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1. Introduction

In this paper we are concerned with the problem of propagation of monochromatic
torsional waves in an infinite micropolar cylinder made of isotropic, homogeneous,
centrosymmetric material. Our considerations, similarly as in the first part of this
communication [4] refer to the Cosserat medium, wherein the deformation of the
body is defined by two independent vectors: the displacement vector u and the
rotation vector to. This part is a generalization of the problem of propagation of
the torsional wave in an infinite cylinder within the framework of the classical
theory of elasticity [5].

2. Basic equations

The starting point for our considerations will be the equations for the micropolar
elastic medium [1]—[3]. Equations describing the field of displacements and rotations
and the field of stresses are given in the first part of this work [4]. Our considerations
are conducted within the system of cylindrical coordinates (r, <p, z).

In the case of propagation of the torsional wave in an infinite cylinder with
circular section we assume wr, = Wz = 0, (ov = 0; the third component of the
displacement vector uv as well as the components of the rotation vector a)r, (a*
are independent of the angle cp.

Under these assumptions the system of the three following equations is what
remains from the system of equations of the problem within the system of cylindrical
coordinates (cf. Eqs. (2.8) and (2.9) in [4])
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where

82 32 i d
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V2 = -r-r- + -r-r 4 =-, « = j-(ra>r) + 7

3r2 oz2 r or r or dz
The field of displacements u = (0, uf, 0) and rotations la = (mr, 0, coz) described
by Eqs. (2.1) induces the following state of stresses a and couple stresses jx
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We shall now introduce the potentials <p and •&. They are connected with the rotations

(2.4)
80 8$ 80 , 1 8

— -i ~ , O)z~— 1 ^
dr 8z 8z r dr

We introduce, moreover, the functions r\ and % defined as below

dv 8%
(2.5) tif=--j-, 0 = -y-.

Substituting (2.4) and (2.5) into (2.1), we obtain the following system of
wave equations

where

D1 = (2y+P) V2 - 4a - Jd], U1 = (y+e) V2 - 4a - Jdj,
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Eq. (2.6)i represents the torsional wave. Eqs. (2.6)2 and (2.6)3 are mutually coupled.
Eliminating from these equations first % and then rj, we obtain the equation

(2.7) (•

describing the propagation of modified transverse and torsional waves.

3. Propagation of torsional wave in an infinite cylinder

Let us assume a torsional wave propagating in an infinite cylinder with circular
section along the z-axis with constant phase velocity c. This wave being, by
assumption, monochromatic, we may write the functions cp, %, rj, in the form

(3.1) (0, X,n) = (®*(r),X*'(r),fi* (/•)) «'<*«-»<>, c - j .

Substituting the presumed form of the solutions of (3.1) into the system of Eqs.

(2.1) we obtain

(3.2) %= [#3o (h r)+#3o (h r)]

»? = [£3o(V)+^3o(V)]

where the following notations were used

1
= - k2+ 7

K \'/2

" 3 = -

CO CO
— , 04 = — , C2 =
2̂ C4

4a

Requiring the phase velocities to be real and positive, i.e. A2, A2, to be positive, we
4a , ,

have to satisfy the condition co2 > —— • Since A3, A4 depend on the frequency co,

the waves described by the functions x a n d V undergo dispersion.

In order to get a unique solution of the problem thus formulated we need also
the boundary conditions. We assume that the boundary surface of the cylinder is
free of stresses, i.e. the following conditions have to be fulfilled

(3.3) arv = 0, nrz = 0, nrr = 0 for r = a.
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These conditions expressed with the help of function (3.1) will take the form

1 drj I 82 x 1 &X dy
•a) r - + 2 a l - r - ^ - H r =-

r or \ or2 r or oz

(3.4)

8r2

~dr2

= 0,

= 0,

= 0.

Introducing into the formulae expressing the boundary conditions the function
q>, x, rj defined by Eqs. (3.2) we obtain the following system of three homogeneous
equations

j 1- Qt+a

(3.5)

Tfl) -
ra

ha
= 0,

%ly(k2-

Use was made here of the relations

(3.6) E = b3

where

2a
= 3,4.

The relations (3.6) are due to the fact that the functions x a n ( i V a r e coupled by
Eqs. (2.6)2,3.

Putting equal to zero the determinant of the system of Eqs. (3.5), we obtain
the characteristic transcendental equation permitting to determine the phase velocity

CO

c — -j- of the propagation of waves in the cylinder.
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(3.7) - lakZv (ta) [lykll (s0 (h a) - ^ ~ ) % ̂ J~ 8* ~

where

Eq. (3.7) is most complicated and in its general form unsuitable for discussion.
In a particular case when the wave is long as compared with the radius of the

cylinder we get — expanding the Bessel functions into a series and retaining but
first two terms of the expanded expression — the first approximation in the form

(3.8) c =

— \4ay—• V )?Q [6y+j9+(y — s)(2y-\-§)]\cjcl

The torsional wave undergoes dispersion which is due —,as seen from (3.8) — to
the fact that the phase velocity depends on the frequency.

For waves short as compared with the radius of the cylinder the characteristic
equation — after asymptotic transition — reduces to the equation characteristic
of the surface Waves of Love's type in an elastic half-space [6]:

(3.9) 4&2 yx (Xx d% -12 d4) = 4yak2 (e4 d3 - e3 d4)+

where

£()t2-A?), dr = (p+a) lrbk+2akr, r = 3,4.

Putting in the characteristic equation (3.7) a = 0 we obtain two following
equations:
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(3-10)

The marks zero over the quantities A3, A4 and r denote their values for a = 0.
Eq. (3.10)i is known from the classical theory of elasticity [5]; itis the solution of

(3.11)

derived from (2.1)i for a = 0. Assuming that the wave propagates along the z-axis
with constant phase velocity, assuming further the solution of Eq. (3.11) in the form

drj d

and making use of the boundary condition arif = 0 for r = a we obtain the character-
istic Eq. (3.10)i.

Solving the system of equations

«>f\ . . . . Sii

72(y+s)\Wwr-— )+0+y-B)~ =JWr,
(3.13)

dx
(y+e) V2 cot+(p+y - e ) — = 7a,,,

under the boundary conditions yLrr = 0, /irz = 0 for r = a we obtain the trans-
cendental equation (3.10)2-

From Eq. (3.10)2 we may determine the phase velocities of torsional waves
in a hypothetical medium, wherein only rotations may appear.

*
4. One-dimensional torsional vibrations

We shall now consider the one-dimensional problem, wherein the functions
Up, (or, o>z do not depend on q> and on z. Under these assumptions the system of
Eqs. (2.1) will take the following form

( u<p \

V' mT~~,a}~ 4«»r+(/3+y - s) -j£ =

2a 5
— 4acoz

Ji — (ruv) = Jcoz,
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where

2 d 1 d Id

r dr2 r dr' r dr

Assuming the existence of monochromatic waves we have

(4.2) («,, cor, 6t) = (U; (r), a,* (r), a>*2 (r)) e - i r a f ,

Substituting (4.2) into (4.1) we obtain the transcendental equation. We can obtain
it also directly from (3.7) putting therein k = 0. Thus we obtain

2y 3i (TI a)
(4-3)

— • - - p-\-'/.y x\ a

2a2 3 0 0?4 a) - (^+rf - <# (y+e) x

3i ('?4a) \ 3i 0)4«)
• JK x (/!+«) 3o v?4 fl) "~ 2w

tjifl L *?4 a

(4.4)

1 3 "
a) - \ (y

where

± l/(^ - o\+v\ - nlf+^l a\).

Solving Eq. (4.3) we obtain the successive values of free torsional vibrations-
of the cylinder. The form of these vibrations is identical with that known from the
classical theory of elasticity. Eq. (4.4) describes the modified free transverse vibrations
which are the function of the radius r only. Performing the transition a -> 0, i.e.
the transition to the classical theory of elasticity, we are satisfied that within the
framework of this theory only the torsional waves described by Eq. (4.3) are
admissible. From Eq. (4.4) we obtain / i (02 fl) = 0 or J\ (C4 0) = 0. These equa-
tions refer to a hypothetical medium wherein only rotations appear.
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B. HOBAItfCHft H B. K. HOBAIl,KHil, nPOnATAIJHfl ynPYTHJC BOJIH B MHKPO-
nOJWPHOM imJBHHflPE. II.

B pa6oTe o6cyacflaeica npo6jieMa nponarai^H MOHOxpoMaTH êcKHX BOJIH B 6ecKOHeiHOM
ynpyrOM qnjiHHflpe. Paccyac^eHHa npoBeflem>i B paMKax HecHMMeTpaiecKofi TeopHH ynpyrocra
jure cpeflti Koccapa. PaccMaTpHBaeica cny^afl nporraratpni KpyTHjn>HLix BOJIH, pacnpocTpamno-
IIIHXCfl BflOJIb OCH I^JIHHflpa.

nonyieHO xapaKTepnCTHHecKoe ypaBHemie, no3BOJMK>mee onpeflexiHTb $a3OBHe CKOPOCTH.
Pa6oTy cneflyeT cra iaTt pacmnpeHHeM pe3yjn>TaTOB, nojiy^eHHHx B [4], Ha cjiynait Kpyrain.HHX


