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1. Introduction

In this paper we are concerned with the problem of propagation of monochromatic
torsional waves in an infinite micropolar cylinder made of isotropic, homogeneous,
centrosymmetric material. Our considerations, similarly as in the first part of this
communication [4] refer to the Cosserat medium, wherein the deformation of the
body is defined by two independent vectors: the displacement vector u and the
rotation vector ®. This part is a generalization of the problem of propagation of
the torsional wave in an infinite cylinder within the framework of the classical
theory of elasticity [5].

2. Basic equations

The starting point for our considerations will be the equations for the micropolar
elastic medium [1]—[3]. Equations describing the field of displacements and rotations
and the field of stresses are given in the first part of this work [4]. Our considerations
are conducted within the system of cylindrical coordinates (r, ¢, z).

In the case of propagation of the torsional wave in an infinite cylinder with
circular section we assume ur, = u; =0, w, = 0; the third component of the
displacement vector u, as well as the components of the rotation vector wy, wz
are independent of the angle ¢.

Under these assumptions the system of the three following equations is what
remains from the system of equations of the problem within the system of cylindrical
coordinates (cf. Eqs. (2.8) and (2.9) in [4])
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where

02 02 1 0 dw,
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The field of displacements u = (0, up, 0) and rotations w = (wy, 0, w;) described
by Eqgs. (2.1) induces the following state of stresses @ and couple stresses p.
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We shall now introduce the potentials ¢ and #. They are connected with the rotations

i 0P 0 0P 1 0
2.4 e e .cog-—E-l“—r"'a:(n?).
We introduce, moreover, the functions % and y defined as below
_ 0 _ 0z
(2-5) uq——-a—r‘, ‘3—'—”5.

Substituting (2.4) and (2.5) into (2.1), we obtain the following system of
wave equations

(2.6) 0@ =0, [2x+2m=0, [O4n—2aV2yx=0,
where
Ol = @y+p) V2—4a—J0}, [12=(y+e) V2—4da—Jd},
04 = (u+a) V2 — d?.
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Eq. (2.6), represents the torsional wave. Eqgs. (2.6)2 and (2.6); are mutually coupled.
Eliminating from these equations first y and then #, we obtain the equation

(2.7) (02 O44+4a2 V2) (2. ) =0,

describing the propagation of modified transverse and torsional waves.

3. Propagation of torsional wave in an infinite cylinder

Let us assume a torsional wave propagating in an infinite cylinder with circular
section along the z-axis with constant phase velocity ¢. This wave being, by
assumption, monochromatic, we may write the functions ¢, x,#, in the form

w

(3.1) @, 2 m) = (@* (1), x* (), n* () ' ®=D, o= %

Substituting the presumed form of the solutions of (3.1) into the system of Eqs.
(2.1) we obtain

D = AJ(zr) et Fooh,
(3.2) %= [B30(43 )+DJo (4 )] € *=9,
n = [EJo (s 1)-+F0 (g ] /=2,

where the following notations were used
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Requiring the phase velocities to be real and positive, i.e. 43, /3 to be positive, we
4a

have to satisfy the condition w2 > Since 43, 22 depend on the frequency o,

the waves described by the functions yx and % undergo dispersion.

In order to get a unique solution of the problem thus formulated we need also
the boundary conditions. We assume that the boundary surface of the cylinder is
free of stresses, i.e. the following conditions have to be fulfilled

(3.3) orp=0, frz=0, pur=0 for r=a.
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These conditions expressed with the help of function (3.1) will take the form

on 02y
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=0,
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Introducing into the formulae expressing the boundary conditions the function
@, %7 defined by Egs. (3.2) we obtain the following system of three homogeneous
equations

=0.
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Use was made here of the relations

(3.6) E=bB F=MhD,
where .
k2422 2a

PRI g P e

k=3,4.

The relations (3.6) are due to the fact that the functions y and % are coupled by
Egs. (2.6),,3.

Putting equal to zero the determinant of the system of Egs. (3.5), we obtain
the characteristic transcendental equation permitting to determine the phase velocity

w
o= of the propagation of waves in the cylinder.
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where
gr=y(k2—12)+e(k2+1), r=34.

Eq. (3.7) is most complicated and in its general form unsuitable for discussion.

In a particular case when the wave is long as compared with the radius of the

cylinder we get — expanding the Bessel functions into a series and retaining but

first two terms of the expanded expression — the first approximation in the form
dyarQy—e) & 1

202 {[2y2+eQy+P)l c§ —y(y —&) c3} — '

= {40!? ::;: + 25 [6y+B+(y— &) (2?+ﬁ)]} Ga

(3.8) c=

The torsional wave undergoes dispersion which is due —, as seen from (3.8) — to
the fact that the phase velocity depends on the frequency.

For waves short as compared with the radius of the cylinder the characteristic
equation — after asymptotic transition — reduces to the equation characteristic
of the surface waves of Love’s type in an elastic half-space [6]:

(3.9) 4k2 YT (3.1 d3 = 22 d4) = 4?(1)'{2 (8‘4 dg -3 d4)+
+[2y+P) ©— B2k (e3 ds—es dy),
where
er=y(2+2) —e(k2— 7)), dr= (uta)dbp+2aky, r=3,4.

Putting in the characteristic equation (3.7) ¢ =0 we obtain two following
equations:
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i
Sollea) =204,
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The marks zero over the quantities A3, A4 and v denote their values for « = 0.
Eq. (3.10); is known from the classical theory of elasticity [5]; itis the solution of

ug -
(3.11) L\ V2u, — T2 | = e,

derived from (2.1); for a = 0. Assuming that the wave propagates along the z-axis
with constant phase velocity, assuming further the solution of Eq. (3.11) in the form

an d
= ——= — ——m* i (kz—wt)
(3.12) g e o e

and making use of the boundary condition gy, = 0 for # = @ we obtain the character-
istic Eq. (3.10),.
Solving the system of equations

Wy e s
o+ (V2 0, =) +(B+y— 8- = Jar,
(3.13)

Ox .
(y+8) V2 ws+(B+y — 8)—6,—2- = Jz,

under the boundary conditions gy = 0, pyz =0 for r = a we obtain the trans-
cendental equation (3.10),.

From Eq. (3.10), we may determine the phase velocities of torsional waves
in a hypothetical medium, wherein only rotations may appear.

4. One-dimensional torsional vibrations

We shall now consider the one-dimensional problem, wherein the functions
Us, Wy, Wz do not depend on ¢ and on z. Under these assumptions the system of
Egs. (2.1) will take the following form

awz

3 Up -
(p+a) (Vr”w - ;2—) — 2¢ == ey,

Wy

Ox -
(4.1) (y+e) (Vi wr — :?) — daort+-(f+y — &) 5~ = Jor,

. 2a 0 -
(y+e) Vi 0z — daw,+ ety (rup) = Joz,
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where
V2 — 0 4 1 9 19
L r o’ YT or (re)
Assuming the existence of monochromatic waves we have
(4.2) (g, 01, ) = (4 (1), ) (1), w; () =",

Substituting (4.2) into (4.1) we obtain the transcendental equation. We can obtain
it also directly from (3.7) putting therein k = 0. Thus we obtain

2 T
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2a2 3o (4 @) — (la+¥; — 03) (y+e)
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where

. I
u=@—R)"  1Be= (i~ £ V(od— G+t — i)+ 63).

Solving Eq. (4.3) we obtain the successive values of free torsional vibrations
of the cylinder. The form of these vibrations is identical with that known from the
classical theory of elasticity. Eq. (4.4) describes the modified free transverse vibrations
which are the function of the radius r only. Performing the transition « — 0, i.e.
the transition to the classical theory of elasticity, we are satisfied that within the
framework of this theory only the torsional waves described by Eq. (4.3) are
admissible. From Eq. (4.4) we obtain J (02a) =0 or J; (¢4a) = 0. These equa-
tions refer to a hypothetical medium wherein only rotations appear.
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B. HOBALIKHUH u B. K. HOBALIKUIA, IIPOTIATALIUISI YIIPYTMX BOJH B MUKPO-
TIOJIIPHOM LIMJIMH/PE. 11,

B pa6Gote obcyxnaercs mpobiieMa Npomaraoid MOHOXDOMATHYECKHX BOJIH B GeCKOHEYHOM
YOpyroM LMIHEApE. PacCyskieHWs npoBeJeHbl B paMKaX HECHMMETDHYECKOH TEOpHH ynpyrocTH
Jana cpeppl Koceapa, PaceMaTpupaercs cimy4vaif npomaralldy KPYTHILHEIX BOMH, PACHPOCTPAHAIO~
IAXCA BIOJML OCH LMIHHAPA.

TlomyueHO XapaKTepPHCTHYECKOE YpaBHEHHE, NO3BONAIONIEE ONpENeNHTh (ha3oBEIE CKOPOCTH.

Paboty cnenyer cudTaTh paciuHpeRHeM pPesy/IbTATOB, HONY4eHHBIX B [4], Ha cnyvalt KpyTHIBEHBIX
Konebanuif IwIMHApa.



