at the following system of equations

1 1
(1.7) (v2~—263)¢+~;a9=0,
('[ C'l
I i 1
(1.8) (Vg—'r?—-*fat)qo—l- — =10
€ 3

1 1
(1.9) [(vz - :zz—af) (vz —92— —&—ai) +2 vz]'if =

r 1 1
= —grot n— —%(VZ —vz—zfaf)x,

1 1
(1.10) [(vz - ?%—ai) (Vz — 92— 2 a}) + 92 \?2]9. =

s 1 1
- SO 1 v R
z rot x a (V e B;)n.
The following notations have been introduced in addition to those indicated above
A2 \12 nta \V? B2y \12 yte |12
¢ = 0 ] Cy = 0 3 c3 = 7 3 Cq4 = J 3
4a 4a 4a2 2a 2a
2 = —— ?}% =———’ p p— v_—v’ S = =
(y+e) (#+a) %+a y+e

B2y’ U e
Eq. (1.7) describes the longitudinal wave, Eq. (1.8) represents the rotational
wave, while Egs. (1.9) and (1.10) are the formulae for modified transverse waves.

T2 =

In the next section we derive — recurring to the four-dimensional Fourier trans-
formation — a general solution of the equation of motion valid for any distribution
of body forces and body couples. Taking advantage of the solution obtained in this
way, we derive —in Sec. 3 —the general solution for the two-dimensional
problem. Finally, in section 4, the particular case of the statical problem is dis-
cussed.

2. General solution of the equations of motion

To solve the system of wave equations (1.7)—(1.10) we make use of the four-
dimensional Fourier transformation defined by the formulae

% 1 :
(2‘1) @(El! ‘EZ: £3J .u) = _“I:?-IE f qj(xb Xa, X3, r) exp [f(xk Ek—l_jut)] dV)
Ey

1 -
(22) Y (-\'1, X2, X3, t) = 2_;5 f (p(";:l’ ‘.5:23 E'.'u ,u) exp ['_' f(xk ’Eﬁ.+ﬂ-r)] dW,
Wy

where dV = dx; dx; dx; dt while E;3 denotes the whole x; xj x3 ¢ — space; dW =
= d&; d&; d&y du, while Wy stands for the whole & &, & Mt — space.
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Now, exploiting the results

1 Y ' N
@.3) ! (3_\1 = )exp [i ok Ex-+pun)] dV = — (i&p, 12) &

£y

we obtain, in virtue of Eqs. (1.7)—(1.10) the following Fourier transforms:

2.4 SR
o T d e
58 .1 o
( . ) @ = 0§ Ez_l._-rz_a-g’
- 8] | . ipkk .
(2.6) 5F1=3[‘-z—(§2+v2—03)xa— 7 €Ikl ??:]s
(&3 Cy

Il

o 1[1 . iskk "
2.7 £ a [C‘_i (82— o3) ny — Tg €1k x;]-

The following notations have been introduced in the above formulae .

M [ad H M 2
g '::—_., =-‘._’ =-—-—-’ :——-’ A: 2—-}1" . 2,
St e 04 p” t2 1) (E—1h)

1 .
Bo=5 [d+oi+s(p—2) £ Vo — G+ s(p—DP+4psai],  E2=E1+E+E.
We perform now the four-dimensional Fourier transformation on the expressions
(1.3) and (1.4).
(2.8) ity = —i&; @ — it e U,

(2.9) wy = —i&; l}‘? — i em Or.

Introducing into these relations @, ¢, 7, @, taking into account the relation
€ELjk Elan = (S;Im Opn — 511; 5kms

and bearing in mind that div % = 0, divy = 0, we obtain the following formulae

. i€y 1l P _ = i ..
(2.10) @ = — GE— ) + E[Tigz N~ ;E(E%L 12 — a3) €51 €k xﬂ]-

o0 i& o S i -
2.11) wy= — @ —) e ‘g;-‘gz X1~ —g(?“f@ &gkt Ex My |-

Let us now apply a similar procedure to the formulae (1.5) and (1.6). We get
(2.12) X = — oGt H+ikk ejm 71)
(2.13) Y; = — J(i&; o+ikk eqa ) -
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By solving the above system of algebraic equations we arrive at

3 f«ft-?s- ,_ffk?i
= e’é2 e

(2.14)

- i i
1= gz —em b Xy, W= — i & Ya.
introducing the values thus obtained into the relations (2.10) and (2.11) and per-
forming the inverse Fourier transformation according to Eq. (2.2) we obtain the
general solution of the system of Eqgs. (1.1) and (1.2) in the form of a quadruple
integral, namely

! & Ex X
§2+12
=y [—‘:.2:,—5?_(53* &y Xy — B2 X1)+ N7 1 ez Ex Y;]} exp [—i(&x xe+ut)] AW,

& & Y
(2'16) wy (xl.: X2, X3, f) = A2 f {JCZ Ez éz:_-r:_ U%) +

[§2 Tg? (& & T —E2 ) + 2 o &k Ys” exp [—i (& xp+uf)] dW.
Thus, the displacement and the rotations bemg known, we are able to determine
the strain tensor yy and the curvature-twist tensor #j.
(2.17) Vit = Ui, — €k Wk,  Hji = O4,]
and also the stress tensor oy and couple tensor uy
05t = (%+0) yj+(2% — @) pas-+Ayxx dis
pai = (y+6) ws+(y — &)yt Poxs i

Let us now consider the particular case when a— 0. Egs. (1.1) and (1.2) become
then independent from each other

(2.19) %#V2u-+-(A-}x) grad div u+X = pii,
(2.20) (y+e) V2Zw+(y+p —e) grad divw+Y = Jw.

Eqgs. (2.19) are equations of classical elastokinetics; Egs. (2.20) refer to a hypothe-
tical elastic medium wherein only rotations are possible. In such a limit case we have
in virtue of (2.15) and (2.16) the following formulae

3 Y@ BR—wd)— (2 —1) & 5K
220 %= wf €2 — 12]) (B 2 — w2
fi’;(eﬁﬁz— wl)—(@—Dé& e ¥
2t ) @ 3 (82 05— p2/c})
xexp [—i (x xa-+ut)] AW .

(2.18)

exp [—i(Exxk+put)ldW ,

(2.22) Wy =
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Here B A4-2% . B+2y
o ® % = y-+e ’

Formula (2.21) was derived in [4].

3. Solution of two-dimensional problem

Let us assume a plane state of strain where all sources of changes (X, Y) as also
all effects (u,w) depend only on the variables xj, xz, 1.

Then the system of Eqgs. (1.1) and (1.2) splits into two idependent of each other
systems of equations. In the first X7, X5, X3 appear as sources while uy, us, w3 as
effects; in the second system the role of sources is played by Yj, Y, Y3 while
wp, y, uy represent the effects.

Denoting the body forces and body couples — considered as functions of
X1, X3, — by X and Yj, respectively — we determine the quantities X; and ¥;
appearing in Eqgs. (2.15) and (2.16) in the following may

1
G Kb baw =75 [ X000
Ey

o]
X exp [i (&4, X1-4&3 xo+-ut)] dS f s dxy.

Here dS = dx) dx; dt while E; stands for the whole x; x; t-space

(3.2) . [ e rdxy =2m (53);

there is -

(3.3) Xi(&1, &, &3, ) = V27 0(&) XT (&1, &2, p),
where

1 g
z\’;(&.fz.ga)=w fX;(xx,xz. 1) exp [i(&) x1+& xp+-pf)] dS.
Ey

Introducing now Eq. (3.3) into Eq. (1.15) and a similar expression for ¥; into Eq.
(2.16) we get

1 b ¢ 1 [E2-12 — o2
WREEEIE L S

e ) \oe@ - 4| eqg BT

+2 o b ?;]} exp [—i(Ex xs-+ )] dT,

1 E & Y
(33) o= Gym f {Jc'ﬁf_.z(gz'i-fz—ﬂg)

=
—[E (Ej Er Y*—-gi ?j) F 2 {‘_;u Xy ]} exp [—i(&x J\‘g-{-p‘-!}] dr

2 Ez
J) k-_lz 2’ ﬁ%—é%-{-gg'
where dT" = dx dx, dt, while Wj represents the whole & & t-space.
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It is easily seen from the above formulae that uy up w3 may be brought about
by the action of body forces X}, X5 and body couples ¥3. The functions oy, wy, u3
are connected with the action of body forces X3 and body couples Y7, ¥;.

4. Solution of static problem

Let us first consider the three-dimensional problem. In the static problem the
body forces and the body couples do not depend on time. Denoting by Gj(xy, X2, x3)
the components of body forces and by Mj (xy, X2, x3) the components of body
couples we may express the transform X as

1 o0
(4-1) Yj(sl: ‘52‘) 633 F') = '1;; f Gj(xl’ X2, 3\.'3) exXp [f’xk ‘Ek] dA f e"F‘ df4
By =

It results therefrom — bearing in mind (3.2) — that

2) Xj(&, &2, 3, 1) = /27 6 () G (62, b, £9),

where

Gj (El' 52’ 53) (25:)3.’2 f G.f (‘\'I! X2, '\3) e £k Tg dA.
Here dA = dx; dx; dx3 while B; represents the whole xj x5 x;-spac‘e.

Introducing (4.2) into Egs. (2.15) and (2.16) and performing the appropriate
integration we obtain

1 &1 & Gk
(4.3) uj = (278)3!2 f {ch E2 Ez +

[az+

& gk2 (&1 &k G —B2 G})+ 7 E9u &k ﬂtn exp [—ix xx]dD,

_ & Ex My
(4.9) Wy = (2n)*? Df { Jc? E2(E2+-12)
= _I 1 M —E2 0 2 G o
7 [E (s &x My —E2 M)+ o2 M Ex z]} exp (—iéx xx) dD,

hk1=1,2,3, B=§E+E+8&, 49=EE+12—n).

Here dD = d&, d&; d&3, while Dy stands for the whole &, &, &-space.

Passing to the classical elastokinetics (@ — 0) we obtain from (4.3) the following
formula '

i =l 2=1)8C
(4.5) Hisz f(“é“‘(——é%—i)em(—f&xk)dﬂ,
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which is conform with the results arrived at in [4]. Substituting «-- 0 into Eq.
(4.4) we get

- 1 T My (6R—1) & bk My n
(4.6) Wy = Wlﬂ ('E—2 = ZE2E ) exp (—i&p xg) dD .

The last formula refers to a hypothetical medium wherein only rotations may
occur.

Applying the modus procedendi indicated in Sec 2. we now pass to the two-
dimensional static problem. We get (cf. [4])

1 Fr(é&C 242
4.7) “F?:?ff{gf«l;g; . [5 G 6 Ge—E Gt

o %Gm &k ﬂ:]}ﬁ){p [—i (&) x1+& X)) dé dEs
rl

.

1 & Ex My, 1 1 5
(4.8) wf—ﬂff{m 4, [?f(ffkox—Ezﬂf)-i-

is
oy em b Gs]}exp [—iCe: Gt B s dbyy  Jok=1,2.
2

where
B=§+8, M=) E+HEH2 -,

1 o
By = 27 | [ Mo, ) exp i1 &1 E9) i o

—0Q

A more ample discussion of the problems we are concerned with in this paper —
particularly of those referring to the action of body forces and body couples, static
as well as changing periodically in time — will appear in the journal “Proceedings
of Vibration Problems”.

DEPARTMENT OF MECHANICS OF CONTINUOUS MEDIA, INSTITUTE OF BASIC TECHNICAL PROB-
LEMS, POLISH ACADEMY OF SCIENCES

(ZAKLAD MECHANIKI OSRODKOW CIAGLYCH, INSTYTUT PODSTAWOWYCH PROBLEMOW TECH-
NIKI, PAN)
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B. HOBALIKHIA 1 B. K, HOBALIKW, TEHEPHPOBAHHE BOJIH B BECKOHEYHOM
MWKPOTIOJISPHOWM YIIPYIOM CPEJE. I.

B mactosmeit paboTe npeanaraercs MeTof 0BIIEro pemenHs YPaBHEHHH ABHKEHHA A Gecko-
HEYHOH MHKpomossapHoi ynpyroii cpensl. Merounnkamu medopmaumii, obpasyiommxcsa B TBepuom
Tene, ABNAIOTCA MACCOBHIE MOMEHTHI M Maccopble cuibl, IIpemnaraeMoe aBTOPAMH pEUIEHHE 110-
Jiydaercs, npuberas K MHTErpansHOMY SKCIOHCHUMANBHOMY mnpeobpasopannio @ypee. Haercs
obliee pemen#e i MACCOBBIX CHJI H MOMEHTOB H3MEHSIONIHXCA BO BPEMEHH, a PABHO H TaKHX,
KOTOpbIE HE 3ABHCAT OT BPEMEHHOH mepeMeHHOi.

PaccMaTpHBaloTCA TPEX- M ABYXMEpHBIE npobiemsr,



