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1. Introduction

The aim of the present paper is to find a method for determining the displacement
u (x, t) and rotation u> (x, t) field formed in an infinite micropolar elastic medium
under the effect of action of body forces and body couples.

We shall consider an isotropic, homogeneous, centrosymmetric elastic medium
wherein the displacement and rotation fields are described by the linearized equa-
tions of asymmetric elasticity

(1.1) (*+<z) V2u+(A+«-a)graddivu+2arota)+X= QU,

(1.2) (y+e) V2 u>+(y+/? — e) grad div co — 4aw+2a rot u+Y = / to.

In the above formulae the following notations are adopted: the symbol u de-
notes the displacement vector, while to stands for the rotation vector; X represents
the body forces vector, while Y denotes the body couple vector, x, A, a, /3, y, e denote
material constants, Q stands for the density and /for rotational inertia. The quanti-
ties u, to, X, Y are functions of the position x and time /.

The very complicated system of six differential equations (1.1) and (1.2) may
be reduced — by decomposing the vectors u, w as well as X, Y into their potential
and solenoidal parts — to a system of more simple wave equations. Substituting,
for u and u> into Eqs. (1.1) and (1.2), respectively, the following expressions

(1.3) u = g rad0+ro t¥ , div»F = O,

(1.4) to = grad ip+rot £l) div SI = 0,

and also for X and Y:

(1.5) X = Q (grad #+rot X ) , div X = 0,

(1.6) Y = / (grad cr+rot rj), div »] = 0
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we arrive at the following system of equations

(1.8)

(1.9)

— rot - 1

cl c\

(1.10)

The following notations have been introduced in addition to those indicated above

1/2 / „ . „ \ l / 2 / « ! • ) „ \ l / 2 / , , r - \ l / 2y+e
Q I ' ~* \ .Q I ' "' \ J I ' "* \ J

Aa 4a 4a2 2a 2a
s =2y ' y+£ ' (y+£)(^+a) ' x+a ' y+s

Eq. (1.7) describes the longitudinal wave, Eq. (1.8) represents the rotational
wave, while Eqs. (1.9) and (1.10) are the formulae for modified transverse waves.

In the next section we derive — recurring to the four-dimensional Fourier trans-
formation — a general solution of the equation of motion valid for any distribution
of body forces and body couples. Taking advantage of the solution obtained in this
way, we derive — in Sec. 3 — the general solution for the two-dimensional
problem. Finally, in section 4, the particular case of the statical problem is dis-
cussed.

2. General solution of the equations of motion

To solve the system of wave equations (1.7)—(1.10) we make use of the four-
dimensional Fourier transformation defined by the formulae

1 r
(2.1) <p(fi, &, £,, n) = — J 0(Xu xx, xh t) exp [i(xk h+lii)] dV,

El

1 r _
(2.2) 0 (xu x2, Xi, t) = — J 0 (l!, Sx, h, /*) exp [- i (xk h+/*t)]dW,

where dV = dx\ dx% dx^, dt while E3 denotes the whole X\ x2 x31 — space; dW =
= d£i d£2 d£i d/j,, while W4 stands for the whole | x f2 h ^ — space.



[131] Generation of Waves in an Infinite Micropolar Elastic Solid Body. I TJ

Now, exploiting the results

1 r I 80J 1(2.3) 7 T "7— > ~TsT exP P(** £*+/"')] dV — — (/^, ,M2) $
4TE2 J \ OX; o?2 /

we obtain, in virtue of Eqs. (1.7)—(1.10) the following Fourier transforms:

- 1 *
(2.4) * = 7 2 - « Z T ? '

1 5
(2.5)

*

(2.6) Wi = -^

The following notations have been introduced in the above formulae,

L f* I* V A
— , 0-2 = — , cr3 = — , cr4 , A =

C], C2 C3 C 4

- 2) ± l / K - ^

We perform now the four-dimensional Fourier transformation on the expressions
(1.3) and (1.4).

(2.8) iij = - $

(2.9) a>) ==

Introducing into these relations 0, <p, Pj, Qu taking into account the relation

and bearing in mind that div x = 0, div t\ = 0, we obtain the following formulae

Let us now apply a similar procedure to the formulae (1.5) and (1.6). We get

(2-12) ZJ = -Q (fif &+ih em xd,

(2.13) , t} = - J(i$j a+ih eiU m) • •
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By solving the above system of algebraic equations we arrive at

e9 •*
introducing the values thus obtained into the relations (2.10) and (2.11) and per-
forming the inverse Fourier transformation according to Eq. (2.2) we obtain the
general solution of the system of Eqs. (1.1) and (1.2) in the form of a quadruple
integral, namely

(2.15) Uj(Xi, x2, x2,t) = — J W ^ ^ - o J ) +

1 r Vy ! 1 2 >*n "i\

— r — 2 „, 4 (I; Is i s -?2Xj)+ T T e w f* ^ 1 exP [-J'(f***+i«0]^^^

1 r \ £j sic J-k
(2.16) (Oj(Xl,X2,Xt,t')=——T j . ) - , / t r,

Thus, the displacement and the rotations being known, we are able to determine
the strain tensor yji and the curvature-twist tensor XJU

and also the stress tensor <r# and couple tensor /*#

Let us now consider the particular case when a~-> 0. Eqs. (1.1) and (1.2) become
then independent from each other

(2.19) K V 2 U + ( A + « ) grad div u+X = gii,

(2.20) (y+e) V2w+(y+/S — e) grad div w+Y = J<Z.

Eqs. (2.19) are equations of classical elastokinetics; Eqs. (2.20) refer to a hypothe-
tical elastic medium wherein only rotations are possible. In such a limit case we have
in virtue of (2.15) and (2.16) the following formulae

1 r It,((52 §2 _ U2/Cj) _ . ( « _ 1) Ij fo %k

I ^ (go %2 ~ ^2/c4) ~ (eg ~ 1) Si f * ^
\4.A£) Wj i—nr.. i _\ I / « _.T/_2\/K') .2 T/.2\

Wt
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H e r e « _

Formula (2.21) was derived in [4].

3. Solution of two-dimensional problem

Let us assume a plane state of strain where all sources of changes (X, Y) as also
all effects (u,u>) depend only on the variables X\, x%, t.

Then the system of Eqs. (1.1) and (1.2) splits into two idependent of each other
systems of equations. In the first X\, X2, X3 appear as sources while Mj, «2, <w3 as
effects; in the second system the role of sources is played by Yi, Y^ Y$ while
(Oi, u>2, M3 represent the effects.

Denoting the body forces and body couples — considered as functions of
Xi, A'2, t — by X* and Y*, respectively — we determine the quantities Xj and ¥j
appearing in Eqs. (2.15) and (2.16) in the following may

(3.1) X}(£u h, h , /*) = -£# f *?(*i. X2> 0 x

xexp[i(ih xx+i2x2+iJ,t)]dS J cu'x'dx3.
—00

Here dS = dx\ dxi dt while E^ stands for the whole xi X2 -̂space

(3.2) f
—00

there is

(3.3) S, (Si, k, h. I*) = j/2rc <5 tf3) Xj (ft, h,
where

Introducing now Eq. (3.3) into Eq. (1.15) and a similar expression for fj into Eq.
(2.16) we get

— em h ??1J exp [-/(|fcXlc+f*t)]dT,

[- i( l* xk+/it)] dT

where rfr = t/xj Jx2 </?, while J^ represents the whole ft £2 ^-space.
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It is easily seen from the above formulae that u\ u2 coj, may be brought about
by the action of body forces X*, X* and body couples Y*. The functions eoi, co2,1/3
are connected with the action of body forces X\ and body couples Y*, Y^.

4. Solution of static problem

Let us first consider the three-dimensional problem. In the static problem the
body forces and the body couples do not depend on time. Denoting by Gj(xy, x2, x3)
the components of body forces and by Mj (x\, x2, ^3) the components of body
couples we may express the transform %) as

(4.1) X, (£,, h, h, /0 = - ^ j Gj fa, x2, x3) exp [ixk h] dA j e'"' dt.
Bs —00

It results therefrom — bearing in mind (3.2) — that

(4.2) Xi(Su h. h, /*) - j/2^<5(/*) ff/tfa, l2, h),

where

Here dA = dx\ dx2 dx3 while 2?3 represents the whole x\ x2 X3-space.
Introducing (4.2) into Eqs. (2.15) and (2.16) and performing the appropriate

integration we obtain

1 rtb h'
(4.3) UJ — 7T-T37;

[" ^2+j<2 to „ 11

Lc2(£2 /c4

—2 ew hGi\\exp (—/£?c2 Jj

a,

1

j , k, / = 1,2,3, §2

Here c?D = d£i d£2 rf|3, while D3 stands for the whole £x £2 ^3-space.

Passing to the classical elastokinetics (a -> 0) we obtain from (4.3) the following
formula :

(4.5)
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which is conform with the results arrived at in [4]. Substituting a-» 0 into Eq-
(4.4) we get

OO

I / • / • / • / Mi (p0 — 1)

The last formula refers to a hypothetical medium wherein only rotations may-
occur.

Applying the modus procedendi indicated in Sec 2. we now pass to the two-
dimensional static problem. We get (cf. [4])

|

( 4 - 8 )

where

is m ]\
h\\exp [-i(Xi ^+x2 h)] &\ ^ 2 . j,k = 1,2.

e X p

A more ample discussion of the problems we are concerned with in this paper —
particularly of those referring to the action of body forces and body couples, static
as well as changing periodically in time — will appear in the journal "Proceedings,
of Vibration Problems".

DEPARTMENT OF MECHANICS OF CONTINUOUS MEDIA, INSTITUTE OF BASIC TECHNICAL PROB-
LEMS, POLISH ACADEMY OF SCIENCES

(ZAKAAD MECHANIKI OSRODK6W CIAGLYCH, INSTYTUT PODSTAWOWYCH PROBLEMOW TECH-
NIKI, PAN)
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B. HOBAIJKHft H B. K. HOBAÎ KHK, rEHEPHPOBAHHE BOJIH B BECKOHEHHOH
MHKPOnOJWPHOH ynPYTOH CPEflE. I.

B HacToameft pa6oTe npejuiarae-rca MeTOfl o6mero peineHHa ypaBHeHHft flBHxeHHH fl^a 6ecKo-
HeiHoii MincponoflapHOil ynpyroii cpeflbi. HcToiHHKaMH fle^opMauHli, o6pa3yK)mnxca B TBepflOM

HBHSKiTca MaccoBtie MOMeHT&i H MaccoBbie CHJIBI. IIpeflnaraeMoe aBTopaMH pemeHHe no-
npnSeraa K HHTerpanbHOMy SKcnoHeHMHanbHOMy npeo6pa30BaHBW Oypbe.

o6mee pemeuHe fljia MaccoBbix can H MOMCHTOB H3MeHaioinHxca BO BpeMeHH, a paBHO H
KOToptie He 3aBHcaT OT BpeMeHHOH nepeineHHoft.

PaccMaTpHBaiOTca Tpex- H flByxMepHwe npoSneMM.


