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1. Introduction

In this paper we shall be concerned with the problem of propagation of
longitudinal monochromatic waves in an infinite cylinder made of an isotropic,
homogeneous and centrosymmetric material. Our considerations will be conducted
within the framework of the asymmetric theory of elasticity for the Cosserat medium,,
the deformation of which is described by six independent functions: three components.
of the displacement vector and three components of the rotation vector.

The problem of propagation of the longitudinal wave in a cylinder was discussed —
within the framework of the classical theory of elasticity — by L. Pochhammer (1]
and C. Chree [2].

The present paper may be regarded as a generalization of the results obtained
by these two authors on the micropolar elastic medium. We derived glso
transcendental equations permitting to determine the phase velocities of propagating
waves. Particular cases of small and large wavelengths with respect to the cylinder
radius are considered also. Our considerations are completed with a discussion of
the problem of how to pass to the solutions within the framework of classical
elastokinetics.

2, Basic equations

Equations of micropolar elastic medium will constitute the starting point of
our considerations [3]—[5]. We shall consider an isotropic homogeneous and
centrosymmetric body. Under the effect of external loadings a displacement field
u (x, t) will form in the body and an independent rotation field w (x, 7). The state
of strain is described by two asymmetric tensors: tensor of strain y; and the curvature
twist tensor x;. Here we have

(2.1) Vi = Wi, j—Ckji Wk, K= Of, .

The state of stress is defined by two asymmetric tensors: tensor of stress iy and
the couple stress tensor u. The relation between the state of stress and that of
strain is described by the following equations:

39—[55)
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2.2) o5t = (p+0a) yu+(u — @) yig+Ayer 01y,

2.3) thgs = (y+-8) wg4-(y — &) wag+ Pk Gis.

The symbols p, 4, B, v, & a denote material constants. Substituting Eqs. (2.2) and
(2.3) into the equations of motion

2.4 o, 1+Xi = oy,

@2.5) €k Ogk+pust, 1+ Ye—Jwe =0

and expressing the quantities 5 and x4 by the displacements #; and rotations w¢ —
— according to Eq. (2.1) — we arrive at a system of six differential equations which
we write in the vector form

(2.6) (u+a) V2 u++(A+p — o) grad div u+2a rot w--X = gii,
2.7 (y+¢) V2w+(f+y — &) grad dive — 4aw-+2atot u-+Y = Jo.

In the above equations X denotes the vector of body forces, Y stands for the vector
of body couples, o denotes density, J — rotational inertia. The time derivative
of the functions w,w is marked by a point.

In the sequel it will be more convenient to present the system of Eqgs. (2.6) and
(2.7) in the framework of cylinder coordinates (r, @, z). Thus we have:

Ur 2 du
(y.—[-a)(Vzur——z—-E “’)+(;l+p a)——

1 amz
+2a (T B B—z(m}”)) + Xy = oilr,
duy 1 de
(28)  (u+a) ((V2 o — —> + 73 “‘3—‘;) (A+p—a)— E;?'+
af})r é‘w;,
+2a( 52 )-_i_X’P_ Qd%

Oe 110 r
(p+a) VZup+(A+p — a)—‘a-;'f-ZaT[E(!‘m@;) = 3_] + X, = pil;,

Wy 2 aUJ
(+9) (vz e 7) — v+ (B+y — s)

1 ou, 0 =
+2a(— : ———”‘")+Y,=Jwr,
dp )

2 Owy
@9 O+9 (ng, 4 a—) 4aw¢+(ﬁ+y~s)—"+
6“1- 3;&;
+2a P + Yy = Joop,

0x 1 a aur
(v+8) V2 w; — 4aw+(f+y — S)E F20— : ( (rug, -——) + ¥ = Jass.
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The following notations have been introduced

_ 12 n 1 6u¢+3uz 10 1 6w¢+3wz
T (rur) r z T o (ren) + r op 0z’

In the case of propagation of longitudinal wave in an infinite cylinder with circular
section we put 4 =0, wr = w; = 0. We assume, moreover, that the quantities
Ur, Uz, wp do not depend on the angle @. Thus, from the system of Egs. (2.8), (2.9)
it remains only the system of three equations

o Ur de dwy .
(ut+a) |V ur'_'? +(A+p—a}a—2a*5— Oty

2.10 2 4y (A Y e y
(2.10) (bt+a) V2 - (A+p — d) 7= +2a— == (roy) = eilz,
Wy Oy du, .
(y+e) Vzwg,—ﬁ — dawy+2a T = Jwy,

where

2_8?-+13+32 19 +6u;

Vet o T trEmW g

To the displacement u = (ur, 0, ;) and rotation field w = (0, w,, 0) are subordinated
the state of stress o and the state of couple stress . '

| Oyr 0 Orz 0 Hre 0
@.11) o=|0 o O, w=|pr O pul,
Ozr 0 Ozz 0 #2@ 0
where
ouy Uy du;
o‘w=2y?+&e, aw=2p-r—+ﬂe, O = 21k pe + e,
du Juy Juy ou
o=+ )+l ) o
( Oz 3&'{') ( duy Ou, ) 9
@12y "M\ Tl Nz T Ay
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We introduce the potentials @, W connected with the displacements uy, u, by the
relations

v W b 1 0

(2.13) =y etk — s f W)

Introducing the above expressions into Egs. (2.10), we obtain the following system
of wave equations

(2.14) 0,9 =0,

0 0 W
(2.15) O W-2aw,, 04 we— 2a (V2 W= ‘E) =,
where

0 1
O = 420 Vg, Oa= Geta) (V2= ) — et

0 1
O4 = (y+¢) (V2 — ':_3) —4a—Jos.

Introducing the functions ¥, I" such that

(2.16) W=—£, (op=~—a£,
or dp
we reduce Eqgs. (2.14) and (2.15) to the simple form
(2.17) 1 @=0,
(2.18) O P42al'=0 [O41'—2aV2¥ =0,

where
Oy = (u+a) V2— 087, [ = (y+e) V2—4a — Jo;.

Egs. (2.18); and (2.18), are mutually coupled. Eliminating from these equations
first I" and then ¥ we obtain

(2.19) (O2 O4+4a2 V) (¥, I') = 0.

Eq. (2.17) describes longitudinal waves, while Eq. (2.19) the modified transverse
and twist waves.

[3. Propagation of longitudinal wave in a cylinder with circular section

Let us assume that in an infinite cylinder with circular section the longitudinal
wave propagates with constant phase velocity ¢ along the cylinder axis, i.e. along
the z-axis .We assume, further, that it is a monochromatic wave. We write the
functions @, ¥, I" in the form

w

(3.1) (D, ¥, ') = (D* (r), P* (), ['* (n)) e'*e=*D, ¢ = -
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Substituting (3.1) into Eq. (2.17) and (2.18) we get the following solutions of those
equations

(3.2) @ = A (or) ¢ Fo—ob)
(3.3) ¥ = [B(A N+ CIp(A2 N] e'*e=2D),
(3.4) I = [ESp (4 1)+F Jo (A )] e*Fe=2b),

The following notations have been introduced

1
Foa=— K+ 5 (o — LV (G — o ),

_| 0 0] @

o=(of=K)'", o =v T e
- (3_1_2‘“)”1 B (,u—l—a)m B (?+8)”2

(4] = 0 ] c2 = 0 3 C4 = ¥ )

da
p2 = m . 7?2 . 4&2{’(}’4‘ E) ((1-{-;.{,} .

As the quantities A7, 23 have to be positive (what results from the requirement that

4a
the phase velocities be real and positive), there is w2 > 7 The expressions (3.3)

and (3.4) represent dispersion waves, 1;, 4, being dependent on w.

The constants B an E as well as C and F are coupled in view of the coupling of
the quantities ¥ and I" in Eqgs. (2.18), and (2.18)5.

We assume the surface of the cylinder to be free of stresses. In this way we have
the following three boundary conditions '

(3.5) Oy = b, orz=0, up=0 for r=aqa,

where a denotes the radius of the cylinder. The conditions (3.5) will be expressed by
the functions @, ¥, I'. We get

| e v ’ 3
e = |27 |0+ ) +iv20| =0,

r=a

ﬂ'rr|

) *2v b or
(3.6) orel,_, = = [Zy( oz E) — (u+a) V2 !P] — 2aF . =0,
1 ar a2r
Proleea = |00 — O — 7 — (v+0) 53 . 0.

Introducing the functions ¥, I" into Eq. (2.18), we obtain the relations

3.7 E=bB, F=bD,
.whcrc
1 2a
= 22 2 _ 0-2 = , = I, g
bi 7 (Ai+k 2y P e k 2
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Substituting the functions @, ¥, I' from Egs. (3.2)—(3.4) into the formula for
boundary conditions (3.6) and taking into account the relations (3.7) we obtain
the following system of three homogeneous equations

31( oa)

[2#02 (30 (0a)— ) +2A(k2+02) Jp (Ua)] A+ [Z#Ik;lz (30 (4 @) —
B R (11 a)

. J1 (42 a)
s )]B+[2mfc;§(3u(zza)~ T )]D=0,

(3:8)  —2uoik J;(0a) A+-12uk? — (u+a) (k22D +2aby] 4 I (4 @) B+
+R2uk? — (p+a) (k2+13)+2aby] 12 31 (B2 a) =0,

mw@*
2 a

A i 0 o|#m+ [z

= (742 S0 o a)] BD=o.
Making equal to zero the determinant of the above system of equations we obtain

w
a transcendental equation permitting to determine the phase velocity ¢ = =7 of
the propagation of the wave

31( ) 31(21 a) bz dl

)+A(k2+«2>30(“‘0“ ha b

(3.9) [mz (30 (o) —

A
x[zy 3’;2 ;f) ~ (r+9%(h a)] ed, [z 3‘; 19
ha)
— 49 30 (0| — g2 22 22 {[30(21 PERLLA
-Jl()'l a

| 8D o mls a)] + [2,,

— (y+€ Jp (4 “)] [30 (%2 a) . (2 2 )]}

The following notations have been introduced. The transcendental Eq. (3.9) is most
complicated and hardly suitable for discussion in such a general form. This is why
we shall consider two particular cases.

We assume that the length of the wave is large with respect to the radius of the
cylinder. In such a case we can expand the Bessel functions into an infinite series,
taking into consideration only two first terms of this expanded form. In this way
we obtain — as the first approximation — the following value for the phase velocity

(3.10) 4(;12;_%3)ﬂ2ﬁ3 — ﬁ3(2ﬂ1 +ph—= )+4 2;32

T P ) PO 12

1/2
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where

A a
ﬁ1=1+-—a ﬂ2=1+_: ﬂ3= k2

For a —0, i.e. for the classical elastokinetics, we obtain from (3. l{)) the known
Pochhammer’s formula [1] ¢ = (E/o)'

If the length of the wave is small as compared with the radius of the cylinder,
then Eq. (3.9), after asymptotic transition, reduces to the equation characteristic
for the surface waves in an elastic half-space [6]

b 451 ;{1 bl

L) [Cutet =Bl e i

—4u2 k2 A o =0,
"where
=pu(K2—2+a (B2 —kH—2ab, r=12.

Let us return once more to the transcendental Eq. (3.9). Putting in this equation
a = 0 we obtain the following dispersion equations

G12) [2‘”"2 (3" (0 =3 }) o So(aa)] @k2 — ) Sl 2“) +
;{U
+4uk2 0'231 Lol (30(22 a)— %) =9,
Ji(Aa)  yte
(3.13) ‘;ﬁ, — S =
where
am, m=g, B=@E-R", R=G-B",
41 82
AH2u 12 u 112

Eq. (3.12) is a transcendental equation derived by Pochhammer [1] within the
framework of classical theory of elasticity, Eq. (3.13) refers to the propagation of
the wave described by the equation

Wy -
(3.14) (y+e) (V2 W 7) = Jwg,

derived from (2.10)3 putting a = 0.
Assuming that this wave propagates along the z-axis with constant phase

: @© . : i (kz—ot)
velocity ¢ = » L. assuming wp = o* ()™

boundary condition ur, = 0 for r = a, we obtain the transcendental Eq. (3.13)

, and making use of the
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4. Radial vibrations

To conclude, let us consider the one-dimensional problem, where the functions
Uy, Uz, Wy do not depend neither on ¢ nor on z. In this case the system of Eqs. (2.10)
simplifies to the form

2 Ur de .
(p+a) \ Vi ur — T + (A+-p— @) o = Qi

. 1 2
“.1) (pt+a) Vy uzt-2a — —= (rory) = gils,
2 Wy auz -
(y+8) | Vi wp — ) daw, —ZaE = Jwy,
‘where
o 0% 4 1 & 12
Ve a2 e ¢ v ar (rtie)

Assuming that we have to deal with monochromatic vibrations

{42) (ﬂr, Uz, w'ﬂ) = (h‘: (")1 ﬂ: (f’), w; (!’)) e—im.’. ]

we obtain from (4.1) the appropriate transcendental equation. We obtain it
immediately from Eq. (3.9) putting therein &k = 0. Thus we have

2u Ji(oya) _w
(4.3) Jo(oya) = e g o1 ="rs
Silnza) [zym — (y-+6) Jo 02 a)] (1 — o)
, 24 _ 24
4 Sima) [ Jitma) '
where

m,2 =% (F =1 — 63— aiL V (3+0i+o — *) — 403 (o} — 7).

Making use of Eq. (4.3) we obtain successive values for free radial vibrations. The
form of these equations is identical with that known from classical elastikinetics.

Eq. (4.4) is a transcendental equation for modified transverse free vibrations,
depending solely on the radius r. For a — 0, i.e. for an elastic Hooke’s body, only
radial vibrations may appear.

DEPARTMENT OF MECHANICS OF CONTINUOUS MEDIA, INSTITUTE OF BASIC TECHNICAL PROB-
LEMS, POLISH ACADEMY OF SCIENCES

(ZAKLAD MECHANIKI OSRODKOW CIAGLYCH, INSTYTUT PODSTAWOWYCH PROBLEMOW TECH-
NIKI, PAN)
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B. HOBALIKUI u B. K. HOBALIKHI, MPOIIATALIUS VIIPYTHX BOJIH B MHUKPO-
IMOJIIPHOM LWJIWMHAPE. 1.

B mactosmieM coofiieHHH paccMaTpHBaercs npobiiemMa TponaralMd MOHOXPOMATHYECKUX
BONH B GECKOHEYHOM LMNMHAPE, M3rOTOBIEHHOM M3 MHKPOIIONISSPHOTO YOpPYIOro MaTepHaa.
TIpeamMeroM pacCykaeHH aBTOPOB ABJIAIOTCA MPOAOIBHBIE BOJIHBI, PACHPOCTPAHAIOMHAECA BAONB
OCH UMIMHApa. B peayibTaTe MOMY4ACTCA TPAHCLEHOEHTHOE ypapHeHHe, Oiaromapsa KOTOpoMy
MOKHO ONpeleNHuTh (ha30Bble CKOPOCTH.



