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1. Introduction

Recent years witnessed an increasing interest in problems of propagation of
monochromatic elastic waves in the general Cosserat medium, wherein the
deformation of a body is described by two vectors independent of each other, namely
by the displacement vector u(x, f) and the rotation vector w (x, ).

The propagation of plane waves in an infinite micropolar medium was discussed
by V. A. Palmov [1]; the propagation of rotation waves in an infinite medium was
the subject of a paper by one of the present authors (W.N.) [2]. Basic solutions
of equations of motion in an infinite medium have been given in [3], where the
waves arising under the effect of body couples and body forces were presented.
Quite recently, S. Kaliski, J. Kapelewski and C. Rymarz devoted a paper [4] to
the problem of propagation of surface waves in a micropolar medium.

In this paper we are concerned with the propagation of monochromatic waves
in an infinite elastic plate discussing two characteristic types of propagation of
monochromatic waves.

2. Basic equations

To begin with, we shall consider the equations describing an elastic micropolar
medium [5], [6]. An elastic, homogeneous, isotropic and centrisymmetric body
will be the object of our subsequent remarks. Under the effect of external loadings
displacement, u(x, #), and rotation w (x, f) field will form in such a body.

The state of strain is described by two asymmetric tensor: The strain tensor
ys and the curvature-twist tensor . There is

(2.1) Vi = U, ] — €kt Ok,  %ji = 04, 4.

The state of stress is defined, in turn, by the following two asymmetric tensors:
the stress tensor oy and the couple-stress tensor uy. The relation between the state
of strain and that of stress is described by the relations

29—[45]
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o5 = (u+a) yut+(u — @) pig+-Ayee 01z,

@2
wsi = (y+6) %+ — &) wig+Prrr 61y

The quantities u, 4, «, f, y, & denote the material constants.
Introducing (2.2) into the equations of motion

2.3) o, 4+ Xo—oili =0,  euk Ogk+psi, i+ Yi—Joy = 0.

and expressing the quantities 5 and #; by the displacements u; and rotations w; —
in accordance with the formulae (2.1) — we obtain the system of differential equations.
We write them in the vector form

(u+a) V2 ut(A+p — ) grad div u+2a rot w-+-X = pii,

(2.4 <
& (y+¢) V2w+(y+p — &) grad divw —4aw-{-2arot u+Y = Jw.

In the above equations the symbol X denotes the body forces vector, while Y stands
for the body-couple vector, p for the density and J for the rotational inertia.

Let us now consider a particular case, where the vectors u and w are functions
only of the variable x), x; and time f. In this case we can derive from (2.4) two
systems of equations independent of each other

(p+a) Vi uy+(p+2—a) 8 e+2a0; w3 = giiy,
(2.5) (u+a) Vi g +-(u-+2— a) 0y e — 2ad; w3y = pily,
(y+e) Vi 03— daws+2a (8) uy — 0y u)) = Jayy,

(y+e) Vi o+ — &) 0 x— 4aw,+2ads u3 = Jooy ,
(2.6) (r+e) Vi o+ (y+p — €) 9 % — daw; — 2ad; uy = Ja,
(u+a) Vi 3420 (9) w3 — 85 o) = pils.
Here we have: V3 = 84-02; e = 0y uy+0,up; % = ) w1485 s,

The displacement and rotation field u = (uy, uy, 0), @ = (0,0, w3) described
by Egs. (2.5) induces the following stress o and couple-stress p. state

oy o2 0 0 0w
'(2?) O = |03, 022 0 s = 0 0 H“23l,
0 0 op pst g 0

where — in virtue of (2.2) — there is
o1 = 2u0 uj+Ae, 02 = 2udr up+le, 033 = le,
o12 = pt (9 up-02 uy)+at (8) up — 0 uy)) — 2003,
2.38) 021 = (01 up+-02 uy) — @ (0 up — 0 uy)+-2aws,
sy = (+6) 0 w3, p3 = (y—e)d w3,
po3 = (y+e) w3, pz = (y—e) d; 3.
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As concerns the displacement and rotation field u = (0, 0, #3) and w = (@), w,, 0)
described by Egs. (2.6), it induces the following stresses @ and couple stresses

0 0 o013 pnn p2 0
(2.9) c=0 0 on|, p=|pn pn 0],
031 o032 0 0 0 w3

where
013 = (u+0a) 0y uy+2aw;, 033 = (p— @) 0y u3 —2am;y,
023 = (u+a)Opu3 — 20wy, 033 = (u—a) Huz+2amw,
(2.10) pur =290 01+fx,  pop =290 wp+Pr, paz = px,
t12 =y (01 w20z wy)+2(8) w2 — 0 wy),
pa1 =y (0 wa+0; wy) — () wy — 05 wy).

We shall show that the system of Eqgs. (2.5) leads to monochromatic waves known
in the classical elastokinetics as Lamb’s waves Eqgs. (2.5) lead to the waves of Love’s

type.
3. Modified Lamb’s waves

Let us now consider an elastic plate — we assume its thickness to be 2h —
wherein a monochromatic wave propagates along the x;-axis. We assume that the
edges of the layer x; = --h are free of stresses. The following conditions should be
satisfied on these edges

(3.1) on=0, op=0, pu3=0, for x3 =4h.
Expressing the displacements by the potentials @,V
(3.2) u=0P—Y¥Y, u=0d0+0 Y,

we can derive (putting X =Y = 0) from the system of Egs. (2.5) the following
equations

5 Q42 V3D — o =0, (uta)Vi¥—poW—2am3=0,
' [(y+€) V2 — da — J3?] w3 +2aV2 ¥ = 0.
Eliminating from the last two equations first the quantity ¥ and then w3 we have
(3.4) {[(p+a) Vi — 0d7] [(y-+8) Vi —da—Ja7]+4a® Vi} (¥, w3) = 0.

Eq. (3.3); describes the longitudinal wave, while Eq. (3.4) the modified transverse
wave.
The solutions of Egs. (3.3); and (3.4) will be sought for in the form

(3.5) (D, ¥, w3) = (D* (x1), P* (x1), w* (x1) &' Foa=0H



32 W. Nowacki and W. K. Nowacki [48]

These solutions are as follows
@* = A sh éx;+Bchéx;, 6= (K>— o’f)”z,
(3.6) V¥ = Csh A; x;-+Dch A; x;+Esh Ay x;+Fch A3 x;,
w* = C'sh A; x;+D'ch Ay x1+E'sh A, x;+F'ch 13 x;.
We introduced here the notation specified below

® A2u\12 w pt+a\?
¢ = 3 0y = ';2-’ €= L

T 0 0
(3.7 w y+e \1? 4a 4a2
4= €4 = ] w= s 7?2:—___9
c4 y-+-e (y+e) (u+a)

J
a2 =R+3(? —o — 3 — oV (GG+ o5+ — ) — 403 (03— ).

Since the quantities 2 and A2 have to be positive (this follows from the postulate
that the phase velocities be real), we have w? > 4a/J. Egs. (3.6); and (3.6); are
connected through Egs. (3.3); and (3.3)3, respectively.

Similarly as in classical elastokinetics, the general problem of propagation of
waves may be reduced to the solution of two simple problems, i.e. to the consideration
of the symmetric and antisymmetric vibrations.

a. Symmetric vibrations are characterized by the symmetry of displacements
up and stresses 071, o3 and uq3 with respect to the plane x; = 0. In this case we have
to put in the expressions (3.6): 4 = D = F= D' = F' = 0. In view of the coupling
of Egs. (3.3); and (3.3);, we have

(3.8) C'=%C, E =uxE,

where

2a
pta’

Expressing the boundary conditions (3.1) by the functions @*, ¥* and w*, we
obtain a system ofj three homogeneous equations. Making equal to zero the
determinant of this system, we arrive at the following characteristic equation

tgh (6h) Qu-+21)82—rk22 Ay tgh (Ay 1)
(3.9) = a My —as > ———
tgh (2.1 h) 4}{2 k2 ﬂ‘l 5(%2-—-' #1) 112 tgh (21 h)
where ar = p (K*+423)+a (22— k?) — 2awy, r = 1,2. The quantity ¢ is the phase
velocity sought for. From the transcendental Eq. (3.9) we obtain an infinite number
of roots k. To each of these roots there corresponds a definite form of vibrations.
For a — 0 (what corresponds to the classical theory of elasticity) Eq. (3.9) reduces
to the known transcendental equation for Lamb’s waves [7]:

1
x,-'=;(o§—|—k2-—2§), r=1,2, p=

c2\?
teh (khV1—c2c}) (2 B e—g)

=2- e
tgh (kh V1 — c?/¢3) 4]/(1_12)(1_33) :

(3.10)
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Let us now consider two particular cases. We assume first that the wavelength is
small as compared with the thickness of the plate 2h. Then the quantities ok, 4, A
and Ay harelarge such that it is plausible to assume the relation of hyperbolic tangents
as equal to one. Then

Xy ds /".1 %] N 4{1:2 kz-;’ll )
My — %1 by m—uy QutAd)e2—k2A°

(3.11)

The above equation coincides with the dispersional equation for the surface wave
in a micropolar medium [4]. For ¢ — 0 we obtain from (3.11) the equation character-
istic for Rayleigh waves [8]

T N e

For long waves, as compared with the thickness 2k, the quantities &k, Ay h, Ay h
are small and the hyperbolic tangents in (3.9) may be replaced by their arguments.
We have

(3.13) 42 K2 82 (g — 1) = [(2u-+2) 02 — K2 1] (a1 2 — a3 ).
In the particular case «—> 0 there is

2.9

b. Antisymmetric vibrations. Let us now consider the particular case
where the displacement uy and the stresses o4y, 027 and py3 are antisymmetric with
respect to the plane x; = 0. Then we have to put in the expressions (3.6) B = C =
=E=C'=E =0and D' =Dy F = F.

Making use of the boundary conditions (3.1) we arrive at the transcendental
equation

aymply  ayx A 42 k2 62 2y Ao (2 — 1)

G Grmm et h)) D = T G ek

which permits to determine the successive values of the parameter k.
For a — 0 we obtain from Eq. (3.14) the transcendental equation of classical

tgh (khY 1—c2/é3) - ( c2 )2

(3.15)

If the wavelength is very small as compared with the thickness of the plate 2h,
Eq. (3.14) goes into (3.11). If, on the contrary, the length of the wave is large as
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compared with the thickness of the plate, then expanding the hyperbolic tangents
into a series and retaining but two terms of the expanded form we obtain the equation

[ day ¥%| 4‘&(2 k2 (22——21)

2
(3.16) (I_T) A’(I—@)_ 2(1_{5'_;;2) T Curhe—k2a
1 3 3

2

w
Therefrom we are able to determine the phase velocity ¢ = b of the flexural wave.

For o —-0 we obtain an expression known from the classical elastokinetics [8]
4 é2
2= —3—(!0‘1)2 6%(1 — —C%—)

4. The modified Love’s waves

Let us now consider an elastic plate 2h thick; the propagation of the mono-
chromatic wave in such a medium is described by the system of Egs. (2.6). We assume
that the waves propagate with constant velocity along the x,-axis. Then there is

(4.1) (w1, 0, u3) = (@] (x1), @3 (x1), u* (x1)) & Era=eh),

Introducing into Egs. (2.6) the potentials ¢ and y connected with the rotations
1, wy by the relations

4.2) W =019 —02y, wr=20¢p+0dy,
we separate these equations obtaining the following system of equations
[(B+2y) Vi —4a—Jd}]1 9 = O,
(4.3) [(y+e) Vi—da—Jd p—2au; = 0,
[(u+a) Vi — 00f] u3+2aVi p = 0.

Eliminating from the two last equations first the qua'ntity w and then u; we get
an equation identical as to its structure with Eq. (3.4).

(44 {{ly+e) Vi —4a—J3}] [(u-+a) Vi — 007 +4a2 Vi} (y, u3) =0,

Now, requiring the boundary of the plate to be free of stresses, we have the following
boundary conditions

(4.5) pr1=0, wpp=0 o3=0 for x = 4h

Eq. (4.3); represent the rotational wave while Eq. (4.4) describes the transverse
and twist wave.
The solutions of Egs. (4.3); and (4.4) will be sought for in the form

@* = A sh ox;+Bch ox,
(4.6) w¥ = Csh Ay x;+Dch A x1-+Esh Ay x;-+Fch 43 xq,
u* = C'sh Ay x;+D’'ch A x;+E' sh 2y x;+F'ch A, x;.
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The following notations have been introduced into the above formulae

o B-+2y\'2 4a
o = (K+vi—dd), UJ=?3‘; ‘33=(“T) ’ (Z)T:ﬁ_;_g-y'

The quantities 4;, A, are given by the formulae (3.7).

a. Symmetric vibrations. We require the rotation wp and the stresses g1,
J22, 013 to be symmetric with respect to the plane x; = 0. This postulate will be
satisfied if we assume A =D=F=D'=F =0 and C'=p,C, E' =y E,
where the quantities p; and g, may be determined from Eq. (4.3);. Thus we have

~ p(k®—2) 2a "
gr_-li'——kz—F‘O'%’ p_p‘»-iﬂl’ F=1,4.
Taking into account boundary conditions expressed by (4.5) we obtain the system

of three homogeneous equations. Making equal to zero thé determinant of this
system we get a transcendental equation as below

tgh (oh)
o v
tgh (1, h) tgh (3, h)
4yak2 {Cz Zlm — e 12) +[2y-+p) 02 — k2 \e1dy — c2 d; tgh (121’ fl))
= 4k2y2 g (A dy— 22 dy) ' ’

where

or=y R4k +e(2—kY, dv=(u+a) A or+2aky, r=1,2.

1]
The successive values of the parameter k = and the corresponding phase

velocities ¢ and forms of waves may be determined from Eq. (4.7).
For small lengths of waves as compared with the thickness of the plate we obtain
the equation

4.8)  4k2yo(Ay dy — Ay dy) = dyak?(cy dy — ¢y da)+
+[@y+p) 02— p2 k2] (c1 d2 —c2 d)).

wherefrom we may determine the phase velocity of the surface wave in an elastic
half-space. Thus it appears that in a micropolar elastic medium we have not only
the waves of Rayleigh type but also the waves of Love type u3(xy, X2, 1) =
= uj (x1) e'*®~“D accompanied by the modified twist waves wj, wp. In the
classical medium the appearance of Love waves was possible only in a layered half-
space provided certain definite inequalities concerning the material constants were
satisfied [9].
Let us return once more to Eq. (4.7), assuming a —0. We obtain

c2\?
s tgh (kh V1 —e2/e}) _ ( “‘?5') 5(1)‘“
‘ ghkhV1—cd) 4V1—Fd0—da) - I
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We shall consider a particular case. For a — 0 Egs. (4.3) take the form

[(B+2y) Vi — T}l ¢ = 0,
(4.10) [(y+e) Vi—Jaily =0,
[u Vi —0dF] u3 = 0.
From the two first boundary conditions (4.5) we have the system of equations
B [(2y+B) o§ — Bk ch (oo h) — 2Cyikn ch (nh) = 0,
B2yikog sh o h+-[(y+-¢) 12+(y+e) k2] shnh = 0,
where

o= K-, 5= —d)".

Making equal to zero the determinant of this system of equations we obtain, after
some simple transformations, the transcendental Eq. (4.9). This equation refers
to a hypothetical medium, wherein only rotations may occur, but no displacements.

b. Antisymmetric vibrations. Let us consider the case, where the rotation
w, and the stresses uq1, M2z, 013 are antisymmetric with respect to the plane x; = 0.
Assuming in (46) B=C=E=C =E =0 and D'=¢;D, F =0, F we
obtain — taking into account the boundary conditions (4.5) — the following
transcendental equation

tgh (ch) B

411) o
D G
4)c2 ‘}4’2 0‘(21 dz — ;52 dl)

tgh (A ) tgh (A 4)
[(2y+B) 02 — k2] | ¢1 do — di 2igh (i ) s L ek ) Az e

For very small lengths of waves as compared with the thickness of the plate we get
from Eq. (4.12) again Eq. (4.8). In the particular case @ — 0 we obtain the equation
tgh (kh V1—c2c})  4(1—c2/c)'* (1 — 2[c})'P?

tgh (kh V1 — ¢2/c?) - (2_ 0_2)2 '

<

(4.12)

If in all transcendental equations referring to the modified Lamb’s and Love’s
problem we put k£ = 0, these equations will refer to the free vibrations of the elastic
layer which depend solely on x; and t. It means that they are monochromatic one
dimensional vibrations.

A more ample discussion of problems of propagation of waves considered in
this paper will be published before long in Proceedings of Vibration Problems.

DEPARTMENT OF MECHANICS OF CONTINUOUS MEDIA, INSTITUTE OF BASIC TECHNICAL
PROBLEMS, POLISH ACADEMY OF SCIENCES

(ZAKEAD MECHANIKI OSRODKOW CIAGLYCH, INSTYTUT PODSTAWOWYCH PROBLEMOW TECH-
NIKI, PAN)
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B. HOBALIKMI u B.K, HOBALIKHI, PACIIPOCTPAHEHWUE MOHOXPOMATU-
YECKHMX BOJIH B BECKOHEYHON MHUKPOITOJISIPHOM YIIPYI'ON ILIACTUHE

B pabore npejcraBneHbl ABa THAOA PACOPOCTPAHEHHS MOHOXPOMATHYeCKHX BOJMH B Oecko-
HEYHOH MHUKponoispHOi riacture. IlepBrii TN, oXapakTepA30BaHHLIE BekTOpaMu u = (u1, Uz, 0)
" w = (0,0, w3), ABnsAeTCA pacnpocTpaHEHHEM HA MHKDONOJAPHYIO cpeny npobnemst Bond JIamba,
BTOpO# THI, OXxapakTepu3oBaHHELi BekTOopamu u = (0,0, u3) ¥ @ = (w1, s, 0), cooTseTCTBYET
BonHam Jlosa. ITokasaHo, YTO B OAHOPOJHON, MHKPOMOJNIAPHOM NNACTHHE BO3MOXKHO DACHpO-
cTpadende BouH Jlosa.



